1
|
Amano M, Kawai Y, Ito T, Monzen H, Okawa T, Sato E. Quantitative Assessment of Postural Influence on Lung Function Using Deformable Image Registration-Based Breath-Hold CT Ventilation Imaging. Cureus 2024; 16:e75900. [PMID: 39822399 PMCID: PMC11737910 DOI: 10.7759/cureus.75900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Purpose This study aimed to clarify which positions are beneficial for patients with pathological lung diseases, such as acute respiratory distress syndrome, by obtaining lung ventilation and deformable vector field (DVF) images using Deformable Image Registration (DIR). Methods Thirteen healthy volunteers (5 female, 8 male) provided informed consent to participate to observe changes in normal lungs. DIR imaging was processed using the B-spline algorithm to obtain BH-CTVI (inhale, exhale) in four body positions (supine, prone, right lateral, left lateral) using DIR-based breath-hold CT ventilation imaging (BH-CTVI). DVF imaging was created through DIR-based BH-CTVI, which obtained the displacement vector from expiration to inspiration for each lung lobe. Results In the DIR images for each body position, the areas with Jacobian values in the 75th percentile or higher, indicating highly functional areas, were distributed on the side of the patient in contact with the ground. DVF images showed the abdominal displacement vector to be oriented from dorsal to ventral in the supine position. However, in the prone position, the displacement vectors were nearly parallel to the ground, directed from head to feet, indicating that lung motion was unaffected by gravity. Conclusion We demonstrated that the prone position allows for lung ventilation with the least gravitational load compared with the supine, right lateral decubitus, and left lateral decubitus positions, based on a comparison of DIR-based BH-CTVI when the positions were converted. It is important to include the evaluation of DVF images, in addition to ventilation images, when assessing lung function using DIR-based BH-CTVI.
Collapse
Affiliation(s)
- Morikazu Amano
- Department of Radiation Therapy, Fujieda Municipal General Hospital, Fujieda, JPN
| | - Yoshihiro Kawai
- Department of Radiological Technology, Fujieda Municipal General Hospital, Fujieda, JPN
| | - Takaaki Ito
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osakasayama, JPN
| | - Tsuyoshi Okawa
- Department of Radiological Technology, Fujieda Municipal General Hospital, Fujieda, JPN
| | - Eriko Sato
- Department of Radiological Technology, Fujieda Municipal General Hospital, Fujieda, JPN
| |
Collapse
|
2
|
Yang CW, Liu K, Yao CY, Li B, Juhong A, Ullah AKMA, Bumpers H, Qiu Z, Huang X. Active Targeting Hyaluronan Conjugated Nanoprobe for Magnetic Particle Imaging and Near-Infrared Fluorescence Imaging of Breast Cancer and Lung Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27055-27064. [PMID: 38757711 PMCID: PMC11145589 DOI: 10.1021/acsami.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
A major contributing cause to breast cancer related death is metastasis. Moreover, breast cancer metastasis often shows little symptoms until a large area of the organs is occupied by metastatic cancer cells. Breast cancer multimodal imaging is attractive since it integrates advantages from several modalities, enabling more accurate cancer detection. Glycoprotein CD44 is overexpressed on most breast cancer cells and is the primary cell surface receptor for hyaluronan (HA). To facilitate breast cancer diagnosis, we report an indocyanine green (ICG) and HA conjugated iron oxide nanoparticle (NP-ICG-HA), which enabled active targeting to breast cancer by HA-CD44 interaction and detected metastasis with magnetic particle imaging (MPI) and near-infrared fluorescence imaging (NIR-FI). When evaluated in a transgenic breast cancer mouse model, NP-ICG-HA enabled the detection of multiple breast tumors in MPI and NIR-FI, providing more comprehensive images and a diagnosis of breast cancer. Furthermore, NP-ICG-HAs were evaluated in a lung metastasis model. Upon NP-ICG-HA administration, MPI showed clear signals in the lungs, indicating the tumor sites. This is the first time that HA-based NPs have enabled MPI of cancer. NP-ICG-HAs are an attractive platform for noninvasive detection of primary breast cancer and lung metastasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kunli Liu
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cheng-You Yao
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bo Li
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aniwat Juhong
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - A. K. M. Atique Ullah
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Harvey Bumpers
- Department
of Surgery, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Qiu
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Peiffer JD, Altes T, Ruset IC, Hersman FW, Mugler JP, Meyer CH, Mata J, Qing K, Thomen R. Hyperpolarized 129Xe MRI, 99mTc scintigraphy, and SPECT in lung ventilation imaging: a quantitative comparison. Acad Radiol 2024; 31:1666-1675. [PMID: 37977888 PMCID: PMC11015986 DOI: 10.1016/j.acra.2023.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
RATIONALE AND OBJECTIVES The current clinical standard for functional imaging of patients with lung ailments is nuclear medicine scintigraphy and Single Photon Emission Computed Tomography (SPECT) which detect the gamma decay of inhaled radioactive tracers. Hyperpolarized (HP) Xenon-129 MRI (XeMRI) of the lungs has recently been FDA approved and provides similar functional images of the lungs with higher spatial resolution than scintigraphy and SPECT. Here we compare Technetium-99m (99mTc) diethylene-triamine-pentaacetate scintigraphy and SPECT with HP XeMRI in healthy controls, asthma, and chronic obstructive pulmonary disorder (COPD) patients. MATERIALS AND METHODS 59 subjects, healthy, with asthma, and with COPD, underwent 99mTc scintigraphy/SPECT, standard spirometry, and HP XeMRI. XeMRI and SPECT images were registered for direct voxel-wise signal comparisons. Images were also compared using ventilation defect percentage (VDP), and a standard 6-compartment method. VDP calculated from XeMRI and SPECT images was compared to spirometry. RESULTS Median Pearson correlation coefficient for voxel-wise signal comparison was 0.698 (0.613-0.782) between scintigraphy and XeMRI and 0.398 (0.286-0.502) between SPECT and XeMRI. Correlation between VDP measures was r = 0.853, p < 0.05. VDP separated asthma and COPD from the control group and was significantly correlated with FEV1, FEV1/FVC, and FEF 25-75. CONCLUSION HP XeMRI provides equivalent information to 99mTc SPECT and standard spirometry measures. Additionally, XeMRI is non-invasive, hence it could be used for longitudinal studies for evaluating emerging treatment for lung ailments.
