1
|
Leer S, Parsons ZA, Schneider S. Gaps in Heat-Related Knowledge, Practices and Adaptation Strategies Among Coaches in German Outdoor Sports. Int J Public Health 2024; 69:1607928. [PMID: 39698305 PMCID: PMC11653017 DOI: 10.3389/ijph.2024.1607928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
Objectives Climate change is increasing the risk of heat-related illness in outdoor sports. Coaches have a responsibility to protect the athletes in their care. In this study, the knowledge and practice of German coaches in heat prevention were evaluated nationwide. Methods Coaches (n = 1,200) from the ten largest outdoor sports in Germany were asked about their knowledge using the knowledge of heat-related illness symptoms index (KOSI, range [0-14]). Prevention measures currently implemented by coaches were analyzed in terms of relative compliance with specified recommendations (heat prevention score (HPS), range [0-100]). Results The KOSI averaged 10.31 ± 1.81 and pointed to clear knowledge deficits: the lowest score values were shown by coaches in skiing (9.85 ± 1.80), soccer (10.07 ± 2.33) and golf (10.09 ± 1.75; pANOVA = 0.015). Heat protection in training was also deficient: The HPS showed a mean value of 62.41 ± 14.89. The greatest deficits existed in tennis (57.71 ± 14.29), mountain sports (58.17 ± 13.08) and soccer (58.70 ± 13.86; pANOVA < 0.001). No correlation between theoretical knowledge and practical prevention was found. Conclusion In Germany, coaches are insufficiently prepared for the health hazards of heat. Promoting onsite educational programs seems essential to ensure safer sports environments.
Collapse
Affiliation(s)
| | | | - Sven Schneider
- Division of Public Health, Social and Preventive Medicine, Center for Preventive Medicine Baden-Württemberg, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
2
|
Criddle JL, Wigati KW, Locatelli JC, Costa JG, Collis JJ, Haynes A, Xu X, Naylor LH, Maloney SK, Cotter JD, McLaughlin RA, Carter HH, Green DJ. Physiological response to exercise in the heat: Implications for risk mitigation and adaptation. Temperature (Austin) 2024; 12:71-84. [PMID: 40041159 PMCID: PMC11875470 DOI: 10.1080/23328940.2024.2431402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 03/06/2025] Open
Abstract
Purpose Recent field studies of physical exertion in challenging environmental conditions have reported dissociation between elevation in body core temperature (Tc) and successful task completion. This prompted us to further examine physiological mechanisms that might underlie variability in the response to exertional heat exposure. We hypothesized that, in response to exercise in the heat, systematic differences in central and peripheral physiological variables would be apparent between participants who successfully completed the task, versus those who became hyperthermic or symptomatic. Methods Thirty-eight healthy participants attempted a 120-min walk (5 km/h, 2% grade) in a climate-controlled chamber (40°C, 50%RH). At rest and at regular intervals during the walk, measures of physiological heat strain were assessed. Twenty-seven participants were Completers, seven were stopped because their Tc exceeded 39°C (Hyperthermics), and four became Symptomatic (e.g. lightheaded, headache, dizzy) and did not complete the walk. Results Visceral adipose tissue was higher in those who became Hyperthermic, compared to the Completers (437 ± 183 vs 245 ± 268 g; p = 0.034), despite similar height and body mass. Hyperthermics also had higher heart rate (p = 0.009), and lower end-diastolic volume (p = 0.031), and stroke volume (p = 0.031) during the early stages of walking, compared to the Completers. None of the Symptomatics reached a Tc >39°C (symptoms occurred at 38.1 ± 0.4°C), and none of the Hyperthermics reported symptoms. Conclusions During exertional heat exposure, adiposity and exaggerated early-stage hemodynamic responses were related to Tc elevation, but hyperthermia was not related to the development of symptoms, and baseline parameters relating to body composition and fitness were not related to symptom development.
Collapse
Affiliation(s)
- Jesse L. Criddle
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Kristanti W. Wigati
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Joao Carlos Locatelli
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Juliene Goncalves Costa
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Julie J. Collis
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Andrew Haynes
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Xingwei Xu
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Louise H. Naylor
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Shane K. Maloney
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - James D. Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Robert A. McLaughlin
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Howard H. Carter
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| | - Daniel J. Green
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Jay O, Périard JD, Hunt L, Ren H, Suh H, Gonzalez RR, Sawka MN. Whole body sweat rate prediction: indoor treadmill and cycle ergometer exercise. J Appl Physiol (1985) 2024; 137:1014-1020. [PMID: 39205641 DOI: 10.1152/japplphysiol.00829.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
This article describes the development and validation of accurate whole body sweat rate prediction equations for individuals performing indoor cycle ergometer and treadmill exercise, where power output can be measured or derived from simple inputs. For cycle ergometry, 112 trials (67 participants) were used for model development and another 56 trials (42 participants) for model validation. For treadmill exercise, 171 trials (67 participants) were used for model development and another 95 trials (63 participants) for model validation. Trials were conducted over a range of dry-bulb temperature (20°C to 40°C), relative humidity (14% to 60%), and exercise intensity (∼40% to 85% of peak aerobic power) conditions, which were matched between model development and model validation. Whole body sweat rates were measured, and proprietary prediction models were developed (accounting for all relevant biophysical factors) and then validated. For model validation, mean absolute error for predicted sweating rate was 0.01 and 0.02 L·h-1 for cycle and treadmill trials, respectively. The 95% confidence intervals were modest for cycle ergometer (+0.25 and -0.22 L·h-1) and treadmill exercise (+0.33 and -0.29 L·h-1). The accounted for variance between predicted and measured values was 92% and 78% for cycle and treadmill exercise, respectively. Bland-Altman analysis indicated that zero and one predicted value exceeded the a priori acceptable level of agreement (equivalent to ±2% of total body mass in 3 h) for cycle and treadmill exercise, respectively. There were fewer trials with female subjects, but their values did not differ from those expected for males. This is the foremost study to develop and validate whole body sweat rate prediction equations for indoor treadmill and cycle ergometer exercise of moderate to high intensity. These prediction equations are publicly available for use (https://sweatratecalculator.com).NEW & NOTEWORTHY This study presents the development of new proprietary whole body sweat rate prediction models for people exercising indoors on a cycle ergometer or treadmill using simple input parameters and delivered through a publicly available online calculator: https://sweatratecalculator.com. In an independent validation group, the predictive models for both indoor cycling and treadmill exercise were accurate across moderate to high exercise intensities in temperate to hot conditions. These equations will enable individualized hydration management during physical training and exercise physiology experiments.
Collapse
Affiliation(s)
- Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Julien D Périard
- Research Institute of Sports and Exercise, University of Canberra, Bruce, Canberra, Australia
| | - Lindsey Hunt
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Haiyu Ren
- The Coca-Cola Company (USA), Atlanta, Georgia, United States
| | - HyunGyu Suh
- The Coca-Cola Company (USA), Atlanta, Georgia, United States
| | - Richard R Gonzalez
- Gonzalez Advanced Biophysics Associates, Lorenzo, New Mexico, United States
| | - Michael N Sawka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Blount H, Valenza A, Ward J, Caggiari S, Worsley PR, Filingeri D. The effect of female breast surface area on heat-activated sweat gland density and output. Exp Physiol 2024; 109:1330-1340. [PMID: 38847458 PMCID: PMC11291870 DOI: 10.1113/ep091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Female development includes significant morphological changes across the breast. Yet, whether differences in breast surface area (BrSA) modify sweat gland density and output remains unclear. The present study investigated the relationship between BrSA and sweat gland density and output in 22 young to middle-aged women (28± $\ \pm \ $ 10 years) of varying breast sizes (BrSA range: 147-561 cm2) during a submaximal run in a warm environment (32 ± $ \pm \ $ 0.6°C; 53 ± $ \pm \ $ 1.7% relative humidity). Local sweat gland density and local sweat rate (LSR) above and below the nipple and at the bra triangle were measured. Expired gases were monitored for the estimation of evaporative requirements for heat balance (Ereq, in W/m2). Associations between BrSA and (i) sweat gland density; (ii) LSR; and (iii) sweat output per gland for the breast sites were determined via correlation and regression analyses. Our results indicated that breast sweat gland density decreased linearly as BrSA increased (r = -0.76, P < 0.001), whereas sweat output per gland remained constant irrespective of BrSA (r = 0.29, P = 0.28). This resulted in LSR decreasing linearly as BrSA increased (r = -0.62, P = 0.01). Compared to the bra triangle, the breast had a 64% lower sweat gland density (P < 0.001), 83% lower LSR (P < 0.001) and 53% lower output per gland (P < 0.001). BrSA (R2 = 0.33, P = 0.015) explained a greater proportion of variance in LSR than Ereq (in W/m2) (R2 = 0.07, P = 0.538). These novel findings extend the known relationship between body morphology and sweat gland density and LSR, to the female breast. This knowledge could innovate user-centred design of sports bras by accommodating breast size-specific needs for sweat management, skin wetness perception and comfort.
