1
|
Rogers RS, Mootha VK. Hypoxia as a medicine. Sci Transl Med 2025; 17:eadr4049. [PMID: 39841808 DOI: 10.1126/scitranslmed.adr4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology. Here, we explore the foundations of this nascent field and outline a path to determine how chronic continuous hypoxia can be safely, effectively, and practically delivered to patients.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02114, USA
| |
Collapse
|
2
|
Rogan M, Friend AT, Rossetti GM, Edden R, Mikkelsen M, Oliver SJ, Macdonald JH, Mullins PG. Hypoxia alters posterior cingulate cortex metabolism during a memory task: A 1H fMRS study. Neuroimage 2022; 260:119397. [PMID: 35752413 PMCID: PMC9513808 DOI: 10.1016/j.neuroimage.2022.119397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental hypoxia (fraction of inspired oxygen (FIO2) ∼ 0.120) is known to trigger a global increase in cerebral blood flow (CBF). However, regionally, a heterogeneous response is reported, particularly within the posterior cingulate cortex (PCC) where decreased CBF is found after two hours of hypoxic exposure. Furthermore, hypoxia reverses task-evoked BOLD signals within the PCC, and other regions of the default mode network, suggesting a reversal of neurovascular coupling. An alternative explanation is that the neural architecture supporting cognitive tasks is reorganised. Therefore, to confirm if this previous result is neural or vascular in origin, a measure of neural activity that is not haemodynamic-dependant is required. To achieve this, we utilised functional magnetic resonance spectroscopy to probe the glutamate response to memory recall in the PCC during normoxia (FIO2 = 0.209) and after two hours of poikilocapnic hypoxia (FIO2 = 0.120). We also acquired ASL-based measures of CBF to confirm previous findings of reduced CBF within the PCC in hypoxia. Consistent with previous findings, hypoxia induced a reduction in CBF within the PCC and other regions of the default mode network. Under normoxic conditions, memory recall was associated with an 8% increase in PCC glutamate compared to rest (P = 0.019); a change which was not observed during hypoxia. However, exploratory analysis of other neurometabolites showed that PCC glucose was reduced during hypoxia compared to normoxia both at rest (P = 0.039) and during the task (P = 0.046). We conclude that hypoxia alters the activity-induced increase in glutamate, which may reflect a reduction in oxidative metabolism within the PCC. The reduction in glucose in hypoxia reflects continued metabolism, presumably by non-oxidative means, without replacement of glucose due to reduced CBF.
Collapse
Affiliation(s)
- Matthew Rogan
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; The Bangor Imaging Unit, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Alexander T Friend
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Gabriella Mk Rossetti
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Samuel J Oliver
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Jamie H Macdonald
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Paul G Mullins
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; The Bangor Imaging Unit, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom.
| |
Collapse
|
3
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
4
|
Hao GS, Fan QL, Hu QZ, Hou Q. Research progress on the mechanism of cerebral blood flow regulation in hypoxia environment at plateau. Bioengineered 2022; 13:6353-6358. [PMID: 35235760 PMCID: PMC8973622 DOI: 10.1080/21655979.2021.2024950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The plateau is a special environment with low air pressure and low oxygen content. The average altitude of Qinghai-Tibet is 3,500 m, and the atmospheric oxygen partial pressure in most areas is lower than 60% of that at sea level. In order to adapt to the plateau low-oxygen environment, the human body has developed corresponding physiological structure and functions adjust. In the present review, the regulation mechanism of cerebral blood flow (CBF) under high-altitude environments was elaborated in eight aspects: the arterial blood gas, endogenous substances in the nerve and blood, the cerebral neovascularization, the hematocrit, cerebral auto-regulation mechanism, cerebrovascular reactivity, pulmonary vasoconstriction, and sympathetic automatic regulation, aiming to further explore the characteristics of changes in brain tissue and cerebral blood flow in a hypoxic environment.
Collapse
Affiliation(s)
- Gui-Sheng Hao
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Qing-Li Fan
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Quan-Zhong Hu
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Qian Hou
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| |
Collapse
|
5
|
Rossetti GM, d'Avossa G, Rogan M, Macdonald JH, Oliver SJ, Mullins PG. Reversal of neurovascular coupling in the default mode network: Evidence from hypoxia. J Cereb Blood Flow Metab 2021; 41:805-818. [PMID: 32538282 PMCID: PMC7983511 DOI: 10.1177/0271678x20930827] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Local changes in cerebral blood flow are thought to match changes in neuronal activity, a phenomenon termed neurovascular coupling. Hypoxia increases global resting cerebral blood flow, but regional cerebral blood flow (rCBF) changes are non-uniform. Hypoxia decreases baseline rCBF to the default mode network (DMN), which could reflect either decreased neuronal activity or altered neurovascular coupling. To distinguish between these hypotheses, we characterized the effects of hypoxia on baseline rCBF, task performance, and the hemodynamic (BOLD) response to task activity. During hypoxia, baseline CBF increased across most of the brain, but decreased in DMN regions. Performance on memory recall and motion detection tasks was not diminished, suggesting task-relevant neuronal activity was unaffected. Hypoxia reversed both positive and negative task-evoked BOLD responses in the DMN, suggesting hypoxia reverses neurovascular coupling in the DMN of healthy adults. The reversal of the BOLD response was specific to the DMN. Hypoxia produced modest increases in activations in the visual attention network (VAN) during the motion detection task, and had no effect on activations in the visual cortex during visual stimulation. This regional specificity may be particularly pertinent to clinical populations characterized by hypoxemia and may enhance understanding of regional specificity in neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Gabriella Mk Rossetti
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Giovanni d'Avossa
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Matthew Rogan
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| |
Collapse
|
6
|
Friend AT, Balanos GM, Lucas SJ. Isolating the independent effects of hypoxia and hyperventilation‐induced hypocapnia on cerebral haemodynamics and cognitive function. Exp Physiol 2019; 104:1482-1493. [DOI: 10.1113/ep087602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander T. Friend
- School of SportExercise and Rehabilitation SciencesUniversity of Birmingham Edgbaston UK
| | - George M. Balanos
- School of SportExercise and Rehabilitation SciencesUniversity of Birmingham Edgbaston UK
| | - Samuel J.E. Lucas
- School of SportExercise and Rehabilitation SciencesUniversity of Birmingham Edgbaston UK