Collapse
Affiliation(s)
- J D Peiffer
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65201, USA (J.D.P., R.T.)
| | - Talissa Altes
- Department of Radiology, University of Missouri, Columbia, Missouri 65201, USA (T.A., R.T.)
| | - Iulian C Ruset
- Xemed LLC, Durham, New Hampshire 03833, USA (I.C.R., F.W.H.)
| | - F W Hersman
- Xemed LLC, Durham, New Hampshire 03833, USA (I.C.R., F.W.H.)
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M.)
| | - Craig H Meyer
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.); Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M.)
| | - Jamie Mata
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.)
| | - Kun Qing
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908, USA (J.P.M., C.H.M., J.M., K.Q.)
| | - Robert Thomen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65201, USA (J.D.P., R.T.); Department of Radiology, University of Missouri, Columbia, Missouri 65201, USA (T.A., R.T.).
| |
Collapse
|
4
|
Qing K, Altes TA, Mugler JP, Tustison NJ, Mata JF, Ruppert K, Komlosi P, Feng X, Nie K, Zhao L, Wang Z, Hersman FW, Ruset IC, Liu B, Shim YM, Teague WG. Pulmonary MRI with hyperpolarized xenon-129 demonstrates novel alterations in gas transfer across the air-blood barrier in asthma. Med Phys 2024; 51:2413-2423. [PMID: 38431967 PMCID: PMC10994727 DOI: 10.1002/mp.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/20/2023] [Accepted: 02/03/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.
Collapse
Affiliation(s)
- Kun Qing
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Talissa A. Altes
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | - John P. Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA USA
| | - Jaime F. Mata
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Komlosi
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers University, New Brunswick, NJ, USA
| | - Li Zhao
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, ZJ, China
| | - Zhixing Wang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - F. William Hersman
- Department of Physics, University of New Hampshire, Durham, NH, USA
- Xemed LLC, Durham, NH, USA
| | | | - Bo Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Y. Michael Shim
- Department of Medicine, University of Virginia, Charlottesville, VA USA
| | - W. Gerald Teague
- Child Health Research Center and the Division of Respiratory Medicine, Allergy, and Immunology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Cselényi Z, Jucaite A, Ewing P, Stenkrona P, Kristensson C, Johnström P, Schou M, Bolin M, Halldin C, Larsson B, Grime K, Eriksson UG, Farde L. Proof of lung muscarinic receptor occupancy by tiotropium: Translational Positron Emission Tomography studies in non-human primates and humans. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1080005. [PMID: 39354985 PMCID: PMC11440881 DOI: 10.3389/fnume.2022.1080005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/23/2022] [Indexed: 10/03/2024]
Abstract
Introduction Molecular imaging has not been used to support the development of drugs for the treatment of pulmonary disorders. The aim of the present translational study was to advance quantitative pulmonary PET imaging by demonstrating occupancy of the reference asthma drug tiotropium at muscarinic acetylcholine receptors (mAChR). Methods PET imaging was performed using the muscarinic radioligand [11C]VC-002. The key methodological step involved estimating muscarinic receptor binding while disentangling it from the background of non-specific binding. The relationship between tiotropium exposure and receptor occupancy (RO) was assessed in non-human primates (NHPs) after intravenous injection of tiotropium doses at a broad dose interval (0.03-1 µg/kg). The feasibility of measuring RO in the human lung was then confirmed in seven healthy human subjects after inhalation of a single therapeutic dose of tiotropium (18 µg). Results There was an evident effect of tiotropium on [11C]VC-002 binding to mAChRs in lungs in both NHPs and humans. In NHPs, RO was 11 to 78% and increased in a dose dependent manner. Non-displaceable binding in NHPs was about 10% of total binding. In humans, RO was 6%-65%, and non-displaceable binding was about 20% of total binding at baseline. Discussion The results demonstrate that [11C]VC-002 binds specifically to mAChRs in the lungs enabling the assessment of RO following administration of muscarinic antagonist drugs. Furthermore, the methodology has potential not only for dose finding and comparison of drug formulations in future applied studies, but also for evaluating changes in lung receptor distribution during disease or in response to therapy. Clinical Trial Registration ClinicalTrials.gov, identifier: NCT03097380.
