1
|
Zhao D, Wu J, Acosta FM, Xu H, Jiang JX. Connexin 43 hemichannels and prostaglandin E 2 release in anabolic function of the skeletal tissue to mechanical stimulation. Front Cell Dev Biol 2023; 11:1151838. [PMID: 37123401 PMCID: PMC10133519 DOI: 10.3389/fcell.2023.1151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote β-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- School of Medicine, Northwest University, Xi’an, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiawei Wu
- School of Medicine, Northwest University, Xi’an, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
2
|
Garg P, Strigini M, Peurière L, Vico L, Iandolo D. The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model. Front Physiol 2021; 12:749464. [PMID: 34737712 PMCID: PMC8562483 DOI: 10.3389/fphys.2021.749464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Bone adaptation to spaceflight results in bone loss at weight bearing sites following the absence of the stimulus represented by ground force. The rodent hindlimb unloading model was designed to mimic the loss of mechanical loading experienced by astronauts in spaceflight to better understand the mechanisms causing this disuse-induced bone loss. The model has also been largely adopted to study disuse osteopenia and therefore to test drugs for its treatment. Loss of trabecular and cortical bone is observed in long bones of hindlimbs in tail-suspended rodents. Over the years, osteocytes have been shown to play a key role in sensing mechanical stress/stimulus via the ECM-integrin-cytoskeletal axis and to respond to it by regulating different cytokines such as SOST and RANKL. Colder experimental environments (~20-22°C) below thermoneutral temperatures (~28-32°C) exacerbate bone loss. Hence, it is important to consider the role of environmental temperatures on the experimental outcomes. We provide insights into the cellular and molecular pathways that have been shown to play a role in the hindlimb unloading and recommendations to minimize the effects of conditions that we refer to as confounding factors.
Collapse
Affiliation(s)
- Priyanka Garg
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Maura Strigini
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laura Peurière
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Laurence Vico
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, Saint-Étienne, France
| |
Collapse
|
3
|
Spatz JM, Ko FC, Ayturk UM, Warman ML, Bouxsein ML. RNAseq and RNA molecular barcoding reveal differential gene expression in cortical bone following hindlimb unloading in female mice. PLoS One 2021; 16:e0250715. [PMID: 34637435 PMCID: PMC8509868 DOI: 10.1371/journal.pone.0250715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Disuse-induced bone loss is seen following spinal cord injury, prolonged bed rest, and exposure to microgravity. We performed whole transcriptomic profiling of cortical bone using RNA sequencing (RNAseq) and RNA molecular barcoding (NanoString) on a hindlimb unloading (HLU) mouse model to identify genes whose mRNA transcript abundances change in response to disuse. Eleven-week old female C57BL/6 mice were exposed to ambulatory loading or HLU for 7 days (n = 8/group). Total RNA from marrow-flushed femoral cortical bone was analyzed on HiSeq and NanoString platforms. The expression of several previously reported genes associated with Wnt signaling and metabolism was altered by HLU. Furthermore, the increased abundance of transcripts, such as Pfkfb3 and Mss51, after HLU imply these genes also have roles in the cortical bone’s response to altered mechanical loading. Our study demonstrates that an unbiased approach to assess the whole transcriptomic profile of cortical bone can reveal previously unidentified mechanosensitive genes and may eventually lead to novel targets to prevent disuse-induced osteoporosis.