Collapse
Affiliation(s)
- Hannah Blount
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Alessandro Valenza
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
- Sport and Exercise Sciences Research Unit, SPPEFF DepartmentUniversity of PalermoPalermoItaly
| | - Jade Ward
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Silvia Caggiari
- PressureLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Peter R. Worsley
- PressureLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Davide Filingeri
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| |
Collapse
|
5
|
Topham TH, Smallcombe JW, Brown HA, Clark B, Woodward AP, Telford RD, Jay O, Périard JD. Biological sex does not independently influence core temperature change and sweating of children exercising in uncompensable heat stress. J Appl Physiol (1985) 2024; 136:1440-1449. [PMID: 38660730 DOI: 10.1152/japplphysiol.00877.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
The purpose of this study was to investigate the influence of biological sex, independent of differences in aerobic fitness and body fatness, on the change in gastrointestinal temperature (ΔTgi) and whole body sweat rate (WBSR) of children exercising under uncompensable heat stress. Seventeen boys (means ± SD; 13.7 ± 1.3 yr) and 18 girls (13.7 ± 1.4 yr) walked for 45 min at a fixed rate of metabolic heat production per kg body mass (8 W·kg-1) in 40°C and 30% relative humidity. Sex and peak oxygen consumption (V̇o2peak) were entered into a Bayesian hierarchical general additive model (HGAM) for Tgi. Sex, V̇o2peak, and the evaporative requirement for heat balance (Ereq) were entered into a Bayesian hierarchical linear regression for WBSR. For 26 (12 M and 14 F) of the 35 children with measured body composition, body fat percentage was entered in a separate HGAM and hierarchical linear regression for Tgi and WBSR, respectively. Conditional on sex-specific mean V̇o2peak, ΔTgi was 1.00°C [90% credible intervals (Crl): 0.84, 1.16] for boys and 1.17°C [1.01, 1.33] for girls, with a difference of 0.17°C [-0.39, 0.06]. When sex differences in V̇o2peak were accounted for, the difference in ΔTgi between boys and girls was 0.01°C [-0.25, 0.22]. The difference in WBSR between boys and girls was 0.03 L·h-1 [-0.02, 0.07], when isolated from differences in Ereq. The difference in ΔTgi between boys and girls was -0.10°C [-0.38, 0.17] when sex differences in body fat (%) were accounted for. Biological sex did not independently influence the ΔTgi and WBSR of children exercising under uncompensable heat stress.NEW & NOTEWORTHY Limited studies have investigated the thermoregulatory responses of boys and girls exercising under uncompensable heat stress. Boys and girls often differ in physiological characteristics other than biological sex, such as aerobic fitness and body fat percentage, which may confound interpretations. We investigated the influence of biological sex on exercise thermoregulation in children, independent of differences in aerobic fitness and body fatness.
Collapse
Affiliation(s)
- Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - James W Smallcombe
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, New South Wales, Australia
| | - Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Andrew P Woodward
- Faculty of Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Ollie Jay
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, New South Wales, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Topham TH, Smallcombe JW, Brown HA, Clark B, Woodward AP, Telford RD, Jay O, Périard JD. Influence of Biological Sex and Fitness on Core Temperature Change and Sweating in Children Exercising in Warm Conditions. Med Sci Sports Exerc 2024; 56:697-705. [PMID: 38051094 DOI: 10.1249/mss.0000000000003347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE This study aimed to investigate the associations of biological sex and aerobic fitness (i.e., V̇O 2peak ) on the change in gastrointestinal temperature (∆ Tgi ) and whole-body sweat rate (WBSR) of children exercising in warm conditions. METHODS Thirty-eight children (17 boys, mean ± SD = 13.7 ± 1.2 yr; 21 girls, 13.6 ± 1.8 yr) walked for 45 min at a fixed rate of metabolic heat production (8 W·kg -1 ) in 30°C and 40% relative humidity. Biological sex and relative V̇O 2peak were entered as predictors into a Bayesian hierarchical generalized additive model for Tgi . For a subsample of 13 girls with measured body composition, body fat percent was entered into a separate hierarchical generalized additive model for Tgi . Sex, V̇O 2peak , and the evaporative requirement for heat balance ( Ereq ) were entered into a Bayesian hierarchical linear regression for WBSR. RESULTS The mean ∆ Tgi for boys was 0.71°C (90% credible interval = 0.60-0.82) and for girls 0.78°C (0.68-0.88). A predicted 20 mL·kg -1 ·min -1 higher V̇O 2peak resulted in a 0.19°C (-0.03 to 0.43) and 0.24°C (0.07-0.40) lower ∆ Tgi in boys and girls, respectively. A predicted ~13% lower body fat in the subsample of girls resulted in a 0.15°C (-0.12 to 0.45) lower ∆ Tgi . When Ereq was standardized to the grand mean, the difference in WBSR between boys and girls was -0.00 L·h -1 (-0.06 to 0.06), and a 20-mL·kg -1 ·min -1 higher predicted V̇O 2peak resulted in a mean difference in WBSR of -0.07 L·h -1 (-0.15 to 0.00). CONCLUSIONS Biological sex did not independently influence ∆ Tgi and WBSR in children. However, a higher predicted V̇O 2peak resulted in a lower ∆ Tgi of children, which was not associated with a greater WBSR, but may be related to differences in body fat percent between high and low fitness individuals.
Collapse
Affiliation(s)
- Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, AUSTRALIA
| | - James W Smallcombe
- The University of Sydney, Heat and Health Research Incubator, Faculty of Medicine and Health, Sydney, NSW, AUSTRALIA
| | - Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, AUSTRALIA
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, AUSTRALIA
| | | | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, AUSTRALIA
| | - Ollie Jay
- The University of Sydney, Heat and Health Research Incubator, Faculty of Medicine and Health, Sydney, NSW, AUSTRALIA
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, AUSTRALIA
| |
Collapse
|
7
|
Ogden HB, Rawcliffe AJ, Delves SK, Roberts A. Are young military personnel at a disproportional risk of heat illness? BMJ Mil Health 2023; 169:559-564. [PMID: 35241622 PMCID: PMC10715519 DOI: 10.1136/bmjmilitary-2021-002053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/08/2022] [Indexed: 11/04/2022]
Abstract
Heat illnesses (HI) define a continuum of conditions where patients become incapacitated due to uncompensable heat stress. In the military, HI has a significant health, financial and operational burden that requires vigilant management. Military training and operations regularly expose personnel to known HI risk factors, meaning that prevalence remains high despite stringent attempts to reduce risk to as low as reasonably practicable. While prepubertal children and elderly adults are widely demonstrated to be at greater risk of classic HI than young adults due to impaired physiological and/or behavioural thermoregulation, in military personnel, it is young recruit-age individuals (16-19 years) who consistently experience the highest prevalence of exertional HI. Mechanistically, controlled laboratory studies have never directly compared thermoregulation between young recruit-age individuals and other groups of adults, though research highlighting impaired thermoregulation in prepubertal children potentially has some relevance to late-developing young recruit-age personnel. Aside from potential age-related differences in thermoregulation, a major consideration must also be given to the increased prevalence of organisational risk factors for HI in younger military personnel (eg, education, physical load, rank, job roles), which is likely to be the primary explanation behind age-related trends in HI prevalence, at least in the military. The aims of this article are to review: (i) the epidemiology of HI between young recruit-age individuals and older military personnel; (ii) the theoretical basis for age-associated differences in thermoregulatory function and (iii) pertinent areas for future research.
Collapse
Affiliation(s)
- Henry B Ogden
- Army Recruit Health and Performance Research, UK Ministry of Defence, Upavon, Wiltshire, UK
| | - A J Rawcliffe
- Army Recruit Health and Performance Research, UK Ministry of Defence, Upavon, Wiltshire, UK
| | - S K Delves
- Environmental Medicine and Science, Institute of Naval Medicine, Gosport, UK
| | - A Roberts
- Army Recruit Health and Performance Research, UK Ministry of Defence, Upavon, Wiltshire, UK
| |
Collapse
|
8
|
Giersch GEW, Taylor KM, Caldwell AR, Charkoudian N. Body mass index, but not sex, influences exertional heat stroke risk in young healthy men and women. Am J Physiol Regul Integr Comp Physiol 2023; 324:R15-R19. [PMID: 36342147 DOI: 10.1152/ajpregu.00168.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exertional heat stroke (EHS) remains a persistent threat for individuals working or playing in the heat, including athletes and military and emergency service personnel. However, influence of biological sex and/or body mass index (BMI) on the risk of EHS remain poorly understood. The purpose of this study was to retrospectively assess the influence of sex and BMI on risk of EHS in the active-duty US Army. We analyzed data from 2016 to 2021, using a matched case-control approach, where each individual with a diagnosis of EHS was matched to five controls based on calendar time, unit ID, and job category, to capture control individuals who were matched to EHS events by location, time, and activity. We used a multivariate logistic regression model mutually adjusted for sex, BMI, and age to compare 745 (n = 61 F) individuals (26 ± 7 yr) with a diagnosed EHS to 4,290 (n = 384 F) case controls (25 ± 5 yr). Group average BMI were similar: 26.6 ± 3.1 (EHS) and 26.5 ± 3.6 kg/m2 (CON). BMI was significantly (P < 0.0001) associated with higher risk of EHS with a 3% increase in risk of EHS for every unit increase in BMI. Notably, sex was not associated with any difference in risk for EHS (P = 0.54). These data suggest that young healthy people with higher BMI have significantly higher risk of EHS, but, contrary to what some have proposed, this risk was not higher in young women.