Collapse
Affiliation(s)
- Zsolt Cselényi
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca AB, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Aurelija Jucaite
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca AB, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Pär Ewing
- DMPK, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca AB, Gothenburg, Sweden
| | - Per Stenkrona
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Cecilia Kristensson
- Clinical Development, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca AB, Gothenburg, Sweden
| | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca AB, Stockholm, Sweden
| | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, R&D, AstraZeneca AB, Stockholm, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Martin Bolin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Bengt Larsson
- DMPK, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca AB, Gothenburg, Sweden
| | - Ken Grime
- Clinical Development, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca AB, Gothenburg, Sweden
| | - Ulf G Eriksson
- Clinical Development, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca AB, Gothenburg, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
6
|
Liu Z, Tian Y, Miao J, Men K, Wang W, Wang X, Zhang T, Bi N, Dai J. Deriving Pulmonary Ventilation Images From Clinical 4D-CBCT Using a Deep Learning-Based Model. Front Oncol 2022; 12:889266. [PMID: 35586492 PMCID: PMC9109610 DOI: 10.3389/fonc.2022.889266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The current algorithms for measuring ventilation images from 4D cone-beam computed tomography (CBCT) are affected by the accuracy of deformable image registration (DIR). This study proposes a new deep learning (DL) method that does not rely on DIR to derive ventilation images from 4D-CBCT (CBCT-VI), which was validated with the gold-standard single-photon emission-computed tomography ventilation image (SPECT-VI). Materials and Methods This study consists of 4D-CBCT and 99mTc-Technegas SPECT/CT scans of 28 esophagus or lung cancer patients. The scans were rigidly registered for each patient. Using these data, CBCT-VI was derived using a deep learning-based model. Two types of model input data are studied, namely, (a) 10 phases of 4D-CBCT and (b) two phases of peak-exhalation and peak-inhalation of 4D-CBCT. A sevenfold cross-validation was applied to train and evaluate the model. The DIR-dependent methods (density-change-based and Jacobian-based methods) were used to measure the CBCT-VIs for comparison. The correlation was calculated between each CBCT-VI and SPECT-VI using voxel-wise Spearman's correlation. The ventilation images were divided into high, medium, and low functional lung regions. The similarity of different functional lung regions between SPECT-VI and each CBCT-VI was evaluated using the dice similarity coefficient (DSC). One-factor ANONA model was used for statistical analysis of the averaged DSC for the different methods of generating ventilation images. Results The correlation values were 0.02 ± 0.10, 0.02 ± 0.09, and 0.65 ± 0.13/0.65 ± 0.15, and the averaged DSC values were 0.34 ± 0.04, 0.34 ± 0.03, and 0.59 ± 0.08/0.58 ± 0.09 for the density change, Jacobian, and deep learning methods, respectively. The strongest correlation and the highest similarity with SPECT-VI were observed for the deep learning method compared to the density change and Jacobian methods. Conclusion The results showed that the deep learning method improved the accuracy of correlation and similarity significantly, and the derived CBCT-VIs have the potential to monitor the lung function dynamic changes during radiotherapy.
Collapse
Affiliation(s)
- Zhiqiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Yuan Tian
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Junjie Miao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Wenqing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Xin Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Tao Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Nan Bi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Radiation Oncology, Beijing, China
| |
Collapse
|
7
|
Munir B, Xu Y. The steady motion of microbubbles in bifurcating airways: Role of shear-thinning and surface tension. Respir Physiol Neurobiol 2021; 290:103675. [PMID: 33915302 DOI: 10.1016/j.resp.2021.103675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Mucous fluid is non-Newtonian secretions in the lower lung airways that accumulates when the alveolar-capillary membrane ruptures during acute respiratory distress syndrome. The mucus fluid has, therefore, different types of non-Newtonian properties like shear-thinning, viscoelasticity, and non-zero yield stress. In this paper, we numerically solved the steady Stokes equations along with arbitrary Eulerian-Lagrangian moving mesh techniques to study the microbubble propagation in a two-dimensional asymmetric bifurcating airway filled with non-Newtonian fluid where the fluid has shear-thinning behavior described by the power-law model. Numerical results show that both shear-thinning and surface tension characterized by the behavior index (n) and Capillary number (Ca), respectively, had a significant impact on microbubble flow patterns and the magnitude of the pressure gradient. At low values of both n and Ca, the microbubble leaves a thin film-thickness with the airway wall while a large and sharp peak of the pressure gradient near the thin bubble tip. Interestingly, increasing both n and Ca, leads to an increase in film thickness and a decrease in the pressure gradient magnitude in both the daughter airway walls. It is observed the magnitude of the pressure gradient is more sensitive to Ca compared to n. We concluded that shear-thinning and surface tension not only significantly impact the patterns of microbubble propagation but also the hydrodynamic stress magnitudes at the airway wall.