- Centre for Human Brain HealthUniversity of Birmingham Edgbaston UK
| |
Collapse
|
7
|
Tift MS, Ponganis PJ. Time Domains of Hypoxia Adaptation-Elephant Seals Stand Out Among Divers. Front Physiol 2019; 10:677. [PMID: 31214049 PMCID: PMC6558045 DOI: 10.3389/fphys.2019.00677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michael S. Tift
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
8
|
Vestergaard MB, Larsson HB. Cerebral metabolism and vascular reactivity during breath-hold and hypoxic challenge in freedivers and healthy controls. J Cereb Blood Flow Metab 2019; 39:834-848. [PMID: 29099292 PMCID: PMC6498754 DOI: 10.1177/0271678x17737909] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The goal of the present study was to examine the cerebral metabolism and vascular reactivity during extended breath-holds (ranging from 2 min 32 s to 7 min 0 s) and during a hypoxic challenge in freedivers and non-diver controls. Magnetic resonance imaging was used to measure the global cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2), and magnetic resonance spectroscopy was used to measure the cerebral lactate, glutamate+glutamine, N-acetylaspartate and phosphocreatine+creatine concentrations in the occipital lobe. Fifteen freedivers and seventeen non-diver controls participated. The freedivers showed remarkable increases in CBF (107%) during the breath-holds, compensating for arterial desaturation, and sustained cerebral oxygen delivery (CDO2). CMRO2 was unaffected throughout the breath-holds. During the hypoxic challenge, the freedivers had larger increases in blood flow in the sagittal sinus than the non-divers, and could sustain normal CDO2. No differences were found in lactate production, global CBF or CMRO2. We conclude that the mechanism for sustaining brain function during breath-holding in freedivers involves an extraordinary increase in perfusion, and that freedivers present evidence for higher cerebrovascular reactivity, but not for higher lactate-producing glycolysis during a hypoxic challenge compared to controls.
Collapse
Affiliation(s)
- Mark B Vestergaard
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Henrik Bw Larsson
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark.,2 Institute of Clinical Medicine, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Jensen MLF, Vestergaard MB, Tønnesen P, Larsson HBW, Jennum PJ. Cerebral blood flow, oxygen metabolism, and lactate during hypoxia in patients with obstructive sleep apnea. Sleep 2019; 41:4788814. [PMID: 29309697 DOI: 10.1093/sleep/zsy001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Study Objectives Obstructive sleep apnea (OSA) is associated with increased risk of stroke but the underlying mechanism is poorly understood. We suspect that the normal cerebrovascular response to hypoxia is disturbed in patients with OSA. Methods Global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and lactate concentration during hypoxia were measured in patients with OSA and matched controls. Twenty-eight patients (82.1% males, mean age 52.3 ± 10.0 years) with moderate-to-severe OSA assessed by partial polysomnography were examined and compared with 19 controls (73.7% males, mean age 51.8 ± 10.1 years). Patients and controls underwent magnetic resonance imaging (MRI) during 35 min of normoxia followed by 35 min inhaling hypoxic air (10%-12% O2). After 3 months of continuous positive airway pressure (CPAP) treatment, 22 patients were rescanned. Results During hypoxia, CBF significantly increased with decreasing arterial blood oxygen concentration (4.53 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001) in the control group, but was unchanged (0.89 mL (blood)/100 g/min per -1 mmol(O2)/L, p = 0.289) in the patient group before CPAP treatment. The CBF response to hypoxia was significantly weaker in patients than in controls (p = 0.003). After 3 months of CPAP treatment the CBF response normalized, showing a significant increase during hypoxia (5.15 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001). There was no difference in CMRO2 or cerebral lactate concentration between patients and controls, and no effect of CPAP treatment. Conclusions Patients with OSA exhibit reduced CBF in response to hypoxia. CPAP treatment normalized these patterns.
Collapse
Affiliation(s)
- M L F Jensen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - M B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - P Tønnesen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - H B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
10
|
Cerebral Oxygen Metabolism Before and After RBC Transfusion in Infants Following Major Surgical Procedures. Pediatr Crit Care Med 2018; 19:318-327. [PMID: 29406374 DOI: 10.1097/pcc.0000000000001483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Although infants following major surgery frequently require RBC transfusions, there is still controversy concerning the best definition for requirement of transfusion in the individual patient. The aim of this study was to determine the impact of RBC transfusion on cerebral oxygen metabolism in noncardiac and cardiac postsurgical infants. DESIGN Prospective observational cohort study. SETTING Pediatric critical care unit of a tertiary referral center. PATIENTS Fifty-eight infants (15 after pediatric surgery and 43 after cardiac surgery) with anemia requiring RBC transfusion were included. INTERVENTIONS RBC transfusion. MEASUREMENTS AND MAIN RESULTS We measured noninvasively regional cerebral oxygen saturation and microperfusion (relative cerebral blood flow) using tissue spectrometry and laser Doppler flowmetry before and after RBC transfusion. Cerebral fractional tissue oxygen extraction and approximated cerebral metabolic rate of oxygen were calculated. Fifty-eight RBC transfusions in 58 patients were monitored (15 after general surgery, 24 after cardiac surgery resulting in acyanotic biventricular physiology and 19 in functionally univentricular hearts including hypoplastic left heart following neonatal palliation). The posttransfusion hemoglobin concentrations increased significantly (9.7 g/dL vs 12.8 g/dL; 9.7 g/dL vs 13.8 g/dL; 13.1 g/dL vs 15.6 g/dL; p < 0.001, respectively). Posttransfusion cerebral oxygen saturation was significantly higher than pretransfusion (61% [51-78] vs 72% [59-89]; p < 0.001; 58% [35-77] vs 71% [57-88]; p < 0.001; 51% [37-61] vs 58% [42-73]; p = 0.007). Cerebral fractional tissue oxygen extraction decreased posttransfusion significantly 0.37 (0.16-0.47) and 0.27 (0.07-039), p = 0.002; 0.40 (0.2-0.62) vs 0.26 (0.11-0.57), p = 0.001; 0.42 (0.23-0.52) vs 0.32 (0.1-0.42), p = 0.017. Cerebral blood flow and approximated cerebral metabolic rate of oxygen showed no significant change during the observation period. The increase in cerebral oxygen saturation and the decrease in cerebral fractional tissue oxygen extraction were most pronounced in patients after cardiac surgery with a pretransfusion cerebral fractional tissue oxygen extraction greater than or equal to 0.4. CONCLUSION Following RBC transfusion, cerebral oxygen saturation increases and cerebral fractional tissue oxygen extraction decreases. The data suggest that cerebral oxygenation in postoperative infants with cerebral fractional tissue oxygen extraction greater than or equal to 0.4 may be at risk in instable hemodynamic or respiratory situations.