Collapse
Affiliation(s)
- Jordan M Spatz
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,University of California San Francisco School of Medicine, San Francisco, California, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank C Ko
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ugur M Ayturk
- Harvard Medical School, Boston, Massachusetts, United States of America.,Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Matthew L Warman
- Harvard Medical School, Boston, Massachusetts, United States of America.,Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Strontium substituted hydroxyapatite with β-lactam integrin agonists to enhance mesenchymal cells adhesion and to promote bone regeneration. Colloids Surf B Biointerfaces 2021; 200:111580. [PMID: 33493943 DOI: 10.1016/j.colsurfb.2021.111580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/23/2022]
Abstract
Multi-functionalization of calcium phosphates to get delivery systems of therapeutic agents is gaining increasing relevance for the development of functional biomaterials aimed to solve problems related to disorders of the muscolo-skeletal system. In this regard, we functionalized Strontium substituted hydroxyapatite (SrHA) with some β-lactam integrin agonists to develop materials with enhanced properties in promoting cell adhesion and activation of intracellular signaling as well as in counteracting abnormal bone resorption. For this purpose, we selected two monocyclic β-lactams on the basis of their activities towards specific integrins on promoting cell adhesion and signalling. The amount of β-lactams loaded on SrHA could be modulated on changing the polarity of the loading solution, from 3.5-24 wt% for compound 1 and from 3.2-8.4 wt% for compound 2. Studies on the release of the β-lactams from the functionalized SrHA in aqueous medium showed an initial burst followed by a steady-release that ensures a small but constant amount of the compounds over time. The new composites were fully characterized. Co-culture of human primary mesenchymal stem cells (hMSC) and human primary osteoclast (OC) demonstrated that the presence of β-lactams on SrHA favors hMSC adhesion and viability, as well as differentiation towards osteoblastic lineage. Moreover, the β-lactams were found to enhance the inhibitory role of Strontium on osteoclast viability and differentiation.
Collapse
|
5
|
Bloomfield SA, Martinez DA, Boudreaux RD, Mantri AV. Microgravity Stress: Bone and Connective Tissue. Compr Physiol 2016; 6:645-86. [PMID: 27065165 DOI: 10.1002/cphy.c130027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The major alterations in bone and the dense connective tissues in humans and animals exposed to microgravity illustrate the dependency of these tissues' function on normal gravitational loading. Whether these alterations depend solely on the reduced mechanical loading of zero g or are compounded by fluid shifts, altered tissue blood flow, radiation exposure, and altered nutritional status is not yet well defined. Changes in the dense connective tissues and intervertebral disks are generally smaller in magnitude but occur more rapidly than those in mineralized bone with transitions to 0 g and during recovery once back to the loading provided by 1 g conditions. However, joint injuries are projected to occur much more often than the more catastrophic bone fracture during exploration class missions, so protecting the integrity of both tissues is important. This review focuses on the research performed over the last 20 years in humans and animals exposed to actual spaceflight, as well as on knowledge gained from pertinent ground-based models such as bed rest in humans and hindlimb unloading in rodents. Significant progress has been made in our understanding of the mechanisms for alterations in bone and connective tissues with exposure to microgravity, but intriguing questions remain to be solved, particularly with reference to biomedical risks associated with prolonged exploration missions.
Collapse
Affiliation(s)
- Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Daniel A Martinez
- Department of Mechanical Engineering, University of Houston, Houston, Texas, USA
| | - Ramon D Boudreaux
- Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Anita V Mantri
- Department of Health & Kinesiology, Texas A&M University, College Station, Texas, USA.,Health Science Center School of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Lo YP, Liu YS, Rimando MG, Ho JHC, Lin KH, Lee OK. Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells. Sci Rep 2016; 6:21253. [PMID: 26884253 PMCID: PMC4756701 DOI: 10.1038/srep21253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/20/2016] [Indexed: 01/09/2023] Open
Abstract
The spatial boundary condition (SBC) arising from the surrounding microenvironment imposes specific geometry and spatial constraints that affect organogenesis and tissue homeostasis. Mesenchymal stromal cells (MSCs) sensitively respond to alterations of mechanical cues generated from the SBC. However, mechanical cues provided by a three-dimensional (3D) environment are deprived in a reductionist 2D culture system. This study investigates how SBC affects osteogenic differentiation of MSCs using 3D scaffolds with monodispersed pores and homogenous spherical geometries. MSCs cultured under SBCs with diameters of 100 and 150 μm possessed the greatest capability of osteogenic differentiation. This phenomenon was strongly correlated with MSC morphology, organization of actin cytoskeleton, and distribution of focal adhesion involving α2 and α5 integrins. Further silencing either α2 or α5 integrin significantly reduced the above mentioned mechanosensitivity, indicating that the α2 and α5 integrins as mechano-sensitive molecules mediate MSCs' ability to provide enhanced osteogenic differentiation in response to different spherical SBCs. Taken together, the findings provide new insights regarding how MSCs respond to mechanical cues from the surrounding microenvironment in a spherical SBC, and such biophysical stimuli should be taken into consideration in tissue engineering and regenerative medicine in conjunction with biochemical cues.