Collapse
Affiliation(s)
- Bacha Munir
- School of Natural and Applied Sciences, Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710029, People's Republic of China.
| | - Yong Xu
- School of Natural and Applied Sciences, Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710029, People's Republic of China
| |
Collapse
|
8
|
Gaver DP, Nieman GF, Gatto LA, Cereda M, Habashi NM, Bates JHT. The POOR Get POORer: A Hypothesis for the Pathogenesis of Ventilator-induced Lung Injury. Am J Respir Crit Care Med 2020; 202:1081-1087. [PMID: 33054329 DOI: 10.1164/rccm.202002-0453cp] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protective ventilation strategies for the injured lung currently revolve around the use of low Vt, ostensibly to avoid volutrauma, together with positive end-expiratory pressure to increase the fraction of open lung and reduce atelectrauma. Protective ventilation is currently applied in a one-size-fits-all manner, and although this practical approach has reduced acute respiratory distress syndrome deaths, mortality is still high and improvements are at a standstill. Furthermore, how to minimize ventilator-induced lung injury (VILI) for any given lung remains controversial and poorly understood. Here we present a hypothesis of VILI pathogenesis that potentially serves as a basis upon which minimally injurious ventilation strategies might be developed. This hypothesis is based on evidence demonstrating that VILI begins in isolated lung regions manifesting a Permeability-Originated Obstruction Response (POOR) in which alveolar leak leads to surfactant dysfunction and increases local tissue stresses. VILI progresses topographically outward from these regions in a POOR-get-POORer fashion unless steps are taken to interrupt it. We propose that interrupting the POOR-get-POORer progression of lung injury relies on two principles: 1) open the lung to minimize the presence of heterogeneity-induced stress concentrators that are focused around the regions of atelectasis, and 2) ventilate in a patient-dependent manner that minimizes the number of lung units that close during each expiration so that they are not forced to rerecruit during the subsequent inspiration. These principles appear to be borne out in both patient and animal studies in which expiration is terminated before derecruitment of lung units has enough time to occur.
Collapse
Affiliation(s)
- Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care and.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland; and
| | - Jason H T Bates
- Department of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
9
|
Qian J, Xie J, Lakshmipriya T, Gopinath SCB, Xu H. Heart Infection Prognosis Analysis by Two-dimensional Spot Tracking Imaging. Curr Med Imaging 2020; 16:534-544. [PMID: 32484087 DOI: 10.2174/1573405615666190130164037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 11/22/2022]
Abstract
Cardiovascular death is one of the leading causes worldwide; an accurate identification followed by diagnosing the cardiovascular disease increases the chance of a better recovery. Among different demonstrated strategies, imaging on cardiac infections yields a visible result and highly reliable compared to other analytical methods. Two-dimensional spot tracking imaging is the emerging new technology that has been used to study the function and structure of the heart and test the deformation and movement of the myocardium. Particularly, it helps to capture the images of each segment in different directions of myocardial strain values, such as valves of radial strain, longitudinal strain, and circumferential strain. In this overview, we discussed the imaging of infections in the heart by using the two-dimensional spot tracking.
Collapse
Affiliation(s)
- Jie Qian
- Department of ICU, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, Suqian, Jiangsu 223600, China
| | - Jing Xie
- Department of ICU, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, Suqian, Jiangsu 223600, China
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia.,School of Bioprocess Engineering, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Huaigang Xu
- Department of ICU, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, Suqian, Jiangsu 223600, China
| |
Collapse
|
10
|
Nakajima Y, Kadoya N, Kimura T, Hioki K, Jingu K, Yamamoto T. Variations Between Dose-Ventilation and Dose-Perfusion Metrics in Radiation Therapy Planning for Lung Cancer. Adv Radiat Oncol 2020; 5:459-465. [PMID: 32529141 PMCID: PMC7280081 DOI: 10.1016/j.adro.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Currently, several active clinical trials of functional lung avoidance radiation therapy using different imaging modalities for ventilation or perfusion are underway. Patients with lung cancer often show ventilation-perfusion mismatch, whereas the significance of dose-function metric remains unclear. The aim of the present study was to compare dose-ventilation metrics with dose-perfusion metrics for radiation therapy plan evaluation. Methods and Materials Pretreatment 4-dimensional computed tomography and 99mTc-macroaggregated albumin single-photon emission computed tomography perfusion images of 60 patients with lung cancer treated with radiation therapy were analyzed. Ventilation images were created using the deformable image registration of 4-dimensional computed tomography image sets and image analysis for regional volume changes as a surrogate for ventilation. Ventilation and perfusion images were converted into percentile distribution images. Analyses included Pearson’s correlation coefficient and comparison of agreements between the following dose-ventilation and dose-perfusion metrics: functional mean lung dose and functional percent lung function receiving 5, 10, 20, 30, and 40 Gy (fV5, fV10, fV20, fV30, and fV40, respectively). Results Overall, the dose-ventilation metrics were greater than the dose-perfusion metrics (ie, fV20, 26.3% ± 9.9% vs 23.9% ± 9.8%). Correlations between the dose-ventilation and dose-perfusion metrics were strong (range, r = 0.94-0.97), whereas the agreements widely varied among patients, with differences as large as 6.6 Gy for functional mean lung dose and 11.1% for fV20. Paired t test indicated that the dose-ventilation and dose-perfusion metrics were significantly different. Conclusions Strong correlations were present between the dose-ventilation and dose-perfusion metrics. However, the agreement between the dose-ventilation and dose-perfusion metrics widely varied among patients, suggesting that ventilation-based radiation therapy plan evaluation may not be comparable to that based on perfusion. Future studies should elucidate the correlation of dose-function metrics with clinical pulmonary toxicity metrics.