Collapse
|
11
|
Fields ME, Guilliams KP, Ragan DK, Binkley MM, Eldeniz C, Chen Y, Hulbert ML, McKinstry RC, Shimony JS, Vo KD, Doctor A, An H, Ford AL, Lee JM. Regional oxygen extraction predicts border zone vulnerability to stroke in sickle cell disease. Neurology 2018; 90:e1134-e1142. [PMID: 29500287 PMCID: PMC5880632 DOI: 10.1212/wnl.0000000000005194] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 12/05/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine mechanisms underlying regional vulnerability to infarction in sickle cell disease (SCD) by measuring voxel-wise cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen utilization (CMRO2) in children with SCD. METHODS Participants underwent brain MRIs to measure voxel-based CBF, OEF, and CMRO2. An infarct heat map was created from an independent pediatric SCD cohort with silent infarcts and compared to prospectively obtained OEF maps. RESULTS Fifty-six participants, 36 children with SCD and 20 controls, completed the study evaluation. Whole-brain CBF (99.2 vs 66.3 mL/100 g/min, p < 0.001), OEF (42.7% vs 28.8%, p < 0.001), and CMRO2 (3.7 vs 2.5 mL/100 g/min, p < 0.001) were higher in the SCD cohort compared to controls. A region of peak OEF was identified in the deep white matter in the SCD cohort, delineated by a ratio map of average SCD to control OEF voxels. CMRO2 in this region, which encompassed the CBF nadir, was low relative to all white matter (p < 0.001). Furthermore, this peak OEF region colocalized with regions of greatest infarct density derived from an independent SCD cohort. CONCLUSIONS Elevated OEF in the deep white matter identifies a signature of metabolically stressed brain tissue at increased stroke risk in pediatric patients with SCD. We propose that border zone physiology, exacerbated by chronic anemic hypoxia, explains the high risk in this region.
Collapse
Affiliation(s)
- Melanie E Fields
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Kristin P Guilliams
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Dustin K Ragan
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Michael M Binkley
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Cihat Eldeniz
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Yasheng Chen
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Monica L Hulbert
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Robert C McKinstry
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Joshua S Shimony
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Katie D Vo
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Allan Doctor
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Hongyu An
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Andria L Ford
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO
| | - Jin-Moo Lee
- From the Division of Pediatric Hematology/Oncology (M.E.F., M.L.H.), Division of Pediatric Neurology (K.P.G.), Division of Pediatric Critical Care Medicine (K.P.G., A.D.), Department of Neurology (D.K.R., Y.C., A.L.F., J.-M.L.), and Mallinckrodt Institute of Radiology (C.E., R.C.M., J.S.S., K.D.V., H.A., J.-M.L.), Washington University School of Medicine; and Department of Biomedical Engineering (M.B.M., J.-M.L.), Washington University, St. Louis, MO.
