1
|
Plotkin DL, Mattingly ML, Anglin DA, Michel JM, Godwin JS, McIntosh MC, Kontos NJ, Bergamasco JGA, Scarpelli MC, Angleri V, Taylor LW, Willoughby DS, Mobley CB, Kavazis AN, Ugrinowitsch C, Libardi CA, Roberts MD. Skeletal muscle myosin heavy chain fragmentation as a potential marker of protein degradation in response to resistance training and disuse atrophy. Exp Physiol 2024; 109:1739-1754. [PMID: 39180757 PMCID: PMC11442757 DOI: 10.1113/ep092093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
We examined how resistance exercise (RE), cycling exercise and disuse atrophy affect myosin heavy chain (MyHC) protein fragmentation. The 1boutRE study involved younger men (n = 8; 5 ± 2 years of RE experience) performing a lower body RE bout with vastus lateralis (VL) biopsies being obtained prior to and acutely following exercise. With the 10weekRT study, VL biopsies were obtained in 36 younger adults before and 24 h after their first/naïve RE bout. Participants also engaged in 10 weeks of resistance training and donated VL biopsies before and 24 h after their last RE bout. VL biopsies were also examined in an acute cycling study (n = 7) and a study involving 2 weeks of leg immobilization (n = 20). In the 1boutRE study, fragmentation of all MyHC isoforms (MyHCTotal) increased 3 h post-RE (∼200%, P = 0.018) and returned to pre-exercise levels by 6 h post-RE. Interestingly, a greater magnitude increase in MyHC type IIa versus I isoform fragmentation occurred 3 h post-RE (8.6 ± 6.3-fold vs. 2.1 ± 0.7-fold, P = 0.018). In 10weekRT participants, the first/naïve and last RE bouts increased MyHCTotal fragmentation 24 h post-RE (+65% and +36%, P < 0.001); however, the last RE bout response was attenuated compared to the first bout (P = 0.045). Although cycling exercise did not alter MyHCTotal fragmentation, ∼8% VL atrophy with 2 weeks of leg immobilization increased MyHCTotal fragmentation (∼108%, P < 0.001). Mechanistic C2C12 myotube experiments indicated that MyHCTotal fragmentation is likely due to calpain proteases. In summary, RE and disuse atrophy increase MyHC protein fragmentation. Research into how ageing and disease-associated muscle atrophy affect these outcomes is needed. HIGHLIGHTS: What is the central question of this study? How different exercise stressors and disuse affect skeletal muscle myosin heavy chain fragmentation. What is the main finding and its importance? This investigation is the first to demonstrate that resistance exercise and disuse atrophy lead to skeletal muscle myosin heavy chain protein fragmentation in humans. Mechanistic in vitro experiments provide additional evidence that MyHC fragmentation occurs through calpain proteases.
Collapse
Affiliation(s)
| | | | | | - J. Max Michel
- School of KinesiologyAuburn UniversityAuburnAlabamaUSA
| | | | | | | | - João G. A. Bergamasco
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical EducationFederal University of São Carlos – UFSCarSão CarlosSPBrazil
| | - Maíra C. Scarpelli
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical EducationFederal University of São Carlos – UFSCarSão CarlosSPBrazil
| | - Vitor Angleri
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical EducationFederal University of São Carlos – UFSCarSão CarlosSPBrazil
| | - Lemuel W. Taylor
- School of Health ProfessionsUniversity of Mary Hardin‐BaylorBeltonTexasUSA
| | | | | | | | - Carlos Ugrinowitsch
- School of Physical Education and SportUniversity of São Paulo – USPSão PauloSPBrazil
- Department of Health Sciences and Human PerformanceThe University of TampaTampaFloridaUSA
| | - Cleiton A. Libardi
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical EducationFederal University of São Carlos – UFSCarSão CarlosSPBrazil
| | | |
Collapse
|
2
|
Plotkin DL, Mattingly ML, Anglin DA, Michel JM, Godwin JS, McIntosh MC, Bergamasco JGA, Scarpelli MC, Angleri V, Taylor LW, Willoughby DS, Mobley CB, Kavazis AN, Ugrinowitsch C, Libardi CA, Roberts MD. Skeletal muscle myosin heavy chain protein fragmentation as a potential marker of protein degradation in response to resistance training and disuse atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595789. [PMID: 38826385 PMCID: PMC11142278 DOI: 10.1101/2024.05.24.595789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