Collapse
Affiliation(s)
- Yujiro Nakajima
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kazunari Hioki
- Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan.,Graduate School of Health Science, Kumamoto University, Kumamoto, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| |
Collapse
|
11
|
Liu Z, Miao J, Huang P, Wang W, Wang X, Zhai Y, Wang J, Zhou Z, Bi N, Tian Y, Dai J. A deep learning method for producing ventilation images from 4DCT: First comparison with technegas SPECT ventilation. Med Phys 2020; 47:1249-1257. [PMID: 31883382 DOI: 10.1002/mp.14004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The purpose of this study is to develop a deep learning (DL) method for producing four-dimensional computed tomography (4DCT) ventilation imaging and to evaluate the accuracy of the DL-based ventilation imaging against single-photon emission-computed tomography (SPECT) ventilation imaging (SPECT-VI). The performance of the DL-based method is assessed by comparing with density change- and Jacobian-based (HU and JAC) methods. MATERIALS AND METHODS Fifty patients with esophagus or lung cancer who underwent thoracic radiotherapy were enrolled in this study. For each patient, 4DCT scans paired with 99mTc-Technegas SPECT/CT were acquired before the first radiotherapy treatment. 4DCT and SPECT/CT were first rigidly registered using MIMvista and converted to data matrix using MATLAB, and then transferred to a DL model based on U-net for correlating 4DCT features and SPECT-VI. Two forms of 4DCT dataset [(a) ten phases and (b) two phases of peak-exhalation and peak-inhalation] as input are studied. Tenfold cross-validation procedure was used to evaluate the performance of the DL model. For comparative evaluation, HU and JAC methodologies are used to calculate specific ventilation imaging based on 4DCT (CTVI) for each patient. The voxel-wise Spearman's correlation was evaluated over the whole lung between each of CTVI and corresponding SPECT-VI. The SPECT-VI and produced CTVIs were segmented into high, median, and low functional lung (HFL, MFL, and LFL) regions. The spatial overlap of corresponding HFL, MFL, and LFL for each CTVI against SPECT-VI was also evaluated using the dice similarity coefficient (DSC). The averaged DSC of functional lung regions was calculated and statistically analyzed with a one-factor ANONA model among different methods. RESULTS The voxel-wise Spearman rs values were (0.22 ± 0.31), (-0.09 ± 0.18), and (0.73 ± 0.16)/(0.71 ± 0.17) for the CTVIHU , CTVIJAC , and CTVIDL(1) /CTVIDL(2) . These results showed the DL method yielded the strongest correlation with SPECT-VI. Using the DSC as the spatial overlap metric, we found that the CTVIHU , CTVIJAC , and CTVIDL(1) /CTVIDL(2) methods achieved averaged DSC values for all patients to be (0.45 ± 0.08), (0.33 ± 0.04), and (0.73 ± 0.09)/(0.71 ± 0.09), respectively. The results demonstrated that the DL method yielded the highest similarity with SPECT-VI with the prominently significant difference (P < 10-7 ). CONCLUSIONS This study developed a DL method for producing CTVI and performed a validation against SPECT-VI. The results demonstrated that DL method can derive CTVI with greatly improved accuracy in comparison to HU and JAC methods. The produced ventilation images can be more accurate and useful for lung functional avoidance radiotherapy and treatment response modeling.
Collapse
Affiliation(s)
- Zhiqiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Junjie Miao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Peng Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Wenqing Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Xin Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Yirui Zhai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Jingbo Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Zongmei Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Nan Bi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Yuan Tian
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| |
Collapse
|
12
|
Lesur O, Chagnon F, Lebel R, Lepage M. In Vivo Endomicroscopy of Lung Injury and Repair in ARDS: Potential Added Value to Current Imaging. J Clin Med 2019; 8:jcm8081197. [PMID: 31405200 PMCID: PMC6723156 DOI: 10.3390/jcm8081197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Standard clinical imaging of the acute respiratory distress syndrome (ARDS) lung lacks resolution and offers limited possibilities in the exploration of the structure-function relationship, and therefore cannot provide an early and clear discrimination of patients with unexpected diagnosis and unrepair profile. The current gold standard is open lung biopsy (OLB). However, despite being able to reveal precise information about the tissue collected, OLB cannot provide real-time information on treatment response and is accompanied with a complication risk rate up to 25%, making longitudinal monitoring a dangerous endeavor. Intravital probe-based confocal laser endomicroscopy (pCLE) is a developing and innovative high-resolution imaging technology. pCLE offers the possibility to leverage multiple and specific imaging probes to enable multiplex screening of several proteases and pathogenic microorganisms, simultaneously and longitudinally, in the lung. This bedside method will ultimately enable physicians to rapidly, noninvasively, and accurately diagnose degrading lung and/or fibrosis without the need of OLBs. OBJECTIVES AND METHODS To extend the information provided by standard imaging of the ARDS lung with a bedside, high-resolution, miniaturized pCLE through the detailed molecular imaging of a carefully selected region-of-interest (ROI). To validate and quantify real-time imaging to validate pCLE against OLB. RESULTS Developments in lung pCLE using fluorescent affinity- or activity-based probes at both preclinical and clinical (first-in-man) stages are ongoing-the results are promising, revealing correlations with OLBs in problematic ARDS. CONCLUSION It can be envisaged that safe, high-resolution, noninvasive pCLE with activatable fluorescence probes will provide a "virtual optical biopsy" and will provide decisive information in selected ARDS patients at the bedside.