| |
Collapse
|
12
|
Jiang D, Liu P, Li Y, Mao D, Xu C, Lu H. Cross-vendor harmonization of T 2 -relaxation-under-spin-tagging (TRUST) MRI for the assessment of cerebral venous oxygenation. Magn Reson Med 2018; 80:1125-1131. [PMID: 29369415 DOI: 10.1002/mrm.27080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Dengrong Jiang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Deng Mao
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cuimei Xu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Wei Z, Xu J, Liu P, Chen L, Li W, van Zijl P, Lu H. Quantitative assessment of cerebral venous blood T 2 in mouse at 11.7T: Implementation, optimization, and age effect. Magn Reson Med 2017; 80:521-528. [PMID: 29271045 DOI: 10.1002/mrm.27046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop a non-contrast-agent MRI technique to quantify cerebral venous T2 in mice. METHODS We implemented and optimized a T2 -relaxation-under-spin-tagging (TRUST) sequence on an 11.7 Tesla animal imaging system. A flow-sensitive-alternating-inversion-recovery (FAIR) module was used to generate control and label images, pair-wise subtraction of which yielded blood signals. Then, a T2 -preparation module was applied to produce T2 -weighted images, from which blood T2 was quantified. We conducted a series of technical studies to optimize the imaging slice position, inversion slab thickness, post-labeling delay (PLD), and repetition time. We also performed three physiological studies to examine the venous T2 dependence on hyperoxia (N = 4), anesthesia (N = 3), and brain aging (N = 5). RESULTS Our technical studies suggested that, for efficient data acquisition with minimal bias in estimated T2 , a preferred TRUST protocol was to place the imaging slice at the confluence of sagittal sinuses with an inversion-slab thickness of 2.5-mm, a PLD of 1000 ms and a repetition time of 3.5 s. Venous T2 values under normoxia and hyperoxia (inhaling pure oxygen) were 26.9 ± 1.7 and 32.3 ± 2.2 ms, respectively. Moreover, standard isoflurane anesthesia resulted in a higher venous T2 compared with dexmedetomidine anesthesia (N = 3; P = 0.01) which is more commonly used in animal functional MRI studies to preserve brain function. Venous T2 exhibited a decrease with age (N = 5; P < 0.001). CONCLUSION We have developed and optimized a noninvasive method to quantify cerebral venous blood T2 in mouse at 11.7 T. This method may prove useful in studies of brain physiology and pathophysiology in animal models. Magn Reson Med 80:521-528, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zhiliang Wei
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Peiying Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Wenbo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Hanzhang Lu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Smith ZM, Krizay E, Sá RC, Li ET, Scadeng M, Powell FL, Dubowitz DJ. Evidence from high-altitude acclimatization for an integrated cerebrovascular and ventilatory hypercapnic response but different responses to hypoxia. J Appl Physiol (1985) 2017; 123:1477-1486. [PMID: 28705997 DOI: 10.1152/japplphysiol.00341.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ventilation and cerebral blood flow (CBF) are both sensitive to hypoxia and hypercapnia. To compare chemosensitivity in these two systems, we made simultaneous measurements of ventilatory and cerebrovascular responses to hypoxia and hypercapnia in 35 normal human subjects before and after acclimatization to hypoxia. Ventilation and CBF were measured during stepwise changes in isocapnic hypoxia and iso-oxic hypercapnia. We used MRI to quantify actual cerebral perfusion. Measurements were repeated after 2 days of acclimatization to hypoxia at 3,800 m altitude (partial pressure of inspired O2 = 90 Torr) to compare plasticity in the chemosensitivity of these two systems. Potential effects of hypoxic and hypercapnic responses on acute mountain sickness (AMS) were assessed also. The pattern of CBF and ventilatory responses to hypercapnia were almost identical. CO2 responses were augmented to a similar degree in both systems by concomitant acute hypoxia or acclimatization to sustained hypoxia. Conversely, the pattern of CBF and ventilatory responses to hypoxia were markedly different. Ventilation showed the well-known increase with acute hypoxia and a progressive decline in absolute value over 25 min of sustained hypoxia. With acclimatization to hypoxia for 2 days, the absolute values of ventilation and O2 sensitivity increased. By contrast, O2 sensitivity of CBF or its absolute value did not change during sustained hypoxia for up to 2 days. The results suggest a common or integrated control mechanism for CBF and ventilation by CO2 but different mechanisms of O2 sensitivity and plasticity between the systems. Ventilatory and cerebrovascular responses were the same for all subjects irrespective of AMS symptoms. NEW & NOTEWORTHY Ventilatory and cerebrovascular hypercapnic response patterns show similar plasticity in CO2 sensitivity following hypoxic acclimatization, suggesting an integrated control mechanism. Conversely, ventilatory and cerebrovascular hypoxic responses differ. Ventilation initially increases but adapts with prolonged hypoxia (hypoxic ventilatory decline), and ventilatory sensitivity increases following acclimatization. In contrast, cerebral blood flow hypoxic sensitivity remains constant over a range of hypoxic stimuli, with no cerebrovascular acclimatization to sustained hypoxia, suggesting different mechanisms for O2 sensitivity in the two systems.
Collapse
Affiliation(s)
- Zachary M Smith
- Department of Radiology, Center for Functional MRI, University of California San Diego School of Medicine , La Jolla, California
| | - Erin Krizay
- Department of Radiology, Center for Functional MRI, University of California San Diego School of Medicine , La Jolla, California
| | - Rui Carlos Sá
- Division of Physiology, Department of Medicine, University of California San Diego School of Medicine , La Jolla, California
| | - Ethan T Li
- Department of Radiology, Center for Functional MRI, University of California San Diego School of Medicine , La Jolla, California
| | - Miriam Scadeng
- Department of Radiology, Center for Functional MRI, University of California San Diego School of Medicine , La Jolla, California
| | - Frank L Powell
- Division of Physiology, Department of Medicine, University of California San Diego School of Medicine , La Jolla, California.,White Mountain Research Station, University of California , Bishop, California
| | - David J Dubowitz
- Department of Radiology, Center for Functional MRI, University of California San Diego School of Medicine , La Jolla, California
| |
Collapse
|
15
|
Sheng M, Liu P, Mao D, Ge Y, Lu H. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study. PLoS One 2017; 12:e0176610. [PMID: 28464001 PMCID: PMC5412995 DOI: 10.1371/journal.pone.0176610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/13/2017] [Indexed: 12/17/2022] Open
Abstract
A better understanding of the effect of oxygen on brain electrophysiological activity may provide a more mechanistic insight into clinical studies that use oxygen treatment in pathological conditions, as well as in studies that use oxygen to calibrate functional magnetic resonance imaging (fMRI) signals. This study applied electroencephalography (EEG) in healthy subjects and investigated how high a concentration of oxygen in inhaled air (i.e., normobaric hyperoxia) alters brain activity under resting-state and task-evoked conditions. Study 1 investigated its impact on resting EEG and revealed that hyperoxia suppressed α (8-13Hz) and β (14-35Hz) band power (by 15.6±2.3% and 14.1±3.1%, respectively), but did not change the δ (1-3Hz), θ (4-7Hz), and γ (36-75Hz) bands. Sham control experiments did not result in such changes. Study 2 reproduced these findings, and, furthermore, examined the effect of hyperoxia on visual stimulation event-related potentials (ERP). It was found that the main peaks of visual ERP, specifically N1 and P2, were both delayed during hyperoxia compared to normoxia (P = 0.04 and 0.02, respectively). In contrast, the amplitude of the peaks did not show a change. Our results suggest that hyperoxia has a pronounced effect on brain neural activity, for both resting-state and task-evoked potentials.