We sought to examine how resistance exercise (RE), cycling exercise, and disuse atrophy affect myosin heavy chain (MyHC) protein fragmentation in humans. In the first study (1boutRE), younger adult men (n=8; 5±2 years of RE experience) performed a lower body RE bout with vastus lateralis (VL) biopsies obtained immediately before, 3-, and 6-hours post-exercise. In the second study (10weekRT), VL biopsies were obtained in untrained younger adults (n=36, 18 men and 18 women) before and 24 hours (24h) after their first/naïve RE bout. These participants also engaged in 10 weeks (24 sessions) of resistance training and donated VL biopsies before and 24h after their last RE bout. VL biopsies were also examined from a third acute cycling study (n=7) and a fourth study involving two weeks of leg immobilization (n=20, 15 men and 5 women) to determine how MyHC fragmentation was affected. In the 1boutRE study, the fragmentation of all MyHC isoforms (MyHCTotal) increased 3 hours post-RE (~ +200%, p=0.018) and returned to pre-exercise levels by 6 hours post-RE. Immunoprecipitation of MyHCTotal revealed ubiquitination levels remained unaffected at the 3- and 6-hour post-RE time points. Interestingly, a greater increase in magnitude for MyHC type IIa versus I isoform fragmentation occurred 3-hours post-RE (8.6±6.3-fold versus 2.1±0.7-fold, p=0.018). In all 10weekRT participants, the first/naïve and last RE bouts increased MyHCTotal fragmentation 24h post-RE (+65% and +36%, respectively; p<0.001); however, the last RE bout response was attenuated compared to the first bout (p=0.045). The first/naïve bout response was significantly elevated in females only (p<0.001), albeit females also demonstrated a last bout attenuation response (p=0.002). Although an acute cycling bout did not alter MyHCTotal fragmentation, ~8% VL atrophy with two weeks of leg immobilization led to robust MyHCTotal fragmentation (+108%, p<0.001), and no sex-based differences were observed. In summary, RE and disuse atrophy increase MyHC protein fragmentation. A dampened response with 10 weeks of resistance training, and more refined responses in well-trained men, suggest this is an adaptive process. Given the null polyubiquitination IP findings, more research is needed to determine how MyHC fragments are processed. Moreover, further research is needed to determine how aging and disease-associated muscle atrophy affect these outcomes, and whether MyHC fragmentation is a viable surrogate for muscle protein turnover rates.
Collapse
Affiliation(s)
| | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | | | | | - João G. A. Bergamasco
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos – UFSCar, São Carlos, SP, Brazil
| | - Maíra C. Scarpelli
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos – UFSCar, São Carlos, SP, Brazil
| | - Vitor Angleri
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos – UFSCar, São Carlos, SP, Brazil
| | - Lemuel W. Taylor
- School of Health Professions, University of Mary Hardin-Baylor, Belton, Texas, USA
| | - Darryn S. Willoughby
- School of Health Professions, University of Mary Hardin-Baylor, Belton, Texas, USA
| | | | | | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo – USP, São Paulo, SP, Brazil
- Department of Health Sciences and Human Performance, The University of Tampa, Tampa, FL, USA
| | - Cleiton A. Libardi
- MUSCULAB – Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos – UFSCar, São Carlos, SP, Brazil
| | | |
Collapse
|
3
|
Raue U, Begue G, Minchev K, Jemiolo B, Gries KJ, Chambers T, Rubenstein A, Zaslavsky E, Sealfon SC, Trappe T, Trappe S. Fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. J Appl Physiol (1985) 2024; 136:244-261. [PMID: 38095016 PMCID: PMC11219013 DOI: 10.1152/japplphysiol.00442.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