Collapse
Affiliation(s)
- Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Kathryn M Taylor
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Aaron R Caldwell
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
9
|
Cramer MN, Gagnon D, Laitano O, Crandall CG. Human temperature regulation under heat stress in health, disease, and injury. Physiol Rev 2022; 102:1907-1989. [PMID: 35679471 PMCID: PMC9394784 DOI: 10.1152/physrev.00047.2021] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022] Open
Abstract
The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.
Collapse
Affiliation(s)
- Matthew N Cramer
- Defence Research and Development Canada-Toronto Research Centre, Toronto, Ontario, Canada
| | - Daniel Gagnon
- Montreal Heart Institute and School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Quebec, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Continuous Thermoregulatory Responses to a Mass-Participation 89-km Ultramarathon Road Race. Int J Sports Physiol Perform 2022; 17:1574-1582. [PMID: 36070861 DOI: 10.1123/ijspp.2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To continuously measure body core temperature (Tc) throughout a mass-participation ultramarathon in subelite recreational runners to quantify Tc magnitude and the influence of aerobic fitness and body fat. METHODS Twenty-three participants (19 men and 4 women; age 45 [9] y; body mass 72.0 [9.3] kg; body fat 26% [6%]; peak oxygen uptake 50 [6] mL·kg-1·min-1) had gastrointestinal temperature measured during an 89-km ultramarathon. Prerace-to-postrace changes in body mass, plasma sodium, and fluid and food recall quantified body water balance. RESULTS In maximal environmental conditions of 26.3 °C and 53% humidity, 21 of the 23 participants finished in 10:28 (01:10) h:min while replacing 49% (27%) of sweat losses, maintaining plasma sodium (140 [3] mmol·L-1), and dehydrating by 4.1% (1.3%). Mean maximum Tc was 39.0 (0.5) (range 38.2-40.1 °C) with 90% of race duration ≤39.0 °C. Mean maximum ΔTc was 1.9 (0.9) (0.9-2.7 °C) with 95% of race duration ≤2.0 °C. Over 0 to 45 km, associations between ΔTc and peak oxygen uptake (positive) and body fat (negative) were observed. Over 58 to 89 km, associations between Tc and peak oxygen uptake (negative) and body fat (positive) were observed. CONCLUSIONS Modest Tc responses were observed in recreational ultramarathon runners. Runners with higher levels of aerobic fitness and lower levels of body fat demonstrated the greatest changes in Tc during the first half of the race. Conversely, runners with lower levels of aerobic fitness and higher levels of body fat demonstrated the greatest absolute Tc in the final third of the race.
Collapse
|
11
|
Topham TH, Smallcombe JW, Clark B, Brown HA, Telford RD, Jay O, Periard JD. The influence of sex and biological maturation on the sudomotor response to exercise-heat stress: Are girls disadvantaged? Am J Physiol Regul Integr Comp Physiol 2022; 323:R161-R168. [PMID: 35670483 DOI: 10.1152/ajpregu.00328.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both adult females and children have been reported to have a lower sweating capacity and thus reduced evaporative heat loss potential which may increase their susceptibility to exertional hyperthermia in the heat. Compared to males, females have a lower maximal sweat rate and thus a theoretically lower maximum skin wettedness, due to a lower sweat output per gland. Similarly, children have been suggested to be disadvantaged in high ambient temperatures due to a lower sweat production and therefore reduced evaporative capacity, despite modifications of heat transfer due to physical attributes and possible evaporative efficiency. The reported reductions in sudomotor activity of females and children suggests a lower sweating capacity in girls. However, due to the complexities of isolating sex and maturation from the confounding effects of morphological differences (e.g., body surface area-to-mass ratio) and metabolic heat production, limited evidence exists supporting whether children and, more specifically, girls are at a thermoregulatory disadvantage. Furthermore, a limited number of child-adult comparison studies involve females and very few studies have directly compared regional and whole-body sudomotor activity between boys and girls. This mini review highlights the exercise-induced sudomotor response of females and children, summarises previous research investigating the sudomotor response to exercise in girls and suggests important areas for further research.
Collapse
Affiliation(s)
- Thomas H Topham
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - James W Smallcombe
- The University of Sydney, Heat and Health Research Incubator, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Harry A Brown
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Ollie Jay
- The University of Sydney, Heat and Health Research Incubator, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Julien D Periard
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| |
Collapse
|
12
|
Hunt LA, Hospers L, Smallcombe JW, Mavros Y, Jay O. Caffeine alters thermoregulatory responses to exercise in the heat only in caffeine-habituated individuals: a double-blind placebo-controlled trial. J Appl Physiol (1985) 2021; 131:1300-1310. [PMID: 34435513 DOI: 10.1152/japplphysiol.00172.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To assess the impact of acute caffeine ingestion on thermoregulatory responses during steady-state exercise under moderate heat stress conditions in caffeine-habituated and nonhabituated individuals. Twenty-eight participants [14 habituated (HAB) (4 females) and 14 nonhabituated (NHAB) (6 females)] cycled at a fixed metabolic heat production (7 W·kg-1) for 60 min on two separate occasions 1 h after ingesting 1) 5 mg·kg-1 caffeine (CAF) or 2) 5 mg·kg-1 placebo (PLA), in a double-blinded, randomized, and counterbalanced order. Environmental conditions were 30.6 ± 0.9°C, 31 ± 1% relative humidity (RH). The end-exercise rise in esophageal temperature (ΔTes) from baseline was greater with CAF in the HAB group (CAF = 0.88 ± 0.29°C, PLA = 0.62 ± 0.34°C, P < 0.001), but not in the NHAB group (CAF = 1.00 ± 0.42°C, PLA = 1.00 ± 0.39°C, P = 0.94). For a given change in mean body temperature, rises in % of maximum skin blood flow were attenuated with CAF on the forearm (P = 0.015) and back (P = 0.021) in the HAB group, but not in the NHAB group (P ≥ 0.65). Dry heat loss was similar in the HAB (CAF = 31 ± 5 W·m-2, PLA = 33 ± 7 W·m-2) and NHAB groups (CAF = 31 ± 3 W·m-2, PLA 30 ± 4 W·m-2) (P ≥ 0.37). There were no differences in whole body sweat losses in both groups (HAB: CAF = 0.59 ± 0.15 kg, PLA = 0.56 ± 0.17 kg, NHAB:CAF = 0.53 ± 0.19 kg, PLA 0.52 ± 0.19 kg) (P ≥ 0.32). As the potential for both dry and evaporative heat loss was uninhibited by caffeine, we suggest that the observed ΔTes differences with CAF in the HAB group were due to alterations in internal heat distribution. Our findings support the common practice of participants abstaining from caffeine before participation in thermoregulatory research studies in compensable conditions.NEW & NOTEWORTHY We provide empirical evidence that acute caffeine ingestion exerts a thermoregulatory effect during exercise in the heat in caffeine-habituated individuals but not in nonhabituated individuals. Specifically, caffeine habituation was associated with a greater rise in esophageal temperature with caffeine compared with placebo, which appears to be driven by a blunted skin blood flow response. In contrast, no thermoregulatory differences were observed with caffeine in nonhabituated individuals. Caffeine did not affect sweating responses during exercise in the heat.
Collapse
Affiliation(s)
- Lindsey A Hunt
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lily Hospers
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - James W Smallcombe
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Yorgi Mavros
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Camperdown, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
13
|
Ebi KL, Capon A, Berry P, Broderick C, de Dear R, Havenith G, Honda Y, Kovats RS, Ma W, Malik A, Morris NB, Nybo L, Seneviratne SI, Vanos J, Jay O. Hot weather and heat extremes: health risks. Lancet 2021; 398:698-708. [PMID: 34419205 DOI: 10.1016/s0140-6736(21)01208-3] [Citation(s) in RCA: 471] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 12/15/2020] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
Hot ambient conditions and associated heat stress can increase mortality and morbidity, as well as increase adverse pregnancy outcomes and negatively affect mental health. High heat stress can also reduce physical work capacity and motor-cognitive performances, with consequences for productivity, and increase the risk of occupational health problems. Almost half of the global population and more than 1 billion workers are exposed to high heat episodes and about a third of all exposed workers have negative health effects. However, excess deaths and many heat-related health risks are preventable, with appropriate heat action plans involving behavioural strategies and biophysical solutions. Extreme heat events are becoming permanent features of summer seasons worldwide, causing many excess deaths. Heat-related morbidity and mortality are projected to increase further as climate change progresses, with greater risk associated with higher degrees of global warming. Particularly in tropical regions, increased warming might mean that physiological limits related to heat tolerance (survival) will be reached regularly and more often in coming decades. Climate change is interacting with other trends, such as population growth and ageing, urbanisation, and socioeconomic development, that can either exacerbate or ameliorate heat-related hazards. Urban temperatures are further enhanced by anthropogenic heat from vehicular transport and heat waste from buildings. Although there is some evidence of adaptation to increasing temperatures in high-income countries, projections of a hotter future suggest that without investment in research and risk management actions, heat-related morbidity and mortality are likely to increase.