Collapse
Affiliation(s)
- Olivier Lesur
- Intensive Care and Pneumology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Frédéric Chagnon
- Intensive Care and Pneumology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Réjean Lebel
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Nuclear Medicine and Radiobiology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Nuclear Medicine and Radiobiology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
13
|
Choi S, Yoon S, Jeon J, Zou C, Choi J, Tawhai MH, Hoffman EA, Delvadia R, Babiskin A, Walenga R, Lin CL. 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs. J Appl Physiol (1985) 2019; 127:122-133. [PMID: 31095459 DOI: 10.1152/japplphysiol.00016.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to introduce a one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance to examine the relationship between airway resistance, pressure, and regional flow distribution. We employed five healthy and five asthmatic subjects who had dynamic computed tomography (CT) scans (4D CT) along with two static scans at total lung capacity and functional residual capacity. Fractional air-volume change ( ΔVairf ) from 4D CT was used for a validation of the 1D CFD model. We extracted the diameter ratio from existing data sets of 61 healthy subjects for computing mean and standard deviation (SD) of airway constriction/dilation in CT-resolved airways. The lobar mean (SD) of airway constriction/dilation was used to determine diameters of CT-unresolved airways. A 1D isothermal energy balance equation was solved, and pressure boundary conditions were imposed at the acinar region (model A) or at the pleural region (model B). A static compliance model was only applied for model B to link acinar and pleural regions. The values of 1D CFD-derived ΔVairf for model B demonstrated better correlation with 4D CT-derived ΔVairf than model A. In both inspiration and expiration, asthmatic subjects with airway constriction show much greater pressure drop than healthy subjects without airway constriction. This increased transpulmonary pressures in the asthmatic subjects, leading to an increased workload (hysteresis). The 1D CFD model was found to be useful in investigating flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of 3D CFD. NEW & NOTEWORTHY A one-dimensional (1D) computational fluid dynamics (CFD) model for airway resistance and lung compliance was introduced to examine the relationship between airway resistance, pressure, and regional flow distribution. The 1D CFD model investigated differences of flow structure, lung hysteresis, and pressure distribution for healthy and asthmatic subjects. The derived flow distribution could be used for imposing boundary conditions of three-dimensional CFD.
Collapse
Affiliation(s)
- Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University , Daegu , Republic of Korea
| | - Sujin Yoon
- School of Mechanical Engineering, Kyungpook National University , Daegu , Republic of Korea
| | - Jichan Jeon
- School of Mechanical Engineering, Kyungpook National University , Daegu , Republic of Korea
| | - Chunrui Zou
- Department of Mechanical Engineering, University of Iowa , Iowa City, Iowa.,IIHR-Hydroscience and Engineering, University of Iowa , Iowa City, Iowa
| | - Jiwoong Choi
- IIHR-Hydroscience and Engineering, University of Iowa , Iowa City, Iowa
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa.,Department of Radiology, University of Iowa , Iowa City, Iowa.,Department of Internal Medicine, University of Iowa , Iowa City, Iowa
| | - Renishkumar Delvadia
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, Maryland
| | - Andrew Babiskin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, Maryland
| | - Ross Walenga
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, Maryland
| | - Ching-Long Lin
- Department of Mechanical Engineering, University of Iowa , Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa.,Department of Radiology, University of Iowa , Iowa City, Iowa.,IIHR-Hydroscience and Engineering, University of Iowa , Iowa City, Iowa
| |
Collapse
|
14
|
Yamamoto T, Kabus S. Technical Note: Correction for the effect of breathing variations in CT pulmonary ventilation imaging. Med Phys 2017; 45:322-327. [PMID: 29072320 DOI: 10.1002/mp.12634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The accuracy and precision of computed tomography (CT) pulmonary ventilation imaging with conventional CT scanners are limited by breathing variations. We propose a method to correct for the effect of breathing variations in CT ventilation imaging based on external respiratory signals acquired throughout a scan. METHODS The proposed method is based on: (a) calculating voxel-by-voxel abdominal surface motion ranges using four-dimensional (4D) CT image datasets spatiotemporally correlated with external respiratory monitor data, and (b) applying the correction factor, which is defined as the ratio of the overall mean of the abdominal surface motion range in the lungs to that of each voxel, to the CT ventilation value. The performance of the proposed method was investigated by comparing voxel-wise correlations of the uncorrected and corrected CT ventilation images with single-photon emission CT (SPECT) ventilation images as a ground truth for nine patients. CT ventilation images were calculated by deformable image registration of the 4D-CT image datasets, followed by calculation of regional volume changes. A Steiger's Z-test was used to determine the statistical significance of the difference between the correlations for the uncorrected and corrected CT ventilation images. RESULTS The proposed correction method resulted in significant increases (P < 0.05) in the correlation between CT and SPECT ventilation in three patients, trends toward significant increase (P: 0.13-0.18) in two patients, no significant differences in three patients, and a significantly decreased correlation in one patient. The average standard deviation of the abdominal surface motion range in three patients showing significant increases was 0.27 (range 0.10-0.37), which was greater than 0.17 (range 0.07-0.38) in the other six patients. CONCLUSIONS The proposed method to correct for the effect of breathing variations could be readily implemented and has the potential to improve the accuracy of CT ventilation imaging as demonstrated in a nine-patient study.