Collapse
Affiliation(s)
- Min Sheng
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Peiying Liu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Deng Mao
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York, United States of America
| | - Hanzhang Lu
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Peng SL, Ravi H, Sheng M, Thomas BP, Lu H. Searching for a truly "iso-metabolic" gas challenge in physiological MRI. J Cereb Blood Flow Metab 2017; 37:715-725. [PMID: 26980756 PMCID: PMC5381460 DOI: 10.1177/0271678x16638103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
Hypercapnia challenge (e.g. inhalation of CO2) has been used in calibrated fMRI as well as in the mapping of vascular reactivity in cerebrovascular diseases. An important assumption underlying these measurements is that CO2 is a pure vascular challenge but does not alter neural activity. However, recent reports have suggested that CO2 inhalation may suppress neural activity and brain metabolic rate. Therefore, the goal of this study is to propose and test a gas challenge that is truly "iso-metabolic," by adding a hypoxic component to the hypercapnic challenge, since hypoxia has been shown to enhance cerebral metabolic rate of oxygen (CMRO2). Measurement of global CMRO2 under various gas challenge conditions revealed that, while hypercapnia (P = 0.002) and hypoxia (P = 0.002) individually altered CMRO2 (by -7.6 ± 1.7% and 16.7 ± 4.1%, respectively), inhalation of hypercapnic-hypoxia gas (5% CO2/13% O2) did not change brain metabolism (CMRO2 change: 1.5 ± 3.9%, P = 0.92). Moreover, cerebral blood flow response to the hypercapnic-hypoxia challenge (in terms of % change per mmHg CO2 change) was even greater than that to hypercapnia alone (P = 0.007). Findings in this study suggest that hypercapnic-hypoxia gas challenge may be a useful maneuver in physiological MRI as it preserves vasodilatory response yet does not alter brain metabolism.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Harshan Ravi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Bioengineering, UT Arlington, Arlington, USA
| | - Min Sheng
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
17
|
Lawley JS, Macdonald JH, Oliver SJ, Mullins PG. Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 2016; 595:935-947. [PMID: 27506309 DOI: 10.1113/jp272557] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/04/2016] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Cognitive performance is impaired by hypoxia despite global cerebral oxygen delivery and metabolism being maintained. Using arterial spin labelled (ASL) magnetic resonance imaging, this is the first study to show regional reductions in cerebral blood flow (CBF) in response to decreased oxygen supply (hypoxia) at 2 h that increased in area and became more pronounced at 10 h. Reductions in CBF were seen in brain regions typically associated with the 'default mode' or 'task negative' network. Regional reductions in CBF, and associated vasoconstriction, within the default mode network in hypoxia is supported by increased vasodilatation in these regions to a subsequent hypercapnic (5% CO2 ) challenge. These results suggest an anatomical mechanism through which hypoxia may cause previously reported deficits in cognitive performance. ABSTRACT Hypoxia causes an increase in global cerebral blood flow, which maintains global cerebral oxygen delivery and metabolism. However, neurological deficits are abundant under hypoxic conditions. We investigated regional cerebral microvascular responses to acute (2 h) and prolonged (10 h) poikilocapnic normobaric hypoxia. We found that 2 h of hypoxia caused an expected increase in frontal cortical grey matter perfusion but unexpected perfusion decreases in regions of the brain normally associated with the 'default mode' or 'task negative' network. After 10 h in hypoxia, decreased blood flow to the major nodes of the default mode network became more pronounced and widespread. The use of a hypercapnic challenge (5% CO2 ) confirmed that these reductions in cerebral blood flow from hypoxia were related to vasoconstriction. Our findings demonstrate steady-state deactivation of the default network under acute hypoxia, which become more pronounced over time. Moreover, these data provide a unique insight into the nuanced localized cerebrovascular response to hypoxia that is not attainable through traditional methods. The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions assumed to play a role in declarative and procedural memory, provides an anatomical mechanism through which hypoxia may cause deficits in working memory.
Collapse
Affiliation(s)
- Justin S Lawley
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK.,Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX, USA
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, Bangor University, Gwynedd, UK
| |
Collapse
|
18
|
Bain AR, Ainslie PN, Hoiland RL, Barak OF, Cavar M, Drvis I, Stembridge M, MacLeod DM, Bailey DM, Dujic Z, MacLeod DB. Cerebral oxidative metabolism is decreased with extreme apnoea in humans; impact of hypercapnia. J Physiol 2016; 594:5317-28. [PMID: 27256521 DOI: 10.1113/jp272404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3 min 36 s to 7 min 26 s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by ∼29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea. ABSTRACT Prolonged apnoea in humans is reflected in progressive hypoxaemia and hypercapnia. In the present study, we explore the cerebral metabolic responses under extreme hypoxia and hypercapnia associated with prolonged apnoea. We hypothesized that the cerebral metabolic rate for oxygen (CMRO2 ) will be reduced near the termination of apnoea, attributed in part to the hypercapnia. Fourteen elite apnoea-divers performed a maximal apnoea (range 3 min 36 s to 7 min 26 s) under dry laboratory conditions. In a subset study with the same divers, the impact of hypercapnia on cerebral metabolism was determined using varying levels of hypercapnic breathing, against the background of similar hypoxia. In both studies, the CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-internal jugular venous oxygen content difference. Non-oxidative cerebral metabolism was calculated from the ratio of oxygen and carbohydrate (lactate and glucose) metabolism. The CMRO2 was reduced by ∼29% (P < 0.01, Cohen's d = 1.18) near the termination of apnoea compared to baseline, although non-oxidative metabolism remained unaltered. In the subset study, in similar backgrounds of hypoxia (arterial O2 tension: ∼38.4 mmHg), severe hypercapnia (arterial CO2 tension: ∼58.7 mmHg), but not mild-hypercapnia (arterial CO2 tension: ∼46.3 mmHg), depressed the CMRO2 (∼17%, P = 0.04, Cohen's d = 0.87). Similarly to the apnoea, there was no change in the non-oxidative metabolism. These data indicate that hypercapnia can partly explain the reduction in CMRO2 near the apnoea breakpoint. This hypercapnic-induced oxygen conservation may protect the brain against severe hypoxaemia associated with prolonged apnoea.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada. ,