Collapse
Affiliation(s)
- Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA.
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC, Australia; Sydney School of Public Health, Sydney, NSW, Australia
| | - Peter Berry
- Faculty of Environment, University of Waterloo, Waterloo, ON, Canada
| | - Carolyn Broderick
- School of Medical Sciences, UNSW Sydney, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Richard de Dear
- Indoor Environmental Quality Laboratory, School of Architecture, Design, and Planning, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia
| | - George Havenith
- Environmental Ergonomics Research Centre, School of Design and Creative Arts, Loughborough University, Loughborough, UK
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - R Sari Kovats
- NIHR Health Protection Research Unit in Environmental Change and Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Wei Ma
- School of Public Health and Climate Change and Health Center, Shandong University, Jinan, China
| | - Arunima Malik
- Discipline of Accounting, Business School, Sydney, NSW, Australia; School of Physics, Faculty of Science, ISA, Sydney, NSW, Australia
| | - Nathan B Morris
- Thermal Ergonomics Laboratory, Sydney, NSW, Australia; Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Sonia I Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Jennifer Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Sydney, NSW, Australia; Sydney School of Health Sciences, Sydney, NSW, Australia; Sydney School of Public Health, Sydney, NSW, Australia; Faculty of Medicine and Health, Charles Perkins Centre, Sydney, NSW, Australia
| |
Collapse
|
14
|
Foster J, Smallcombe JW, Hodder SG, Jay O, Flouris AD, Morris NB, Nybo L, Havenith G. Aerobic fitness as a parameter of importance for labour loss in the heat. J Sci Med Sport 2021; 24:824-830. [DOI: 10.1016/j.jsams.2021.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/16/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
|
15
|
Giersch GEW, Morrissey MC, Butler CR, Colburn AT, Demarais ZS, Kavouras SA, Jay O, Charkoudian N, Casa DJ. Sex difference in initial thermoregulatory response to dehydrated exercise in the heat. Physiol Rep 2021; 9:e14947. [PMID: 34288556 PMCID: PMC8290474 DOI: 10.14814/phy2.14947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022] Open
Abstract
Although it is well established that dehydration has a negative impact on thermoregulation during exercise in the heat, it is unclear whether this effect of dehydration is different between men and women, or across the phases of the menstrual cycle (MC). Twelve men and seven women (men: 20 ± 2 years, 70.13 ± 10.5 kg, 173.4 ± 6.0 cm, 54.2 ± 8.6 ml kg-1 min-1 ; women: 20 ± 2 years, 57.21 ± 7.58 kg, 161 ± 5 cm, 40.39 ± 3.26 ml kg-1 min-1 ) completed trials either euhydrated (urine specific gravity, USG ≤ 1.020, Euhy) or dehydrated (USG > 1.020, Dehy). Trial order was randomized and counterbalanced; men completed two trials (MEuhy and MDehy) and women completed four over two MC phases (late follicular: days 10-13, FDehy, FEuhy; midluteal: days 18-22, LDehy, LEuhy). Each trial consisted of 1.5 h, split into two 30 min blocks of exercise (B1 and B2, 15 min at 11 W/kg & 15 min at 7 W/kg) separated by 15 min rest in between and after. Rectal temperature (Tre ) was measured continuously and estimated sweat loss was calculated from the body mass measured before and after each block of exercise. When dehydrated, the rate of rise in Tre was greater in women in the first block of exercise compared to men, independently of the MC phase (MDehy: 0.03 ± 0.03°C/min, FDehy: 0.06 ± 0.02, LDehy: 0.06 ± 0.02, p = 0.03). Estimated sweat loss was lower in all groups in B1 compared to B2 when dehydrated (p < 0.05), with no difference between sexes for either hydration condition. These data suggest that women may be more sensitive to the negative thermoregulatory effects of dehydration during the early stages of exercise in the heat.
Collapse
Affiliation(s)
- Gabrielle E. W. Giersch
- United States Army Research Institute for Environmental MedicineNatickMAUSA
- Oak Ridge Institute for Science and EducationBelcampMDUSA
| | | | - Cody R. Butler
- Korey Stringer InstituteUniversity of ConnecticutStorrsCTUSA
| | | | | | | | - Ollie Jay
- Thermal Ergonomics LaboratoryUniversity of SydneySydneyNSWAustralia
| | - Nisha Charkoudian
- United States Army Research Institute for Environmental MedicineNatickMAUSA
| | - Douglas J. Casa
- Korey Stringer InstituteUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
16
|
Thermoregulation During Pregnancy: a Controlled Trial Investigating the Risk of Maternal Hyperthermia During Exercise in the Heat. Sports Med 2021; 51:2655-2664. [PMID: 34165763 DOI: 10.1007/s40279-021-01504-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Despite the well-established benefits of exercise, pregnant women are discouraged from physical activity in hot/humid conditions to avoid hyperthermia (core temperature (Tcore) ≥ 39.0 °C). Recent epidemiological evidence also demonstrates greater risk of negative birth outcomes following heat exposure during pregnancy, possibly due to thermoregulatory impairments. We aimed to determine (1) the risk of pregnant women exceeding a Tcore of 39.0 °C during moderate-intensity exercise in the heat; and (2) if any thermoregulatory impairments are evident in pregnant (P) versus non-pregnant (NP) women. METHODS Thirty participants (15 pregnant in their second trimester or third trimester) completed two separate exercise-heat exposures in a climate chamber (32 °C, 45%RH). On separate occasions, each participant cycled on a semi-recumbent cycle ergometer for 45 min at a workload representative of a moderate-intensity (1) non-weight-bearing (NON-WB), or (2) weight-bearing (WB) activity. Thermoregulatory responses were monitored throughout. RESULTS The highest rectal temperature observed in a pregnant individual was 37.93 °C. Mean end-exercise rectal temperature did not differ between groups (P:37.53 ± 0.22 °C, NP:37.52 ± 0.34 °C, P = 0.954) in the WB trial, but was lower in the P group (P:37.48 ± 0.25 °C, vs NP:37.73 ± 0.38 °C, P = 0.041) in the NON-WB trial. Whole-body sweat loss was unaltered by pregnancy during WB (P:266 ± 62 g, NP:264 ± 77 g; P = 0.953) and NON-WB P:265 ± 51 g, NP:300 ± 75 g; P = 0.145) exercise. Pregnant participants reported higher ratings of thermal sensation (felt hotter) than their non-pregnant counterparts in the WB trial (P = 0.002) but not in the NON-WB trial, (P = 0.079). CONCLUSION Pregnant women can perform 45 min of moderate-intensity exercise at 32 °C, 45%RH with very low apparent risk of excessive maternal hyperthermia. No thermoregulatory impairments with pregnancy were observed.
Collapse
|
17
|
Ravanelli N, Jay O. The Change in Core Temperature and Sweating Response during Exercise Are Unaffected by Time of Day within the Wake Period. Med Sci Sports Exerc 2021; 53:1285-1293. [PMID: 33273272 DOI: 10.1249/mss.0000000000002575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Exercise thermoregulation studies typically control for time of day. The present study assessed whether circadian rhythm independently alters time-dependent changes in core temperature and sweating during exercise at a fixed rate of metabolic heat production (Hprod) during the wake period. METHODS Ten men (26 ± 2 yr, 76.6 ± 6.3 kg, 1.95 ± 0.10 m2) cycled for 60 min in three combinations of ambient temperature and Hprod (23°C-7.5 W·kg-1, 33°C-5.5 W·kg-1, and 33°C-7.5 W·kg-1) at two times of day (a.m.: 0800 h, p.m.: 1600 h). Rectal temperature (Tre), local sweat rate, and whole-body sweat losses were measured. RESULTS Absolute Tre was lower at baseline in a.m. versus p.m. for all three conditions (a.m.: 36.8°C ± 0.2°C, p.m.: 37.0°C ± 0.2°C, P < 0.01). The ΔTre was not altered by time of day (P > 0.22) and not different at 60 min between a.m. and p.m. for 23°C-7.5 W·kg-1 (a.m.: 0.83°C ± 0.14°C, p.m.: 0.75°C ± 0.20°C; P = 0.20), 33°C-5.5 W·kg-1 (a.m.: 0.51°C ± 0.14°C, p.m.: 0.47°C ± 0.14°C; P = 0.22), and 33°C-7.5 W·kg-1 (a.m.: 0.77°C ± 0.20°C, p.m.: 0.73°C ± 0.21°C; P = 0.80). The change in local sweat rate was unaffected by time of day (P > 0.16) and not different at 60 min in 23°C-7.5 W·kg-1 (a.m.: 0.67 ± 0.20 mg·cm-2·min-1, p.m.: 0.62 ± 0.21 mg·cm-2·min-1; P = 0.55), 33°C-5.5 W·kg-1 (a.m.: 0.59 ± 0.13 mg·cm-2·min-1, p.m.: 0.57 ± 0.12 mg·cm-2·min-1; P = 0.65), and 33°C-7.5 W·kg-1 (a.m.: 0.91 ± 0.19 mg·cm-2·min-1, p.m.: 0.84 ± 0.15 mg·cm-2·min-1; P = 0.33). Whole-body sweat loss was not different between a.m. and p.m. for 23°C-7.5 W·kg-1 (a.m.: 579 ± 72 g, p.m.: 579 ± 96 g; P = 0.99), 33°C-5.5 W·kg-1 (a.m.: 558 ± 48 g, p.m.: 555 ± 83 g; P = 0.89), and 33°C-7.5 W·kg-1 (a.m.: 796 ± 72 g, p.m.: 783 ± 75 g; P = 0.31). CONCLUSIONS The change in core temperature and sweating throughout a 60-min exercise bout in 23°C and 33°C were unaffected by circadian rhythm during the wake period when exercise intensity was prescribed to elicit comparable rates of Hprod, suggesting that scheduling thermoregulatory exercise trials for the same time of day is unnecessary.