Collapse
Affiliation(s)
- Tokihiro Yamamoto
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Sven Kabus
- Department of Digital Imaging, Philips Research, 22335, Hamburg, Germany
| |
Collapse
|
15
|
Chi YH, Hsiao JK, Lin MH, Chang C, Lan CH, Wu HC. Lung Cancer-Targeting Peptides with Multi-subtype Indication for Combinational Drug Delivery and Molecular Imaging. Theranostics 2017; 7:1612-1632. [PMID: 28529640 PMCID: PMC5436516 DOI: 10.7150/thno.17573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 02/03/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Most targeted drugs approved for lung cancer treatment are tyrosine kinase inhibitors (TKIs) directed against EGFR or ALK, and are used mainly for adenocarcinoma. At present, there is no effective or tailored targeting agent for large cell carcinoma (LCC) or small cell lung cancer (SCLC). Therefore, we aimed to identify targeting peptides with diagnostic and therapeutic utility that possess broad subtype specificity for SCLC and non-small cell lung cancer (NSCLC). We performed phage display biopanning of H460 LCC cells to select broad-spectrum lung cancer-binding peptides, since LCC has recently been categorized as an undifferentiated tumor type within other histological subcategories of lung cancer. Three targeting phages (HPC1, HPC2, and HPC4) and their respective displayed peptides (HSP1, HSP2, and HSP4) were able to bind to both SCLC and NSCLC cell lines, as well as clinical specimens, but not to normal pneumonic tissues. In vivo optical imaging of phage homing and magnetic resonance imaging (MRI) of peptide-SPIONs revealed that HSP1 was the most favorable probe for multimodal molecular imaging. Using HSP1-SPION, the T2-weighted MR signal of H460 xenografts was decreased up to 42%. In contrast to the tight binding of HSP1 to cancer cell surfaces, HSP4 was preferentially endocytosed and intracellular drug delivery was thereby effected, significantly improving the therapeutic index of liposomal drug in vivo. Liposomal doxorubicin (LD) conjugated to HSP1, HSP2, or HSP4 had significantly greater therapeutic efficacy than non-targeting liposomal drugs in NSCLC (H460 and H1993) animal models. Combined therapy with an HSP4-conjugated stable formulation of liposomal vinorelbine (sLV) further improved median overall survival (131 vs. 84 days; P = 0.0248), even in aggressive A549 orthotopic models. Overall, these peptides have the potential to guide a wide variety of tailored theranostic agents for targeting therapeutics, non-invasive imaging, or clinical detection of SCLC and NSCLC.
Collapse
|
16
|
Shao J, Hu P. Quantification of regional deformation of the lungs by non-rigid registration of three-dimensional contrast-enhanced magnetic resonance imaging. Quant Imaging Med Surg 2017; 7:177-186. [PMID: 28516043 PMCID: PMC5418144 DOI: 10.21037/qims.2017.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Assessment of lung function is vital for the diagnosis of a variety of pathological conditions. Research has been proposed to study pulmonary mechanics and kinematics using two-dimensional (2D) magnetic resonance imaging (MRI). This allows estimation of regional lung tissue mechanics but is limited to 2D information. An approach based on three-dimensional (3D) contrast-enhanced MR angiogram of pulmonary blood vessels and a non-rigid image registration technique is proposed for quantification of lung regional deformations, which can potentially be used for assessment of pulmonary parenchymal mechanics and regional ventilation for disease diagnosis without ionizing radiation. METHODS On three volunteers, an end-expiration scan and end-inspiration scan was acquired successively for each volunteer using a 3D breath-hold contrast-enhanced MRI sequence several minutes after gadolinium injection. Subsequently, a rectangle box lung mask is manually selected for each end-expiration scan, applying non-rigid registration algorithms using cubic B-splines as transformations to align each pair of images. This incorporates the Normalized Correlation Coefficient similarity with the bending energy term as cost function with a multi-resolution multi-grid approach. Finally, the lung regional 3D deformations were obtained using the transformations obtained by registration. The alignment accuracy after non-rigid registration was estimated by using a set of branch points of pulmonary blood vessels as anatomical landmarks for each pair of images. RESULTS With contrast enhancement, the pulmonary blood vessel signal was enhanced, which greatly facilitated the non-rigid registration in the lung parenchyma. The average landmarks distances in three pairs of datasets are reduced from 17.9, 20.3 and 16.3 mm, to 1.0, 1.6 and 1.2 mm, respectively, by non-rigid registration. After registration, the average distances error of each pair of datasets was less than 0.6 mm in the right-to-left (RL) direction, less than 0.9 mm in the inferior-to-superior (IS) direction, and less than 1.2 mm in the anterior-to-posterior (AP) direction. CONCLUSIONS Results demonstrated that the proposed method can accurately register lungs with large deformations to evaluate lung regional deformation. It may be used for quantitative assessment of 3D lung regional ventilation avoiding ionizing radiation.
Collapse
Affiliation(s)
- Jiaxin Shao
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Biomedical Physics Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB. The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol 2016; 86:343-352. [PMID: 27707585 DOI: 10.1016/j.ejrad.2016.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 01/29/2023]
Abstract
In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications.
Collapse
Affiliation(s)
- Lukas Ebner
- Cardiothoracic Imaging, Duke University Medical Center, Department of Radiology, Duke University, Durham, NC, USA
| | - Jeff Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | - Mark L Schiebler
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Robert V Cadman
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
18
|
Effects of superimposed tissue weight on regional compliance of injured lungs. Respir Physiol Neurobiol 2016; 228:16-24. [PMID: 26976688 DOI: 10.1016/j.resp.2016.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 03/06/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
Abstract
Computed tomography (CT), together with image analysis technologies, enable the construction of regional volume (VREG) and local transpulmonary pressure (PTP,REG) maps of the lung. Purpose of this study is to assess the distribution of VREG vs PTP,REG along the gravitational axis in healthy (HL) and experimental acute lung injury conditions (eALI) at various positive end-expiratory pressures (PEEPs) and inflation volumes. Mechanically ventilated pigs underwent inspiratory hold maneuvers at increasing volumes simultaneously with lung CT scans. eALI was induced via the iv administration of oleic acid. We computed voxel-level VREG vs PTP,REG curves into eleven isogravitational planes by applying polynomial regressions. Via F-test, we determined that VREG vs PTP,REG curves derived from different anatomical planes (p-values<1.4E-3), exposed to different PEEPs (p-values<1.5E-5) or subtending different lung status (p-values<3E-3) were statistically different (except for two cases of adjacent planes). Lung parenchyma exhibits different elastic behaviors based on its position and the density of superimposed tissue which can increase during lung injury.