Collapse
Affiliation(s)
- Yin-Ping Lo
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Yi-Shiuan Liu
- Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Marilyn G Rimando
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Jennifer Hui-Chun Ho
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.,Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Keng-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Oscar K Lee
- Taipei City Hospital, Taipei 10341, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| |
Collapse
|
7
|
Abstract
Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as "physical environment" sensors in cells of the osteoblasts lineage. Indeed, polycystin-1 (Pkd1, or PC1) and polycystin-2 (Pkd2, or PC2' or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
- Coleman College of Medicine Building, Suite B216, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Galea GL, Hannuna S, Meakin LB, Delisser PJ, Lanyon LE, Price JS. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading. Front Endocrinol (Lausanne) 2015; 6:52. [PMID: 25954246 PMCID: PMC4407614 DOI: 10.3389/fendo.2015.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones' structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (μCT) images. Resulting measures are directly comparable to those obtained through μCT analysis (R (2) > 0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone.
Collapse
Affiliation(s)
- Gabriel L. Galea
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Gabriel L. Galea, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Sion Hannuna
- Faculty of Engineering, University of Bristol, Bristol, UK
| | - Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Shekaran A, Shoemaker JT, Kavanaugh TE, Lin AS, LaPlaca MC, Fan Y, Guldberg RE, García AJ. The effect of conditional inactivation of beta 1 integrins using twist 2 Cre, Osterix Cre and osteocalcin Cre lines on skeletal phenotype. Bone 2014; 68:131-41. [PMID: 25183373 PMCID: PMC4189988 DOI: 10.1016/j.bone.2014.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 11/27/2022]
Abstract
Skeletal development and growth are complex processes regulated by multiple microenvironmental cues, including integrin-ECM interactions. The β1 sub-family of integrins is the largest integrin sub-family and constitutes the main integrin binding partners of collagen I, the major ECM component of bone. As complete β1 integrin knockout results in embryonic lethality, studies of β1 integrin function in vivo rely on tissue-specific gene deletions. While multiple in vitro studies indicate that β1 integrins are crucial regulators of osteogenesis and mineralization, in vivo osteoblast-specific perturbations of β1 integrins have resulted in mild and sometimes contradictory skeletal phenotypes. To further investigate the role of β1 integrins on skeletal phenotype, we used the Twist2-Cre, Osterix-Cre and osteocalcin-Cre lines to generate conditional β1 integrin deletions, where Cre is expressed primarily in mesenchymal condensation, pre-osteoblast, and mature osteoblast lineage cells respectively within these lines. Mice with Twist2-specific β1 integrin disruption were smaller, had impaired skeletal development, especially in the craniofacial and vertebral tissues at E19.5, and did not survive beyond birth. Osterix-specific β1 integrin deficiency resulted in viable mice which were normal at birth but displayed early defects in calvarial ossification, incisor eruption and growth as well as femoral bone mineral density, structure, and mechanical properties. Although these defects persisted into adulthood, they became milder with age. Finally, a lack of β1 integrins in mature osteoblasts and osteocytes resulted in minor alterations to femur structure but had no effect on mineral density, biomechanics or fracture healing. Taken together, our data indicate that β1 integrin expression in early mesenchymal condensations play an important role in skeletal ossification, while β1 integrin-ECM interactions in pre-osteoblast, odontoblast- and hypertrophic chondryocyte-lineage cells regulate incisor eruption and perinatal bone formation in both intramembranously and endochondrally formed bones in young, rapidly growing mice. In contrast, the osteocalcin-specific β1 integrin deletion had only minor effects on skeletal phenotype.