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Otto F Barak
- School of Medicine, University of Split, Split, Croatia.,Faculty of Medicine, University of Novi Sad, Serbia
| | - Marija Cavar
- School of Medicine, University of Split, Split, Croatia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | | | | | - Damian M Bailey
- Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Zeljko Dujic
- School of Medicine, University of Split, Split, Croatia
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Vestergaard MB, Lindberg U, Aachmann-Andersen NJ, Lisbjerg K, Christensen SJ, Law I, Rasmussen P, Olsen NV, Larsson HBW. Acute hypoxia increases the cerebral metabolic rate - a magnetic resonance imaging study. J Cereb Blood Flow Metab 2016; 36:1046-58. [PMID: 26661163 PMCID: PMC4904346 DOI: 10.1177/0271678x15606460] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/10/2015] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% ([Formula: see text]), glutamate increased by 4.7% ([Formula: see text]) and creatine and phosphocreatine decreased by 15.2% (p[Formula: see text]). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Niels Jacob Aachmann-Andersen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Lisbjerg
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Just Christensen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Peter Rasmussen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels V Olsen
- Department of Neuroscience and Pharmacology, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark Department of Neuroanaesthesia, The Neuroscience Centre, Rigshospitalet, Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark Institute of Clinical Medicine, The Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Wang K, Smith ZM, Buxton RB, Swenson ER, Dubowitz DJ. Acetazolamide during acute hypoxia improves tissue oxygenation in the human brain. J Appl Physiol (1985) 2015; 119:1494-500. [PMID: 26472861 PMCID: PMC4683345 DOI: 10.1152/japplphysiol.00117.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/09/2015] [Indexed: 01/29/2023] Open
Abstract
Low doses of the carbonic anhydrase inhibitor acetazolamide provides accelerated acclimatization to high-altitude hypoxia and prevention of cerebral and other symptoms of acute mountain sickness. We previously observed increases in cerebral O2 metabolism (CMRO2 ) during hypoxia. In this study, we investigate whether low-dose oral acetazolamide (250 mg) reduces this elevated CMRO2 and in turn might improve cerebral tissue oxygenation (PtiO2 ) during acute hypoxia. Six normal human subjects were exposed to 6 h of normobaric hypoxia with and without acetazolamide prophylaxis. We determined CMRO2 and cerebral PtiO2 from MRI measurements of cerebral blood flow (CBF) and cerebral venous O2 saturation. During normoxia, low-dose acetazolamide resulted in no significant change in CBF, CMRO2 , or PtiO2 . During hypoxia, we observed increases in CBF [48.5 (SD 12.4) (normoxia) to 65.5 (20.4) ml·100 ml(-1)·min(-1) (hypoxia), P < 0.05] and CMRO2 [1.54 (0.19) to 1.79 (0.25) μmol·ml(-1)·min(-1), P < 0.05] and a dramatic decline in PtiO2 [25.0 to 11.4 (2.7) mmHg, P < 0.05]. Acetazolamide prophylaxis mitigated these rises in CBF [53.7 (20.7) ml·100 ml(-1)·min(-1) (hypoxia + acetazolamide)] and CMRO2 [1.41 (0.09) μmol·ml(-1)·min(-1) (hypoxia + acetazolamide)] associated with acute hypoxia but also reduced O2 delivery [6.92 (1.45) (hypoxia) to 5.60 (1.14) mmol/min (hypoxia + acetazolamide), P < 0.05]. The net effect was improved cerebral tissue PtiO2 during acute hypoxia [11.4 (2.7) (hypoxia) to 16.5 (3.0) mmHg (hypoxia + acetazolamide), P < 0.05]. In addition to its renal effect, low-dose acetazolamide is effective at the capillary endothelium, and we hypothesize that local interruption in cerebral CO2 excretion accounts for the improvements in CMRO2 and ultimately in cerebral tissue oxygenation during hypoxia. This study suggests a potentially pivotal role of cerebral CO2 and pH in modulating CMRO2 and PtiO2 during acute hypoxia.
Collapse
Affiliation(s)
- Kang Wang
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California; School of Medicine, University of California, San Diego, California; and
| | - Zachary M Smith
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California
| | - Richard B Buxton
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California
| | - Erik R Swenson
- Department of Medicine, University of Washington and Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - David J Dubowitz
- Center for Functional MRI, Department of Radiology, University of California, San Diego, California;
| |
Collapse
|
21
|
Feddersen B, Neupane P, Thanbichler F, Hadolt I, Sattelmeyer V, Pfefferkorn T, Waanders R, Noachtar S, Ausserer H. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes. J Cereb Blood Flow Metab 2015; 35:1846-51. [PMID: 26082017 PMCID: PMC4635241 DOI: 10.1038/jcbfm.2015.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/16/2015] [Accepted: 05/15/2015] [Indexed: 11/09/2022]
Abstract
Symptoms of acute mountain sickness (AMS) may appear above 2,500 m altitude, if the time allowed for acclimatization is insufficient. As the mechanisms underlying brain adaptation to the hypobaric hypoxic environment are not fully understood, a prospective study was performed investigating neurophysiological changes by means of near infrared spectroscopy, electroencephalograpy (EEG), and transcranial doppler sonography at 100, 3,440 and 5,050 m above sea level in the Khumbu Himal, Nepal. Fourteen of the 26 mountaineers reaching 5,050 m altitude developed symptoms of AMS between 3,440 and 5,050 m altitude (Lake-Louise Score ⩾3). Their EEG frontal beta activity and occipital alpha activity increased between 100 and 3,440 m altitude, i.e., before symptoms appeared. Cerebral blood flow velocity (CBFV) in the anterior and middle cerebral arteries (MCAs) increased in all mountaineers between 100 and 3,440 m altitude. During further ascent to 5,050 altitude, mountaineers with AMS developed a further increase in CBFV in the MCA, whereas in all mountaineers CBFV decreased continuously with increasing altitude in the posterior cerebral arteries. These results indicate that hypobaric hypoxia causes different regional changes in CBFV despite similar electrophysiological changes.