We investigated fast and slow muscle fiber transcriptome exercise dynamics among three groups of men: lifelong exercisers (LLE, n = 8, 74 ± 1 yr), old healthy nonexercisers (OH, n = 9, 75 ± 1 yr), and young exercisers (YE, n = 8, 25 ± 1 yr). On average, LLE had exercised ∼4 day·wk-1 for ∼8 h·wk-1 over 53 ± 2 years. Muscle biopsies were obtained pre- and 4 h postresistance exercise (3 × 10 knee extensions at 70% 1-RM). Fast and slow fiber size and function were assessed preexercise with fast and slow RNA-seq profiles examined pre- and postexercise. LLE fast fiber size was similar to OH, which was ∼30% smaller than YE (P < 0.05) with contractile function variables among groups, resulting in lower power in LLE (P < 0.05). LLE slow fibers were ∼30% larger and more powerful compared with YE and OH (P < 0.05). At the transcriptome level, fast fibers were more responsive to resistance exercise compared with slow fibers among all three cohorts (P < 0.05). Exercise induced a comprehensive biological response in fast fibers (P < 0.05) including transcription, signaling, skeletal muscle cell differentiation, and metabolism with vast differences among the groups. Fast fibers from YE exhibited a growth and metabolic signature, with LLE being primarily metabolic, and OH showing a strong stress-related response. In slow fibers, only LLE exhibited a biological response to exercise (P < 0.05), which was related to ketone and lipid metabolism. The divergent exercise transcriptome signatures provide novel insight into the molecular regulation in fast and slow fibers with age and exercise and suggest that the ∼5% weekly exercise time commitment of the lifelong exercisers provided a powerful investment for fast and slow muscle fiber metabolic health at the molecular level.NEW & NOTEWORTHY This study provides the first insights into fast and slow muscle fiber transcriptome dynamics with lifelong endurance exercise. The fast fibers were more responsive to exercise with divergent transcriptome signatures among young exercisers (growth and metabolic), lifelong exercisers (metabolic), and old healthy nonexercisers (stress). Only lifelong exercisers had a biological response in slow fibers (metabolic). These data provide novel insights into fast and slow muscle fiber health at the molecular level with age and exercise.
Collapse
Affiliation(s)
- Ulrika Raue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Gwenaelle Begue
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Bozena Jemiolo
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kevin J Gries
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Aliza Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Todd Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
4
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
5
|
Linke WA. Stretching the story of titin and muscle function. J Biomech 2023; 152:111553. [PMID: 36989971 DOI: 10.1016/j.jbiomech.2023.111553] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The discovery of the giant protein titin, also known as connectin, dates almost half a century back. In this review, I recapitulate major advances in the discovery of the titin filaments and the recognition of their properties and function until today. I briefly discuss how our understanding of the layout and interactions of titin in muscle sarcomeres has evolved and review key facts about the titin sequence at the gene (TTN) and protein levels. I also touch upon properties of titin important for the stability of the contractile units and the assembly and maintenance of sarcomeric proteins. The greater part of my discussion centers around the mechanical function of titin in skeletal muscle. I cover milestones of research on titin's role in stretch-dependent passive tension development, recollect the reasons behind the enormous elastic diversity of titin, and provide an update on the molecular mechanisms of titin elasticity, details of which are emerging even now. I reflect on current knowledge of how muscle fibers behave mechanically if titin stiffness is removed and how titin stiffness can be dynamically regulated, such as by posttranslational modifications or calcium binding. Finally, I highlight novel and exciting, but still controversially discussed, insight into the role titin plays in active tension development, such as length-dependent activation and contraction from longer muscle lengths.