Collapse
Affiliation(s)
- Asha Shekaran
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - James T Shoemaker
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Taylor E Kavanaugh
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Angela S Lin
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
| | - Michelle C LaPlaca
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Yuhong Fan
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA
| | - Robert E Guldberg
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA; School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA.
| |
Collapse
|
10
|
Docheva D, Popov C, Alberton P, Aszodi A. Integrin signaling in skeletal development and function. ACTA ACUST UNITED AC 2014; 102:13-36. [DOI: 10.1002/bdrc.21059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/14/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Cvetan Popov
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery; Ludwig-Maximilians-University; 80336 Munich Germany
| |
Collapse
|
11
|
What is the effect of the early weight-bearing mobilisation without using any support after endoscopy-assisted Achilles tendon repair? Knee Surg Sports Traumatol Arthrosc 2013; 21:1378-84. [PMID: 23011584 DOI: 10.1007/s00167-012-2222-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/17/2012] [Indexed: 01/26/2023]
Abstract
PURPOSE The aim of this study was to assess the effect of immediate weight-bearing mobilisation with intensive rehabilitation on muscle strength and lower extremity functional level after endoscopy-assisted Achilles tendon repairs. METHODS After warming up for 5 min at a self-selected intensity on a stationary bike 32 male patients were tested for bilateral peak concentric isokinetic ankle dorsi- and plantar-flexor torque, passive range of motion for ankle joint, one-leg hop for distance, single-leg vertical jump height, Achilles Tendon Total Rupture Score, and perceived function using the Foot and Ankle Outcome Score (FAOS). A series of paired sample t tests were used to compare side-to-side differences (p < 0.05). RESULTS There were no significant differences in hop and jump tests, dorsi- and plantar-flexor isokinetic muscle strength, and dorsi- and plantar-flexion range of motion between the affected and unaffected side of the patients. Pain score of FAOS was 95 ± 8, other symptoms score was 92 ± 11, function in daily living score was 95 ± 6, function in sport and recreation was 85 ± 16, and Quality of Life score was 85 ± 12. The mean of the Achilles Tendon Rupture Score was 86. CONCLUSIONS There was no significant difference in both ankle muscle strength and lower extremity functional level between the endoscopy-assisted repairs and the unaffected sides. The early tolerated weight-bearing mobilisation without cast-brace and/or special shoe at the first day after the surgery may easily provide to return the daily living activities. It improves muscle strength, functional level, and range of motion. Further comprehensive and prospective studies on large patients should be warranted to analyse and compare the clinical and functional results in patients with endoscopy-assisted Achilles tendon repair.
Collapse
|
12
|
Abstract
The ageing skeleton experiences a progressive decline in the rate of bone formation, which can eventually result in osteoporosis--a common disease characterized by reduced bone mass and altered bone microarchitecture which can result in fractures. One emerging therapy involves the identification of molecules that target bone-marrow mesenchymal stromal cells (MSCs) and promote their differentiation into osteoblasts, thereby counteracting bone loss. This Review highlights the discovery that some integrins, a family of heterodimeric transmembrane proteins that can interact with matrix proteins and generate intracellular signals, can be targeted to promote homing of MSCs to bone, osteogenic differentiation and bone formation. Specifically, priming of the α(5)β(1) integrin, which is required for osteoblastic differentiation of MSCs, leads to increased bone formation and improved bone repair in mice. Additionally, treatment with a peptidomimetic ligand of the α(4)β(1) integrin coupled to an agent with a high affinity for bone improves the homing of MSCs to bone and promotes osteoblast differentiation and bone formation, leading to increased bone mass in osteopenic mice. Strategies that target key integrins expressed by MSCs might, therefore, translate into improved therapies for age-related bone loss and possibly other disorders.