Collapse
|
18
|
Ashworth ET, Cotter JD, Kilding AE. Methods for improving thermal tolerance in military personnel prior to deployment. Mil Med Res 2020; 7:58. [PMID: 33248459 PMCID: PMC7700709 DOI: 10.1186/s40779-020-00287-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acute exposure to heat, such as that experienced by people arriving into a hotter or more humid environment, can compromise physical and cognitive performance as well as health. In military contexts heat stress is exacerbated by the combination of protective clothing, carried loads, and unique activity profiles, making them susceptible to heat illnesses. As the operational environment is dynamic and unpredictable, strategies to minimize the effects of heat should be planned and conducted prior to deployment. This review explores how heat acclimation (HA) prior to deployment may attenuate the effects of heat by initiating physiological and behavioural adaptations to more efficiently and effectively protect thermal homeostasis, thereby improving performance and reducing heat illness risk. HA usually requires access to heat chamber facilities and takes weeks to conduct, which can often make it impractical and infeasible, especially if there are other training requirements and expectations. Recent research in athletic populations has produced protocols that are more feasible and accessible by reducing the time taken to induce adaptations, as well as exploring new methods such as passive HA. These protocols use shorter HA periods or minimise additional training requirements respectively, while still invoking key physiological adaptations, such as lowered core temperature, reduced heart rate and increased sweat rate at a given intensity. For deployments of special units at short notice (< 1 day) it might be optimal to use heat re-acclimation to maintain an elevated baseline of heat tolerance for long periods in anticipation of such an event. Methods practical for military groups are yet to be fully understood, therefore further investigation into the effectiveness of HA methods is required to establish the most effective and feasible approach to implement them within military groups.
Collapse
Affiliation(s)
- Edward Tom Ashworth
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, Otago 9016 New Zealand
| | - Andrew Edward Kilding
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, 17 Antares Place, Rosedale, Auckland, 0632 New Zealand
| |
Collapse
|
19
|
Foster J, Hodder SG, Lloyd AB, Havenith G. Individual Responses to Heat Stress: Implications for Hyperthermia and Physical Work Capacity. Front Physiol 2020; 11:541483. [PMID: 33013476 PMCID: PMC7516259 DOI: 10.3389/fphys.2020.541483] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Extreme heat events are increasing in frequency, severity, and duration. It is well known that heat stress can have a negative impact on occupational health and productivity, particularly during physical work. However, there are no up-to-date reviews on how vulnerability to heat changes as a function of individual characteristics in relation to the risk of hyperthermia and work capacity loss. The objective of this narrative review is to examine the role of individual characteristics on the human heat stress response, specifically in relation to hyperthermia risk and productivity loss in hot workplaces. Finally, we aim to generate practical guidance for industrial hygienists considering our findings. Factors included in the analysis were body mass, body surface area to mass ratio, body fat, aerobic fitness and training, heat adaptation, aging, sex, and chronic health conditions. Findings We found the relevance of any factor to be dynamic, based on the work-type (fixed pace or relative to fitness level), work intensity (low, moderate, or heavy work), climate type (humidity, clothing vapor resistance), and variable of interest (risk of hyperthermia or likelihood of productivity loss). Heat adaptation, high aerobic fitness, and having a large body mass are the most protective factors during heat exposure. Primary detrimental factors include low fitness, low body mass, and lack of heat adaptation. Aging beyond 50 years, being female, and diabetes are less impactful negative factors, since their independent effect is quite small in well matched participants. Skin surface area to mass ratio, body composition, hypertension, and cardiovascular disease are not strong independent predictors of the heat stress response. Conclusion Understanding how individual factors impact responses to heat stress is necessary for the prediction of heat wave impacts on occupational health and work capacity. The recommendations provided in this report could be utilized to help curtail hyperthermia risk and productivity losses induced by heat.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon G Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex B Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
20
|
Ravanelli N, Gagnon D, Imbeault P, Jay O. A retrospective analysis to determine if exercise training-induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation. Exp Physiol 2020; 106:282-289. [PMID: 32118324 DOI: 10.1113/ep088385] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/28/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are fitness-related improvements in thermoregulatory responses during uncompensable heat stress mediated by aerobic capacity V ̇ O 2 max or is it the partial heat acclimation associated with training? What is the main finding and its importance? During uncompensable heat stress, individuals with high and low V ̇ O 2 max displayed similar sweating and core temperature responses whereas exercise training in previously untrained individuals resulted in a greater sweat rate and a smaller rise in core temperature. These observations suggest that it is training, not V ̇ O 2 max per se, that mediates thermoregulatory improvements during uncompensable heat stress. ABSTRACT It remains unclear whether aerobic fitness, as defined by the maximum rate of oxygen consumption V ̇ O 2 max , independently improves heat dissipation in uncompensable environments, or whether the thermoregulatory adaptations associated with heat acclimation are due to repeated bouts of exercise-induced heat stress during regular aerobic training. The present analysis sought to determine if V ̇ O 2 max independently influences thermoregulatory sweating, maximum skin wettedness (ωmax ) and the change in rectal temperature (ΔTre ) during 60 min of exercise in an uncompensable environment (37.0 ± 0.8°C, 4.0 ± 0.2 kPa, 64 ± 3% relative humidity) at a fixed rate of heat production per unit mass (6 W kg-1 ). Retrospective analyses were performed on 22 participants (3 groups), aerobically unfit (UF; n = 7; V ̇ O 2 max : 41.7 ± 9.4 ml kg-1 min-1 ), aerobically fit (F; n = 7; V ̇ O 2 max : 55.6 ± 4.3 ml kg-1 min-1 ; P < 0.01) and aerobically unfit (n = 8) individuals, before (pre; V ̇ O 2 max : 45.8 ± 11.6 ml kg-1 min-1 ) and after (post; V ̇ O 2 max : 52.0 ± 11.1 ml kg-1 min-1 ; P < 0.001) an 8-week training intervention. ωmax was similar between UF (0.74 ± 0.09) and F (0.78 ± 0.08, P = 0.22). However, ωmax was greater post- (0.84 ± 0.08) compared to pre- (0.72 ± 0.06, P = 0.02) training. During exercise, mean local sweat rate (forearm and upper-back) was greater post- (1.24 ± 0.20 mg cm-2 min-1 ) compared to pre- (1.04 ± 0.25 mg cm-2 min-1 , P < 0.01) training, but similar between UF (0.94 ± 0.31 mg cm-2 min-1 , P = 0.90) and F (1.02 ± 0.30 mg cm-2 min-1 ). The ΔTre at 60 min of exercise was greater pre- (1.13 ± 0.16°C, P < 0.01) compared to post- (0.96 ± 0.14°C) training, but similar between UF (0.85 ± 0.29°C, P = 0.22) and F (0.95 ± 0.22°C). Taken together, aerobic training, not V ̇ O 2 max per se, confers an increased ωmax , greater sweat rate, and smaller rise in core temperature during uncompensable heat stress in fit individuals.