Collapse
Affiliation(s)
- Wolfgang A Linke
- Institute of Physiology II, University of Münster, Germany; Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Germany; German Centre for Cardiovascular Research, Berlin, Germany.
| |
Collapse
|
6
|
Santos HO, Cerqueira HS, Tinsley GM. The Effects of Dietary Supplements, Nutraceutical Agents, and Physical Exercise on Myostatin Levels: Hope or Hype? Metabolites 2022; 12:1146. [PMID: 36422286 PMCID: PMC9695935 DOI: 10.3390/metabo12111146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2024] Open
Abstract
Myostatin, a secreted growth factor belonging to the transforming growth factor β (TGF-β) family, performs a role in hindering muscle growth by inhibiting protein kinase B (Akt) phosphorylation and the associated activation of hypertrophy pathways (e.g., IGF-1/PI3K/Akt/mTOR pathway). In addition to pharmacological agents, some supplements and nutraceutical agents have demonstrated modulatory effects on myostatin levels; however, the clinical magnitude must be appraised with skepticism before translating the mechanistic effects into muscle hypertrophy outcomes. Here, we review the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin levels, addressing the promise and pitfalls of relevant randomized clinical trials (RCTs) to draw clinical conclusions. RCTs involving both clinical and sports populations were considered, along with wasting muscle disorders (e.g., sarcopenia) and resistance training-induced muscle hypertrophy, irrespective of disease status. Animal models were considered only to expand the mechanisms of action, and observational data were consulted to elucidate potential cutoff values. Collectively, the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin mRNA expression in skeletal muscle and serum myostatin levels are not uniform, and there may be reductions, increases, or neutral effects. Large amounts of research using resistance protocols shows that supplements or functional foods do not clearly outperform placebo for modulating myostatin levels. Thus, despite some biological hope in using supplements or certain functional foods to decrease myostatin levels, caution must be exercised not to propagate the hope of the food supplement market, select health professionals, and laypeople.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia 38408-100, Brazil
| | | | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Morales-Scholz MG, Wette SG, Stokie JR, Tepper BT, Swinton C, Hamilton DL, Dwyer KM, Murphy RM, Howlett KF, Shaw CS. Muscle fiber type-specific autophagy responses following an overnight fast and mixed meal ingestion in human skeletal muscle. Am J Physiol Endocrinol Metab 2022; 323:E242-E253. [PMID: 35793481 DOI: 10.1152/ajpendo.00015.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The aim of the present study was to investigate the fiber type-specific abundance of autophagy-related proteins after an overnight fast and following ingestion of a mixed meal in human skeletal muscle. Twelve overweight, healthy young male volunteers underwent a 3-h mixed meal tolerance test following an overnight fast. Blood samples were collected in the overnight-fasted state and throughout the 180-min postmeal period. Skeletal muscle biopsies were collected in the fasted state, and at 30 and 90 min after meal ingestion. Protein content of key autophagy markers and upstream signaling responses were measured in whole muscle and pooled single fibers using immunoblotting. In the fasted state, type I fibers displayed lower LC3B-I but higher LC3B-II abundance and higher LC3B-II/LC3B-I ratio compared with type II fibers (P < 0.05). However, there were no fiber type differences in p62/SQSTM1, unc-51 like autophagy activating kinase (ULK1), ATG5, or ATG12 (P > 0.05). Compared with the fasted state, there was a reduction in LC3B-II abundance, indicative of lower autophagosome content, in whole muscle and in both type I and type II fibers following meal ingestion (P < 0.05). This reduction in autophagosome content occurred alongside similar increases in p-AktS473 and p-mTORS2448 in both type I and type II muscle fibers (P < 0.05). In human skeletal muscle, type I fibers have a greater autophagosome content than type II fibers in the overnight-fasted state despite comparable abundance of other key upstream autophagy proteins. Autophagy is rapidly inhibited in both fiber types following the ingestion of a mixed meal.NEW & NOTEWORTHY This study examined the fiber type-specific content of key autophagy proteins in human muscle. We showed that markers of autophagosome content are higher in type I fibers in the overnight-fasted state, whereas autophagy is rapidly inhibited in both type I and type II fibers after the ingestion of a mixed meal.
Collapse
Affiliation(s)
- María G Morales-Scholz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - Stefan G Wette
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Australia
| | - Jayden R Stokie
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Bianca T Tepper
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Courtney Swinton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - David L Hamilton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Karen M Dwyer
- School of Medicine, Deakin University, Geelong, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|