Collapse
Affiliation(s)
- Pierre J Marie
- Unité Mixte de Recherche 606, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
13
|
Yumoto K, Globus RK, Mojarrab R, Arakaki J, Wang A, Searby ND, Almeida EAC, Limoli CL. Short-term effects of whole-body exposure to (56)fe ions in combination with musculoskeletal disuse on bone cells. Radiat Res 2010; 173:494-504. [PMID: 20334522 DOI: 10.1667/rr1754.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Space travel and prolonged bed rest cause bone loss due to musculoskeletal disuse. In space, radiation fields may also have detrimental consequences because charged particles traversing the tissues of the body can elicit a wide range of cytotoxic and genotoxic lesions. The effects of heavy-ion radiation exposure in combination with musculoskeletal disuse on bone cells and tissue are not known. To explore this, normally loaded 16-week-old male C57BL/6 mice were exposed to (56)Fe ions (1 GeV/nucleon) at doses of 0 cGy (sham), 10 cGy, 50 cGy or 2 Gy 3 days before tissue harvest. Additional mice were hindlimb unloaded by tail traction continuously for 1 week to simulate weightlessness and exposed to (56)Fe-ion radiation (0 cGy, 50 cGy, 2 Gy) 3 days before tissue harvest. Despite the short duration of this study, low-dose (10, 50 cGy) irradiation of normally loaded mice reduced trabecular volume fraction (BV/TV) in the proximal tibiae by 18% relative to sham-irradiated controls. Hindlimb unloading together with 50 cGy radiation caused a 126% increase in the number of TRAP(+) osteoclasts on cancellous bone surfaces relative to normally loaded, sham-irradiated controls. Together, radiation and hindlimb unloading had a greater effect on suppressing osteoblastogenesis ex vivo than either treatment alone. In sum, low-dose exposure to heavy ions (50 cGy) caused rapid cancellous bone loss in normally loaded mice and increased osteoclast numbers in hindlimb unloaded mice. In vitro irradiation also was more detrimental to osteoblastogenesis in bone marrow cells that were recovered from hindlimb unloaded mice compared to cells from normally loaded mice. Furthermore, irradiation in vitro stimulated osteoclast formation in a macrophage cell line (RAW264.7) in the presence of RANKL (25 ng/ml), showing that heavy-ion radiation can stimulate osteoclast differentiation even in the absence of osteoblasts. Thus heavy-ion radiation can acutely increase osteoclast numbers in cancellous tissue and, under conditions of musculoskeletal disuse, can enhance the sensitivity of bone cells, in particular osteoprogenitors, to the effects of radiation.
Collapse
Affiliation(s)
- Kenji Yumoto
- Department of Radiation Oncology, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Litzenberger JB, Kim JB, Tummala P, Jacobs CR. Beta1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 2010; 86:325-32. [PMID: 20213106 PMCID: PMC2921619 DOI: 10.1007/s00223-010-9343-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
Integrins are cell-substrate adhesion proteins that initiate intracellular signaling and may serve as mechanosensors in bone. MLO-Y4 cells were stably transfected with a dominant negative form of the beta(1) integrin subunit (beta(1)DN) containing the transmembrane domain and cytoplasmic tail of beta(1) integrin. Cells expressing beta(1)DN had reduced vinculin localization to focal contacts but no change in intracellular actin organization. When exposed to oscillatory fluid flow, beta(1)DN cells exhibited a significant reduction in the upregulation of cyclooxygenase-2 gene expression and prostaglandin E(2) release. Similarly, the ratio of receptor activator of NF-kappaB ligand mRNA to osteoprotegerin mRNA decreased significantly after exposure to fluid flow in control cells but not in beta(1)DN cells. Interfering with integrin signaling did not affect mechanically induced intracellular calcium mobilization. These data suggest that integrins may initiate the cellular response of osteocytes to dynamic fluid flow and may serve as mechanosensitive molecules in bone.