Collapse
Affiliation(s)
- Nicholas Ravanelli
- Cardiovascular Prevention and Rehabilitation Centre and Research Centre, Montreal Heart Institute, Montreal, QC, Canada.,Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, Canada
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Centre and Research Centre, Montreal Heart Institute, Montreal, QC, Canada.,Département de pharmacologie et physiologie, Université de Montréal, Montreal, QC, Canada
| | - Pascal Imbeault
- School of Human Kinetics, University of Ottawa, 200 Lees Ave, Ottawa, Canada
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
|
22
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
23
|
Hosokawa Y, Casa DJ, Trtanj JM, Belval LN, Deuster PA, Giltz SM, Grundstein AJ, Hawkins MD, Huggins RA, Jacklitsch B, Jardine JF, Jones H, Kazman JB, Reynolds ME, Stearns RL, Vanos JK, Williams AL, Williams WJ. Activity modification in heat: critical assessment of guidelines across athletic, occupational, and military settings in the USA. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:405-427. [PMID: 30710251 PMCID: PMC10041407 DOI: 10.1007/s00484-019-01673-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 05/04/2023]
Abstract
Exertional heat illness (EHI) risk is a serious concern among athletes, laborers, and warfighters. US Governing organizations have established various activity modification guidelines (AMGs) and other risk mitigation plans to help ensure the health and safety of their workers. The extent of metabolic heat production and heat gain that ensue from their work are the core reasons for EHI in the aforementioned population. Therefore, the major focus of AMGs in all settings is to modulate the work intensity and duration with additional modification in adjustable extrinsic risk factors (e.g., clothing, equipment) and intrinsic risk factors (e.g., heat acclimatization, fitness, hydration status). Future studies should continue to integrate more physiological (e.g., valid body fluid balance, internal body temperature) and biometeorological factors (e.g., cumulative heat stress) to the existing heat risk assessment models to reduce the assumptions and limitations in them. Future interagency collaboration to advance heat mitigation plans among physically active population is desired to maximize the existing resources and data to facilitate advancement in AMGs for environmental heat.
Collapse
Affiliation(s)
- Yuri Hosokawa
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA.
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | - Douglas J Casa
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Juli M Trtanj
- National Oceanic and Atmospheric Administration, Washington DC, USA
| | - Luke N Belval
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah M Giltz
- National Oceanic and Atmospheric Administration, Washington DC, USA
- Louisiana Sea Grant, Louisiana State University, Baton Rouge, LA, USA
| | | | | | - Robert A Huggins
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Brenda Jacklitsch
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - John F Jardine
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Hunter Jones
- National Oceanic and Atmospheric Administration, Washington DC, USA
- University Corporation for Atmospheric Research, Boulder, CO, USA
| | - Josh B Kazman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mark E Reynolds
- U.S. Army Public Health Center, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Rebecca L Stearns
- Korey Stringer Institute, University of Connecticut, Storrs, CT, USA
| | - Jennifer K Vanos
- Scripps Institution of Oceanography Department, University of California San Diego, La Jolla, CA, USA
| | - Alan L Williams
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - W Jon Williams
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| |
Collapse
|
24
|
Alhadad SB, Tan PMS, Lee JKW. Efficacy of Heat Mitigation Strategies on Core Temperature and Endurance Exercise: A Meta-Analysis. Front Physiol 2019; 10:71. [PMID: 30842739 PMCID: PMC6391927 DOI: 10.3389/fphys.2019.00071] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/21/2019] [Indexed: 11/26/2022] Open
Abstract
Background: A majority of high profile international sporting events, including the coming 2020 Tokyo Olympics, are held in warm and humid conditions. When exercising in the heat, the rapid rise of body core temperature (Tc) often results in an impairment of exercise capacity and performance. As such, heat mitigation strategies such as aerobic fitness (AF), heat acclimation/acclimatization (HA), pre-exercise cooling (PC) and fluid ingestion (FI) can be introduced to counteract the debilitating effects of heat strain. We performed a meta-analysis to evaluate the effectiveness of these mitigation strategies using magnitude-based inferences. Methods: A computer-based literature search was performed up to 24 July 2018 using the electronic databases: PubMed, SPORTDiscus and Google Scholar. After applying a set of inclusion and exclusion criteria, a total of 118 studies were selected for evaluation. Each study was assessed according to the intervention's ability to lower Tc before exercise, attenuate the rise of Tc during exercise, extend Tc at the end of exercise and improve endurance. Weighted averages of Hedges' g were calculated for each strategy. Results: PC (g = 1.01) was most effective in lowering Tc before exercise, followed by HA (g = 0.72), AF (g = 0.65), and FI (g = 0.11). FI (g = 0.70) was most effective in attenuating the rate of rise of Tc, followed by HA (g = 0.35), AF (g = −0.03) and PC (g = −0.46). In extending Tc at the end of exercise, AF (g = 1.11) was most influential, followed by HA (g = −0.28), PC (g = −0.29) and FI (g = −0.50). In combination, AF (g = 0.45) was most effective at favorably altering Tc, followed by HA (g = 0.42), PC (g = 0.11) and FI (g = 0.09). AF (1.01) was also found to be most effective in improving endurance, followed by HA (0.19), FI (−0.16) and PC (−0.20). Conclusion: AF was found to be the most effective in terms of a strategy's ability to favorably alter Tc, followed by HA, PC and lastly, FI. Interestingly, a similar ranking was observed in improving endurance, with AF being the most effective, followed by HA, FI, and PC. Knowledge gained from this meta-analysis will be useful in allowing athletes, coaches and sport scientists to make informed decisions when employing heat mitigation strategies during competitions in hot environments.
Collapse
Affiliation(s)
- Sharifah Badriyah Alhadad
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Pearl M S Tan
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Jason K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
RAVANELLI NICHOLAS, COOMBS GEOFFB, IMBEAULT PASCAL, JAY OLLIE. Maximum Skin Wettedness after Aerobic Training with and without Heat Acclimation. Med Sci Sports Exerc 2018; 50:299-307. [DOI: 10.1249/mss.0000000000001439] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Abstract
PURPOSE We evaluated physiological responses during exercise at a fixed evaporative requirement for heat balance (Ereq) but varying combinations of metabolic and environmental heat load. METHODS Nine healthy, physically active males (age: 46 ± 8 yr) performed four experimental sessions consisting of 75 min of semirecumbent cycling at various ambient temperatures. Whole-body dry heat loss (direct calorimetry) was monitored continuously as was heat production (indirect calorimetry), which was adjusted to achieve an Ereq of 400 W. The resultant metabolic heat productions and ambient temperatures for the sessions were as follows: (i) 440 W and 30°C (440 [30]), (ii) 388 W and 35°C (388 [35]), (iii) 317 W and 40°C (317 [40]), and (iv) 258 W and 45°C (258 [45]). Whole-body evaporative heat loss was determined via direct calorimetry. Esophageal (Tes) and mean skin (Tsk) temperatures as well as HR were monitored continuously. Mean body temperature (Tb) was calculated from Tes and Tsk. Physiological strain index (PSI) was determined from Tes and HR. RESULTS End-exercise evaporative heat loss and Tb were similar between conditions (both P ≥ 0.48). Tes was greater in 440 [30] (37.67°C ± 0.04°C) and 388 [35] (37.58°C ± 0.07°C) relative to both 317 [40] (37.35°C ± 0.06°C) and 258 [45] (37.20°C ± 0.07°C; all P ≤ 0.05). Further, Tsk was different between each condition (440 [30], 33.85°C ± 0.16°C; 388 [35], 34.53°C ± 0.08°C; 317 [40], 35.67°C ± 0.07°C; and 258 [45], 36.54°C ± 0.08°C; all P < 0.01). In 440 [30], HR was elevated by about 13 and 18 bpm relative to 317 [40] and 258 [45], respectively (both P < 0.01). Finally, PSI was greater in both 440 [30] and 388 [35] compared with 317 [40] and 258 [45] (all P ≤ 0.04). CONCLUSIONS Exercise at a fixed Ereq resulted in similar evaporative heat loss and Tb. However, the Tes, Tsk, HR, and PSI responses varied depending on the relative contribution of metabolic and environmental heat load.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Montpetit Hall, Ottawa, CANADA
| | | |
Collapse
|
27
|
Abstract
In humans, sweating is the most powerful autonomic thermoeffector. The evaporation of sweat provides by far the greatest potential for heat loss and it represents the only means of heat loss when air temperature exceeds skin temperature. Sweat production results from the integration of afferent neural information from peripheral and central thermoreceptors which leads to an increase in skin sympathetic nerve activity. At the neuroglandular junction, acetylcholine is released and binds to muscarinic receptors which stimulate the secretion of a primary fluid by the secretory coil of eccrine glands. The primary fluid subsequently travels through a duct where ions are reabsorbed. The end result is the expulsion of hypotonic sweat on to the skin surface. Sweating increases in proportion with the intensity of the thermal challenge in an attempt of the body to attain heat balance and maintain a stable internal body temperature. The control of sweating can be modified by biophysical factors, heat acclimation, dehydration, and nonthermal factors. The purpose of this article is to review the role of sweating as a heat loss thermoeffector in humans.