Collapse
Affiliation(s)
- Berend Feddersen
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany.,Department of Palliative Medicine, Specialized Palliative Home Care Team, University of Munich, Munich, Germany
| | - Pritam Neupane
- Department of Internal Medicine, Sinai Hospital, Johns Hopkins University, Baltimore, Maryland, USA
| | - Florian Thanbichler
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Irmgard Hadolt
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Vera Sattelmeyer
- Klinik für Neurochirurgie, Dr Horst Schmidt Klinik, Wiesbaden, Germany
| | - Thomas Pfefferkorn
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Robb Waanders
- Department of Neuropsychology, Landeskrankenhaus Rankweil, Rankweil, Austria
| | - Soheyl Noachtar
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany
| | - Harald Ausserer
- Department of Neurology, Klinikum Grosshadern, University of Munich, Munich, Germany.,Department of Neurology, Franz-Tappeiner Krankenhaus, Meran, Italy
| |
Collapse
|
22
|
Cerebral oxygenation during the Richalet hypoxia sensitivity test and cycling time-trial performance in severe hypoxia. Eur J Appl Physiol 2014; 114:1037-48. [DOI: 10.1007/s00421-014-2835-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/25/2014] [Indexed: 02/03/2023]
|
23
|
Smirl JD, Lucas SJE, Lewis NCS, duManoir GR, Smith KJ, Bakker A, Basnyat AS, Ainslie PN, Ainslie PN. Cerebral pressure-flow relationship in lowlanders and natives at high altitude. J Cereb Blood Flow Metab 2014; 34:248-57. [PMID: 24169852 PMCID: PMC3915197 DOI: 10.1038/jcbfm.2013.178] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/30/2022]
Abstract
We investigated if dynamic cerebral pressure-flow relationships in lowlanders are altered at high altitude (HA), differ in HA natives and after return to sea level (SL). Lowlanders were tested at SL (n=16), arrival to 5,050 m, after 2-week acclimatization (with and without end-tidal PO2 normalization), and upon SL return. High-altitude natives (n=16) were tested at 5,050 m. Testing sessions involved resting spontaneous and driven (squat-stand maneuvers at very low (VLF, 0.05 Hz) and low (LF, 0.10 Hz) frequencies) measures to maximize blood pressure (BP) variability and improve assessment of the pressure-flow relationship using transfer function analysis (TFA). Blood flow velocity was assessed in the middle (MCAv) and posterior (PCAv) cerebral arteries. Spontaneous VLF and LF phases were reduced and coherence was elevated with acclimatization to HA (P<0.05), indicating impaired pressure-flow coupling. However, when BP was driven, both the frequency- and time-domain metrics were unaltered and comparable with HA natives. Acute mountain sickness was unrelated to TFA metrics. In conclusion, the driven cerebral pressure-flow relationship (in both frequency and time domains) is unaltered at 5,050 m in lowlanders and HA natives. Our findings indicate that spontaneous changes in TFA metrics do not necessarily reflect physiologically important alterations in the capacity of the brain to regulate BP.
Collapse
Affiliation(s)
- Jonathan D Smirl
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Samuel J E Lucas
- 1] Department of Physiology, University of Otago, Dunedin, New Zealand [2] School of Physical Education, University of Otago, Dunedin, New Zealand [3] School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | | | - Kurt J Smith
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Akke Bakker
- University of Twente, Enschede, The Netherlands
| | | | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
24
|
Rupp T, Esteve F, Bouzat P, Lundby C, Perrey S, Levy P, Robach P, Verges S. Cerebral hemodynamic and ventilatory responses to hypoxia, hypercapnia, and hypocapnia during 5 days at 4,350 m. J Cereb Blood Flow Metab 2014; 34:52-60. [PMID: 24064493 PMCID: PMC3887348 DOI: 10.1038/jcbfm.2013.167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/31/2013] [Accepted: 08/26/2013] [Indexed: 01/18/2023]
Abstract
This study investigated the changes in cerebral near-infrared spectroscopy (NIRS) signals, cerebrovascular and ventilatory responses to hypoxia and CO2 during altitude exposure. At sea level (SL), after 24 hours and 5 days at 4,350 m, 11 healthy subjects were exposed to normoxia, isocapnic hypoxia, hypercapnia, and hypocapnia. The following parameters were measured: prefrontal tissue oxygenation index (TOI), oxy- (HbO2), deoxy- and total hemoglobin (HbTot) concentrations with NIRS, blood velocity in the middle cerebral artery (MCAv) with transcranial Doppler and ventilation. Smaller prefrontal deoxygenation and larger ΔHbTot in response to hypoxia were observed at altitude compared with SL (day 5: ΔHbO2-0.6±1.1 versus -1.8±1.3 μmol/cmper mm Hg and ΔHbTot 1.4±1.3 versus 0.7±1.1 μmol/cm per mm Hg). The hypoxic MCAv and ventilatory responses were enhanced at altitude. Prefrontal oxygenation increased less in response to hypercapnia at altitude compared with SL (day 5: ΔTOI 0.3±0.2 versus 0.5±0.3% mm Hg). The hypercapnic MCAv and ventilatory responses were decreased and increased, respectively, at altitude. Hemodynamic responses to hypocapnia did not change at altitude. Short-term altitude exposure improves cerebral oxygenation in response to hypoxia but decreases it during hypercapnia. Although these changes may be relevant for conditions such as exercise or sleep at altitude, they were not associated with symptoms of acute mountain sickness.