Collapse
Affiliation(s)
- Julie B Litzenberger
- Department of Veterans Affairs, Bone and Joint Rehabilitation Center, Palo Alto, CA, USA.
| | | | | | | |
Collapse
|
15
|
Deletion of β1 Integrins from Cortical Osteocytes Reduces Load-Induced Bone Formation. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Majewski M, Schaeren S, Kohlhaas U, Ochsner PE. Postoperative rehabilitation after percutaneous Achilles tendon repair: Early functional therapy versus cast immobilization. Disabil Rehabil 2009; 30:1726-32. [DOI: 10.1080/09638280701786831] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Affiliation(s)
- P J Marie
- Laboratory of Osteoblast Biology and Pathology, INSERM U606 and University Paris 7, Hopital Lariboisiere, 2 rue Ambroise Pare, 75475 Paris, Cedex 10, France.
| |
Collapse
|
18
|
Kondo H, Searby ND, Mojarrab R, Phillips J, Alwood J, Yumoto K, Almeida EAC, Limoli CL, Globus RK. Total-body irradiation of postpubertal mice with (137)Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat Res 2009; 171:283-9. [PMID: 19267555 DOI: 10.1667/rr1463.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation can cause substantial tissue degeneration, which may threaten the long-term health of astronauts and radiotherapy patients. To determine whether a single dose of radiation acutely compromises structural integrity in the postpubertal skeleton, 18-week-old male mice were exposed to (137)Cs gamma radiation (1 or 2 Gy). The structure of high-turnover, cancellous bone was analyzed by microcomputed tomography (microCT) 3 or 10 days after irradiation and in basal controls (tissues harvested at the time of irradiation) and age-matched controls. Irradiation (2 Gy) caused a 20% decline in tibial cancellous bone volume fraction (BV/TV) within 3 days and a 43% decline within 10 days, while 1 Gy caused a 28% reduction 10 days later. The BV/TV decrement was due to increased spacing and decreased thickness of trabeculae. Radiation also increased ( approximately 150%) cancellous surfaces lined with tartrate-resistant, acid phosphatase-positive osteoclasts, an index of increased bone resorption. Radiation decreased lumbar vertebral BV/TV 1 month after irradiation, showing the persistence of cancellous bone loss, although mechanical properties in compression were unaffected. In sum, a single dose of gamma radiation rapidly increased osteoclast surface in cancellous tissue and compromised cancellous microarchitecture in the remodeling appendicular and axial skeleton of postpubertal mice.
Collapse
Affiliation(s)
- Hisataka Kondo
- Department of Radiation Oncology, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bikle DD. Integrins, insulin like growth factors, and the skeletal response to load. Osteoporos Int 2008; 19:1237-46. [PMID: 18373051 PMCID: PMC9005159 DOI: 10.1007/s00198-008-0597-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 02/11/2008] [Indexed: 01/17/2023]
Abstract
Bone loss during skeletal unloading, whether due to neurotrauma resulting in paralysis or prolonged immobilization due to a variety of medical illnesses, accelerates bone loss. In this review the evidence that skeletal unloading leads to bone loss, at least in part, due to disrupted insulin like growth factor (IGF) signaling, resulting in reduced osteoblast proliferation and differentiation, will be examined. The mechanism underlying this disruption in IGF signaling appears to involve integrins, the expression of which is reduced during skeletal unloading. Integrins play an important, albeit not well defined, role in facilitating signaling not only by IGF but also by other growth factors. However, the interaction between selected integrins such as alphaupsilonbeta3 and beta1 integrins and the IGF receptor are of especial importance with respect to the ability of bone to respond to mechanical load. Disruption of this interaction blocks IGF signaling and results in bone loss.