Collapse
|
28
|
Ravanelli N, Cramer M, Imbeault P, Jay O. The optimal exercise intensity for the unbiased comparison of thermoregulatory responses between groups unmatched for body size during uncompensable heat stress. Physiol Rep 2017; 5:5/5/e13099. [PMID: 28270588 PMCID: PMC5350162 DOI: 10.14814/phy2.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022] Open
Abstract
We sought to identify the appropriate exercise intensity for unbiased comparisons of changes in rectal temperature (ΔTre) and local sweat rates (LSR) between groups unmatched for body size during uncompensable heat stress. Sixteen males vastly different in body morphology were separated into two equal groups [small (SM): 65.8 ± 6.2 kg, 1.8 ± 0.1 m2; large (LG): 100.0 ± 13.1 kg, 2.3 ± 0.1 m2], but matched for sudomotor thermosensitivity (SM: 1.3 ± 0.6; LG: 1.1 ± 0.4 mg·cm−2·min−1·°C−1). The maximum potential for evaporation (Emax) for each participant was assessed using an incremental humidity protocol. On separate occasions, participants then completed 60 min of cycling in a 35°C and 70% RH environment at (1) 50% of VO2max, (2) a heat production (Hprod) of 520 W, (3) Hprod relative to mass (6 W·kg−1), and (4) Hprod relative to mass above Emax (3 W·kg−1>Emax). Emax was similar between LG (347 ± 39 W, 154 ± 15 W·m−2) and SM (313 ± 63 W, 176 ± 34 W·m−2, P > 0.12). ΔTre was greater in SM compared to LG at 520 W (SM: 1.5 ± 0.5; LG 0.8 ± 0.3°C, P < 0.001) and at 50% of VO2max (SM: 1.4 ± 0.5; LG 0.9 ± 0.3°C, P < 0.001). However, ΔTre was similar between groups when Hprod was either 6 W·kg−1 (SM: 0.9 ± 0.3; LG 0.9 ± 0.2°C, P = 0.98) and 3 W·kg−1>Emax (SM: 1.4 ± 0.5; LG 1.3 ± 0.4°C, P = 0.99). LSR was similar between LG and SM irrespective of condition, suggesting maximum LSR was attained (SM: 1.10 ± 0.23; LG: 1.07 ± 0.35 mg·cm−2·min−1, P = 0.50). In conclusion, systematic differences in ΔTre and LSR between groups unmatched for body size during uncompensable heat stress can be avoided by a fixed Hprod in W·kg−1 or W·kg−1>Emax.
Collapse
Affiliation(s)
- Nicholas Ravanelli
- School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Matthew Cramer
- School of Human Kinetics, University of Ottawa, Ottawa, Canada.,Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,The University of Texas Southwestern Medical Center, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Pascal Imbeault
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia .,Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Mekjavic IB, Ciuha U, Grönkvist M, Eiken O. The Effect of Low Ambient Relative Humidity on Physical Performance and Perceptual Responses during Load Carriage. Front Physiol 2017; 8:451. [PMID: 28729839 PMCID: PMC5498462 DOI: 10.3389/fphys.2017.00451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/14/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction: The study evaluated the effect of low ambient relative humidity on physical performance and perceptual responses during load carriage in a hot environment. Methods: Ten heat-unacclimatized male subjects participated in three 130-min trials, during which they walked on a treadmill, carrying a load of ~35 kg, at a speed of 3.2 km.h−1, with an incident wind at the same velocity and ambient temperature at 45°C. Each trial commenced with a 10-min baseline at 20°C and 50% relative humidity (RH), the subjects transferred to a climatic chamber and commenced their simulated hike, comprising two 50-min walks separated by a 20-min rest period. In two, full protective equipment (FP) trials, RH was 10% (partial pressure of water vapor, pH2O = 7.2 mmHg) in one (FP10), and 20% (pH2O = 14.4 mmHg; FP20) in the other. In the control trial, subjects were semi-nude (SN) and carried the equipment in their backpacks; RH was 20%. Measurements included oxygen uptake, ventilation, heart rate, rectal and skin temperatures, heat flux, temperature perception, and thermal comfort. Results: In FP20, four subjects terminated the trial prematurely due to signs of heat exhaustion; there were no such signs in FP10 or SN. Upon completion of the trials, pulmonary ventilation, heart rate, and rectal temperature were lower in FP10 (33 ± 5 l/min; 128 ± 21 bpm; 38.2 ± 0.4°C) and SN (34 ± 4 l/min; 113 ± 18 bpm; 38.1 ± 0.4°C than in FP20 (39 ± 8 l/min; 145 ± 12 bpm; 38.6 ± 0.4°C). Evaporation was significantly greater in the SN compared to FP10 and FP20 trials. FP10 was rated thermally more comfortable than FP20. Conclusion: A lower ambient partial pressure of water vapor, reflected in a lower ambient relative humidity, improved cardiorespiratory, thermoregulatory, and perceptual responses during load carriage.
Collapse
Affiliation(s)
- Igor B Mekjavic
- Environmental Physiology Laboratory, Department of Automation, Biocybernetics and Robotics, Jožef Stefan InstituteLjubljana, Slovenia.,Department of Biomedical Physiology and Kinesiology, Simon Fraser UniversityBurnaby, BC, Canada
| | - Ursa Ciuha
- Environmental Physiology Laboratory, Department of Automation, Biocybernetics and Robotics, Jožef Stefan InstituteLjubljana, Slovenia
| | - Mikael Grönkvist
- Department of Environmental Physiology, School of Health and Technology, Royal Institute of TechnologyStockholm, Sweden
| | - Ola Eiken
- Department of Environmental Physiology, School of Health and Technology, Royal Institute of TechnologyStockholm, Sweden
| |
Collapse
|
30
|
Gibson OR, Willmott AGB, James CA, Hayes M, Maxwell NS. Power Relative to Body Mass Best Predicts Change in Core Temperature During Exercise-Heat Stress. J Strength Cond Res 2017; 31:403-414. [PMID: 27359208 DOI: 10.1519/jsc.0000000000001521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gibson, OR, Willmott, AGB, James, CA, Hayes, M, and Maxwell, NS. Power relative to body mass best predicts change in core temperature during exercise-heat stress. J Strength Cond Res 31(2): 403-414, 2017-Controlling internal temperature is crucial when prescribing exercise-heat stress, particularly during interventions designed to induce thermoregulatory adaptations. This study aimed to determine the relationship between the rate of rectal temperature (Trec) increase, and various methods for prescribing exercise-heat stress, to identify the most efficient method of prescribing isothermic heat acclimation (HA) training. Thirty-five men cycled in hot conditions (40° C, 39% R.H.) for 29 ± 2 minutes. Subjects exercised at 60 ± 9% V[Combining Dot Above]O2peak, with methods for prescribing exercise retrospectively observed for each participant. Pearson product moment correlations were calculated for each prescriptive variable against the rate of change in Trec (° C·h), with stepwise multiple regressions performed on statistically significant variables (p ≤ 0.05). Linear regression identified the predicted intensity required to increase Trec by 1.0-2.0° C between 20- and 45-minute periods and the duration taken to increase Trec by 1.5° C in response to incremental intensities to guide prescription. Significant (p ≤ 0.05) relationships with the rate of change in Trec were observed for prescriptions based on relative power (W·kg; r = 0.764), power (%Powermax; r = 0.679), rating of perceived exertion (RPE) (r = 0.577), V[Combining Dot Above]O2 (%V[Combining Dot Above]O2peak; r = 0.562), heart rate (HR) (%HRmax; r = 0.534), and thermal sensation (r = 0.311). Stepwise multiple regressions observed relative power and RPE as variables to improve the model (r = 0.791), with no improvement after inclusion of any anthropometric variable. Prescription of exercise under heat stress using power (W·kg or %Powermax) has the strongest relationship with the rate of change in Trec with no additional requirement to correct for body composition within a normal range. Practitioners should therefore prescribe exercise intensity using relative power during isothermic HA training to increase Trec efficiently and maximize adaptation.