Collapse
Affiliation(s)
- Thomas Rupp
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - François Esteve
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Pierre Bouzat
- 1] U836/team 6, INSERM, Grenoble, France [2] Grenoble Institute of Neurosciences, Joseph Fourier University, Grenoble, France
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Stéphane Perrey
- Movement To Health (M2H), Montpellier-1 University, Euromov, France
| | - Patrick Levy
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| | - Paul Robach
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France [3] Ecole Nationale de Ski et d'Alpinisme, Chamonix, France
| | - Samuel Verges
- 1] INSERM U1042, Grenoble, France [2] HP2 laboratory, Joseph Fourier University, Grenoble, France
| |
Collapse
|
25
|
Subudhi AW, Fan JL, Evero O, Bourdillon N, Kayser B, Julian CG, Lovering AT, Roach RC. AltitudeOmics: effect of ascent and acclimatization to 5260 m on regional cerebral oxygen delivery. Exp Physiol 2013; 99:772-81. [PMID: 24243839 DOI: 10.1113/expphysiol.2013.075184] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cerebral hypoxaemia associated with rapid ascent to high altitude can be life threatening; yet, with proper acclimatization, cerebral function can be maintained well enough for humans to thrive. We investigated adjustments in global and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly ascended and acclimatized to 5260 m. Ultrasound indices of cerebral blood flow in internal carotid and vertebral arteries were measured at sea level, upon arrival at 5260 m (ALT1; atmospheric pressure 409 mmHg) and after 16 days of acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial oxygen content and flow in each respective artery and summed to estimate global cerebral blood flow. Vascular resistances were calculated as the quotient of mean arterial pressure and respective flows. Global cerebral blood flow increased by ∼70% upon arrival at ALT1 (P < 0.001) and returned to sea-level values at ALT16 as a result of changes in cerebral vascular resistance. A reciprocal pattern in arterial oxygen content maintained global cerebral DO2 throughout acclimatization, although DO2 to the posterior cerebral circulation was increased by ∼25% at ALT1 (P = 0.032). We conclude that cerebral DO2 is well maintained upon acute exposure and acclimatization to hypoxia, particularly in the posterior and inferior regions of the brain associated with vital homeostatic functions. This tight regulation of cerebral DO2 was achieved through integrated adjustments in local vascular resistances to alter cerebral perfusion during both acute and chronic exposure to hypoxia.
Collapse
Affiliation(s)
- Andrew W Subudhi
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA University of Colorado Colorado Springs, Department of Biology, Colorado Springs, CO, USA
| | - Jui-Lin Fan
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland University of Geneva, Lemanic Doctoral School of Neuroscience, Geneva, Switzerland
| | - Oghenero Evero
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| | - Nicolas Bourdillon
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland
| | - Bengt Kayser
- University of Lausanne, Institute of Sport Sciences, Lausanne, Switzerland
| | - Colleen G Julian
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| | - Andrew T Lovering
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Robert C Roach
- University of Colorado Denver Anschutz Medical Campus, Department of Emergency Medicine, Altitude Research Center, Aurora, CO, USA
| |
Collapse
|
26
|
Investigation of whole-brain white matter identifies altered water mobility in the pathogenesis of high-altitude headache. J Cereb Blood Flow Metab 2013; 33:1286-94. [PMID: 23736642 PMCID: PMC3734781 DOI: 10.1038/jcbfm.2013.83] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/02/2013] [Accepted: 05/02/2013] [Indexed: 11/08/2022]
Abstract
Elevated brain water is a common finding in individuals with severe forms of altitude illness. However, the location, nature, and a causative link between brain edema and symptoms of acute mountain sickness such as headache remains unknown. We examined indices of brain white matter water mobility in 13 participants after 2 and 10 hours in normoxia (21% O2) and hypoxia (12% O2) using magnetic resonance imaging. Using a whole-brain analysis (tract-based spatial statistics (TBSS)), mean diffusivity was reduced in the left posterior hemisphere after 2 hours and globally reduced throughout cerebral white matter by 10 hours in hypoxia. However, no changes in T2 relaxation time (T2) or fractional anisotropy were observed. The TBSS identified an association between changes in mean diffusivity, fractional anisotropy, and T2 both supra and subtentorially after 2 and 10 hours, with headache score after 10 hours in hypoxia. Region of interest-based analyses generally confirmed these results. These data indicate that acute periods of hypoxemia cause a shift of water into the intracellular space within the cerebral white matter, whereas no evidence of brain edema (a volumetric enlargement) is identifiable. Furthermore, these changes in brain water mobility are related to the intensity of high-altitude headache.
Collapse
|
27
|
Sightings edited by John W. Severinghaus. High Alt Med Biol 2013. [DOI: 10.1089/ham.2013.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Villien M, Bouzat P, Rupp T, Robach P, Lamalle L, Troprès I, Estève F, Krainik A, Lévy P, Warnking JM, Verges S. Changes in cerebral blood flow and vasoreactivity to CO2 measured by arterial spin labeling after 6days at 4350m. Neuroimage 2013; 72:272-9. [DOI: 10.1016/j.neuroimage.2013.01.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/26/2012] [Accepted: 01/23/2013] [Indexed: 12/22/2022] Open
|
29
|
Guerra-Narbona R, Delgado-García JM, López-Ramos JC. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system. J Appl Physiol (1985) 2013; 114:1705-16. [PMID: 23599398 DOI: 10.1152/japplphysiol.01298.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.
Collapse
Affiliation(s)
- R Guerra-Narbona
- Division of Neuroscience, Pablo de Olavide University, Seville, Spain
| | | | | |
Collapse
|