Collapse
Affiliation(s)
- D D Bikle
- Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Globus RK. Extracellular Matrix and Integrin Interactions in the Skeletal Responses to Mechanical Loading and Unloading. Clin Rev Bone Miner Metab 2007. [DOI: 10.1007/s12018-008-9013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Dufour C, Holy X, Marie PJ. Skeletal unloading induces osteoblast apoptosis and targets α5β1-PI3K-Bcl-2 signaling in rat bone. Exp Cell Res 2007; 313:394-403. [PMID: 17123509 DOI: 10.1016/j.yexcr.2006.10.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/16/2022]
Abstract
The mechanisms underlying the altered osteoblastogenesis and bone loss in response to disuse are incompletely understood. Using the rat tail suspension model, we studied the effect of skeletal unloading on osteoblast and osteocyte apoptosis. Tail suspension for 2 to 7 days decreased tibial bone mass and induced early apoptotic loss of osteoblasts and delayed apoptotic loss of osteocytes. Surrenal gland weight and plasma corticosterone levels did not differ in loaded and unloaded rats at any time point, indicating that osteoblast/osteocyte apoptosis occurred independently of endogenous glucocorticoids. The mechanistic basis for the disuse-induced osteoblast/osteocyte apoptosis was examined. We found that alpha5beta1 integrin and phosphorylated phosphatidyl-inositol-3 kinase (p-PI3K) protein levels were transiently decreased in unloaded metaphyseal long bone compared to loaded bones. In contrast, p-FAK and p-ERK p42/44 levels were not significantly altered. Interestingly, the reduced p-PI3K levels in unloaded long bone was associated with decreased levels of the survival protein Bcl-2 with unaltered Bax levels, causing increased Bax/Bcl-2 levels. The results indicate that skeletal unloading in rats induces a glucocorticoid-independent, immediate increase in osteoblast apoptosis associated with decreased alpha5beta1-PI3K-Bcl-2 survival pathway in rat bone, which may contribute to the altered osteoblastogenesis and osteopenia induced by unloading.
Collapse
Affiliation(s)
- C Dufour
- Unit 606 INSERM, Laboratory of Osteoblast Biology and Pathology, University Paris 7, France
| | | | | |
Collapse
|
22
|
Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 2006; 21:605-15. [PMID: 16598381 DOI: 10.1359/jbmr.060107] [Citation(s) in RCA: 333] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Mechanical stimulation of cultured osteocytic cells attenuates their apoptosis. We report here that, conversely, reduced mechanical forces in the murine model of unloading by tail suspension increases the prevalence of osteocyte apoptosis, followed by bone resorption and loss of mineral and strength. INTRODUCTION Mechanical loading is critical for the maintenance of bone mass; weightlessness, as with reduced physical activity in old age, bed rest, or space flight, invariably leads to bone loss. However, the cellular and molecular mechanisms responsible for these phenomena are poorly understood. Based on our earlier findings that physiologic levels of mechanical strain prevent apoptosis of osteocytic cells in vitro, we examined here whether, conversely, reduced mechanical forces increase the prevalence of osteocyte apoptosis in vivo and whether this event is linked to bone loss. MATERIALS AND METHODS Swiss Webster mice or OG2-11beta-hydroxysteroid dehydrogenase type 2 (OG2-11beta-HSD2) transgenic mice and wildtype littermates were tail-suspended or kept under ambulatory conditions. Static and dynamic histomorphometry and osteocyte and osteoblast apoptosis by in situ end-labeling (ISEL) were assessed in lumbar vertebra; spinal BMD was measured by DXA; and bone strength was measured by vertebral compression. RESULTS We show that within 3 days of tail suspension, mice exhibited an increased incidence of osteocyte apoptosis in both trabecular and cortical bone. This change was followed 2 weeks later by increased osteoclast number and cortical porosity, reduced trabecular and cortical width, and decreased spinal BMD and vertebral strength. Importantly, whereas in ambulatory animals, apoptotic osteocytes were randomly distributed, in unloaded mice, apoptotic osteocytes were preferentially sequestered in endosteal cortical bone--the site that was subsequently resorbed. The effect of unloading on osteocyte apoptosis and bone resorption was reproduced in transgenic mice in which osteocytes are refractory to glucocorticoid action, indicating that stress-induced hypercortisolemia cannot account for these effects. CONCLUSIONS We conclude that diminished mechanical forces eliminate signals that maintain osteocyte viability, thereby leading to apoptosis. Dying osteocytes in turn become the beacons for osteoclast recruitment to the vicinity and the resulting increase in bone resorption and bone loss.