Collapse
Affiliation(s)
- Oliver R Gibson
- 1Center for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, United Kingdom; and 2Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Amano T, Ishitobi M, Ogura Y, Inoue Y, Koga S, Nishiyasu T, Kondo N. Effect of stride frequency on thermoregulatory responses during endurance running in distance runners. J Therm Biol 2016; 61:61-66. [PMID: 27712662 DOI: 10.1016/j.jtherbio.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/22/2016] [Indexed: 11/26/2022]
Abstract
Changing stride frequency may influence oxygen uptake and heart rate during running as a function of running economy and central command. This study investigated the influence of stride frequency manipulation on thermoregulatory responses during endurance running. Seven healthy endurance runners ran on a treadmill at a velocity of 15km/h for 60min in a controlled environmental chamber (ambient temperature 27°C and relative humidity 50%), and stride frequency was manipulated. Stride frequency was intermittently manipulated by increasing and decreasing frequency by 10% from the pre-determined preferred frequency. These periods of increase or decrease were separated by free frequency running in the order of free stride frequency, stride frequency manipulation (increase or decrease), free stride frequency, and stride frequency manipulation (increase or decrease) for 15min each. The increased and decreased stride frequencies were 110% and 91% of the free running frequency, respectively (196±6, 162±5, and 178±5steps/min, respectively, P<0.01). Compared to the control, stride frequency manipulation did not affect rectal temperature, heart rate, or the rate of perceived exhaustion during running. Whole-body sweat loss increased significantly when stride frequency was manipulated (1.48±0.11 and 1.57±0.11kg for control and manipulated stride frequencies, respectively, P<0.05), but stride frequency had a small effect on sweat loss overall (Cohen's d=0.31). A higher mean skin temperature was also observed under mixed frequency conditions compared to that in the control (P<0.05). While the precise mechanisms underlying these changes remain unknown (e.g. running economy or central command), our results suggest that manipulation of stride frequency does not have a large effect on sweat loss or other physiological variables, but does increase mean skin temperature during endurance running.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Japan; Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Masaki Ishitobi
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Japan
| | - Yukio Ogura
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Yoshimitsu Inoue
- Laboratory for Human Performance Research, Osaka International University, Osaka, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Japan.
| |
Collapse
|
32
|
Taylor L, Lee BJ, Gibson OR, Midgley AW, Watt P, Mauger A, Castle P. Effective microorganism - X attenuates circulating superoxide dismutase following an acute bout of intermittent running in hot, humid conditions. Res Sports Med 2016; 24:130-44. [PMID: 27031165 DOI: 10.1080/15438627.2015.1126279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study determined the effectiveness of antioxidant supplementation on high-intensity exercise-heat stress. Six males completed a high-intensity running protocol twice in temperate conditions (TEMP; 20.4°C), and twice in hot conditions (HOT; 34.7°C). Trials were completed following7 days supplementation with 70 ml·day(-1) effective microorganism-X (EM-X; TEMPEMX or HOTEMX) or placebo (TEMPPLA or HOTPLA). Plasma extracellular Hsp72 (eHsp72) and superoxide dismutase (SOD) were measured by ELISA. eHsp72 and SOD increased pre-post exercise (p < 0.001), with greater eHsp72 (p < 0.001) increases observed in HOT (+1.5 ng·ml(-1)) compared to TEMP (+0.8 ng·ml(-1)). EM-X did not influence eHsp72 (p > 0.05). Greater (p < 0.001) SOD increases were observed in HOT (+0.22 U·ml(-1)) versus TEMP (+0.10 U·ml(-1)) with SOD reduced in HOTEMX versus HOTPLA (p = 0.001). Physiological and perceptual responses were all greater (p < 0.001) in HOT versus TEMP conditions, with no difference followed EM-X (p > 0.05). EM-X supplementation attenuated the SOD increases following HOT, potentiating its application as an ergogenic aid to ameliorate oxidative stress.
Collapse
Affiliation(s)
- Lee Taylor
- a Applied Sport and Exercise Physiology (ASEP) Research Group, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences , University of Bedfordshire , Bedford , UK.,g ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital , Athlete Health and Performance Research Centre , Doha , Qatar
| | - Ben J Lee
- b Department of Biomolecular and Sport Sciences , University of Coventry , Coventry , UK.,h Department for Health , University of Bath , Claverton Down , Bath , UK
| | - Oliver R Gibson
- c Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton, Welkin Human Performance Laboratories , Denton Road, Eastbourne , UK.,i Centre for Sports Medicine and Human Performance (CSMHP) , Brunel University London , Uxbridge , UK
| | - Adrian W Midgley
- d Sport and Physical Activity Department , Edge Hill University , Ormskirk , United Kingdom
| | - Peter Watt
- c Centre for Sport and Exercise Science and Medicine (SESAME) , University of Brighton, Welkin Human Performance Laboratories , Denton Road, Eastbourne , UK
| | - Alexis Mauger
- e Endurance Research Group, School of Sport and Exercise Sciences , University of Kent , Chatham Maritime , UK
| | - Paul Castle
- f Muscle Cellular and Molecular Physiology (MCMP) & Applied Sport and Exercise Science(ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), Department of Sport and Exercise Sciences , University of Bedfordshire , Bedford , UK
| |
Collapse
|
33
|
Cramer MN, Jay O. Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci 2016; 196:3-13. [DOI: 10.1016/j.autneu.2016.03.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
|
34
|
Dervis S, Coombs GB, Chaseling GK, Filingeri D, Smoljanic J, Jay O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J Appl Physiol (1985) 2015; 120:615-23. [PMID: 26702025 DOI: 10.1152/japplphysiol.00906.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022] Open
Abstract
We sought to determine 1) the influence of adiposity on thermoregulatory responses independently of the confounding biophysical factors of body mass and metabolic heat production (Hprod); and 2) whether differences in adiposity should be accounted for by prescribing an exercise intensity eliciting a fixed Hprod per kilogram of lean body mass (LBM). Nine low (LO-BF) and nine high (HI-BF) body fat males matched in pairs for total body mass (TBM; LO-BF: 88.7 ± 8.4 kg, HI-BF: 90.1 ± 7.9 kg; P = 0.72), but with distinctly different percentage body fat (%BF; LO-BF: 10.8 ± 3.6%; HI-BF: 32.0 ± 5.6%; P < 0.001), cycled for 60 min at 28.1 ± 0.2 °C, 26 ± 8% relative humidity (RH), at a target Hprod of 1) 550 W (FHP trial) and 2) 7.5 W/kg LBM (LBM trial). Changes in rectal temperature (ΔTre) and local sweat rate (LSR) were measured continuously while whole body sweat loss (WBSL) and net heat loss (Hloss) were estimated over 60 min. In the FHP trial, ΔTre (LO-BF: 0.66 ± 0.21 °C, HI-BF: 0.87 ± 0.18 °C; P = 0.02) was greater in HI-BF, whereas mean LSR (LO-BF 0.52 ± 0.19, HI-BF 0.43 ± 0.15 mg·cm(-2)·min(-1); P = 0.19), WBSL (LO-BF 586 ± 82 ml, HI-BF 559 ± 75 ml; P = 0.47) and Hloss (LO-BF 1,867 ± 208 kJ, HI-BF 1,826 ± 224 kJ; P = 0.69) were all similar. In the LBM trial, ΔTre (LO-BF 0.82 ± 0.18 °C, HI-BF 0.54 ± 0.19 °C; P < 0.001), mean LSR (LO-BF 0.59 ± 0.20, HI-BF 0.38 ± 0.12 mg·cm(-2)·min(-1); P = 0.04), WBSL (LO-BF 580 ± 106 ml, HI-BF 381 ± 68 ml; P < 0.001), and Hloss (LO-BF 1,884 ± 277 kJ, HI-BF 1,341 ± 184 kJ; P < 0.001) were all greater at end-exercise in LO-BF. In conclusion, high %BF individuals demonstrate a greater ΔTre independently of differences in mass and Hprod, possibly due to a lower mean specific heat capacity or impaired sudomotor control. However, thermoregulatory responses of groups with different adiposity levels should not be compared using a fixed Hprod in watts per kilogram lean body mass.
Collapse
Affiliation(s)
- Sheila Dervis
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Geoff B Coombs
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Georgia K Chaseling
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; and
| | - Davide Filingeri
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; and
| | | | - Ollie Jay
- School of Human Kinetics, University of Ottawa, Ottawa, Canada; Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; and Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Hanna EG, Tait PW. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:8034-74. [PMID: 26184272 PMCID: PMC4515708 DOI: 10.3390/ijerph120708034] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/15/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022]
Abstract
Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses.
Collapse
Affiliation(s)
- Elizabeth G Hanna
- National Centre for Epidemiology and Population Health, Research School of Population Health. Australian National University, Mills St. Acton, ACT 0200, Australia.
| | - Peter W Tait
- National Centre for Epidemiology and Population Health, Research School of Population Health. Australian National University, Mills St. Acton, ACT 0200, Australia.
| |
Collapse
|
36
|
Isothermic and fixed intensity heat acclimation methods induce similar heat adaptation following short and long-term timescales. J Therm Biol 2015; 49-50:55-65. [DOI: 10.1016/j.jtherbio.2015.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
|
37
|
Jay O, Cramer MN. A new approach for comparing thermoregulatory responses of subjects with different body sizes. Temperature (Austin) 2015; 2:42-3. [PMID: 27227002 PMCID: PMC4843865 DOI: 10.1080/23328940.2014.996093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/04/2014] [Indexed: 10/27/2022] Open
Abstract
The time-dependent assessment of human thermoregulatory responses during exercise, such as changes in core temperature and sweating, are commonplace in research laboratories worldwide. Moreover, researchers wishing to identify potential impairments in these responses due to factors such as obesity, age, disease and injury, must typically adopt a between-group experimental design.
Collapse
Affiliation(s)
- Ollie Jay
- Thermal Ergonomics Laboratory; Exercise and Sport Science; Faculty of Health Sciences; University of Sydney; Sydney, NSW Australia; School of Human Kinetics; Faculty of Health Sciences; University of Ottawa; Ottawa, ON Canada
| | - Matthew N Cramer
- School of Human Kinetics; Faculty of Health Sciences; University of Ottawa ; Ottawa, ON Canada
| |
Collapse
|