Collapse
Affiliation(s)
- J Ignacio Aguirre
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Cao JJ, Wronski TJ, Iwaniec U, Phleger L, Kurimoto P, Boudignon B, Halloran BP. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 2005; 20:1659-68. [PMID: 16059637 DOI: 10.1359/jbmr.050503] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/01/2005] [Accepted: 04/27/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED Stromal/osteoblastic cell expression of RANKL and M-CSF regulates osteoclastogenesis. We show that aging is accompanied by increased RANKL and M-CSF expression, increased stromal/osteoblastic cell-induced osteoclastogenesis, and expansion of the osteoclast precursor pool. These changes correlate with age-related alterations in the relationship between osteoblasts and osteoclasts in cancellous bone. INTRODUCTION Bone mass is maintained through a balance between osteoblast and osteoclast activity. Osteoblasts regulate the number and activity of osteoclasts through expression of RANKL, osteoprotegerin (OPG), and macrophage-colony stimulation factor (M-CSF). To determine whether age-related changes in stromal/osteoblastic cell expression of RANKL, OPG, and M-CSF are associated with stimulation of osteoclastogenesis and whether the osteoclast precursor pool changes with age, we studied cultures of stromal/osteoblastic cells and osteoclast precursor cells from animals of different ages and examined how aging influences bone cell populations in vivo. MATERIALS AND METHODS Osteoclast precursors from male C57BL/6 mice of 6 weeks (young), 6 months (adult), and 24 months (old) of age were either co-cultured with stromal/osteoblastic cells from young, adult, or old mice or treated with M-CSF, RANKL, and/or OPG. Osteoclast precursor pool size was determined by fluorescence-activated cell sorting (FACS), and osteoclast formation was assessed by measuring the number of multinucleated TRACP(+) cells and pit formation. The levels of mRNA for RANKL, M-CSF, and OPG were determined by quantitative RT-PCR, and transcription was measured by PCR-based run-on assays. Osteoblast and osteoclast numbers in bone were measured by histomorphometry. RESULTS Osteoclast formation increased dramatically when stromal/osteoblastic cells from old compared with young donors were used to induce osteoclastogenesis. Regardless of the origin of the stromal/osteoblastic cells, the number of osteoclasts formed from the nonadherent population of cells increased with increasing age. Stromal/osteoblastic cell expression of RANKL and M-CSF increased, whereas OPG decreased with aging. Exogenously administered RANKL and M-CSF increased, dose-dependently, osteoclast formation from all donors, but the response was greater in cells from old donors. Osteoclast formation in vitro positively, and the ratio of osteoblasts to osteoclasts in vivo negatively, correlated with the ratio of RANKL to OPG expression in stromal/osteoblastic cells for all ages. The effects of RANKL-induced osteoclastogenesis in vitro were blocked by OPG, suggesting a causal relationship between RANKL expression and osteoclast-inducing potential. The osteoclast precursor pool and expression of RANK and c-fms increased with age. CONCLUSIONS Our results show that aging significantly increases stromal/osteoblastic cell-induced osteoclastogenesis, promotes expansion of the osteoclast precursor pool and alters the relationship between osteoblasts and osteoclasts in cancellous bone.
Collapse
Affiliation(s)
- Jay J Cao
- Division of Endocrinology, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | | | |
Collapse
|