Collapse
|
19
|
Kida S, Bal M, Kabus S, Negahdar M, Shan X, Loo BW, Keall PJ, Yamamoto T. CT ventilation functional image-based IMRT treatment plans are comparable to SPECT ventilation functional image-based plans. Radiother Oncol 2016; 118:521-7. [DOI: 10.1016/j.radonc.2016.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/07/2016] [Accepted: 02/05/2016] [Indexed: 12/25/2022]
|
20
|
Reid JH, Murchison JT, van Beek EJ. Imaging of acute respiratory distress syndrome. ACTA ACUST UNITED AC 2015; 4:359-72. [PMID: 23496151 DOI: 10.1517/17530059.2010.495983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Acute respiratory distress syndrome (ARDS) describes a relatively common and frequently lethal syndrome at the severe end of the spectrum of acute lung injury. Onset of symptoms is usually within 72 h of the inciting event and complicates a wide variety of clinical disorders, ranging from infection to trauma. It may be defined as resistant hypoxaemia in the clinical setting of one of the group of recognised causes, in association with bilateral pulmonary infiltrates and in the absence of left atrial hypertension. Accurate diagnosis and differentiation from other treatable conditions is crucial. AREAS COVERED IN THIS REVIEW This publication addresses the clinical and radiological features of ARDS, a review of the imaging technology with illustrations and differential diagnosis. WHAT THE READER WILL GAIN This paper will give insight into the strengths and weaknesses of imaging modalities used in the management of patients with ARDS. TAKE HOME MESSAGE Imaging plays a vital role in the assessment of acute respiratory syndromes. Computed tomography is much more sensitive compared with chest radiography, and relatively under-utilised. Other methods, such as bedside ultrasound and impedance tomography, may have roles to play in the future.
Collapse
Affiliation(s)
- John H Reid
- Borders General Hospital, Radiology Department, Melrose TD6 9DA, UK
| | | | | |
Collapse
|
21
|
Stellari F, Sala A, Ruscitti F, Carnini C, Mirandola P, Vitale M, Civelli M, Villetti G. Monitoring inflammation and airway remodeling by fluorescence molecular tomography in a chronic asthma model. J Transl Med 2015; 13:336. [PMID: 26496719 PMCID: PMC4619338 DOI: 10.1186/s12967-015-0696-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24-72 h after challenge and resolving in 1-2 weeks. We characterized the temporal evolution of pulmonary inflammation and tissue remodeling in a recently described mouse model of chronic asthma (8 week treatment with 3 allergens: Dust mite, Ragweed, and Aspergillus; DRA). METHODS We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11 weeks, cathepsin- and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4 weeks of DRA, was treated with Budesonide (100 µg/kg intranasally) daily for 4 weeks. RESULTS Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8 weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and pulmonary inflammatory cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11 weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson's Trichrome staining, and airway epithelium hypertrophy, and was only partly inhibited by budesonide. CONCLUSIONS FMT proved suitable for longitudinal studies to evaluate asthma progression, showing that cathepsin activity could be used to monitor inflammatory cell infiltration while metalloproteinase activity parallels airway remodeling, allowing the determination of steroid treatment efficacy in a chronic asthma model in mice.
Collapse
Affiliation(s)
| | - Angelo Sala
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy. .,IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy.
| | - Francesca Ruscitti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università di Parma, Parma, Italy.
| | | | - Prisco Mirandola
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università di Parma, Parma, Italy.
| | - Marco Vitale
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università di Parma, Parma, Italy.
| | | | | |
Collapse
|
22
|
Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol (1985) 2015; 119:1245-61. [PMID: 26472873 DOI: 10.1152/japplphysiol.00659.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
The earliest description of what is now known as the acute respiratory distress syndrome (ARDS) was a highly lethal double pneumonia. Ashbaugh and colleagues (Ashbaugh DG, Bigelow DB, Petty TL, Levine BE Lancet 2: 319-323, 1967) correctly identified the disease as ARDS in 1967. Their initial study showing the positive effect of mechanical ventilation with positive end-expiratory pressure (PEEP) on ARDS mortality was dampened when it was discovered that improperly used mechanical ventilation can cause a secondary ventilator-induced lung injury (VILI), thereby greatly exacerbating ARDS mortality. This Synthesis Report will review the pathophysiology of ARDS and VILI from a mechanical stress-strain perspective. Although inflammation is also an important component of VILI pathology, it is secondary to the mechanical damage caused by excessive strain. The mechanical breath will be deconstructed to show that multiple parameters that comprise the breath-airway pressure, flows, volumes, and the duration during which they are applied to each breath-are critical to lung injury and protection. Specifically, the mechanisms by which a properly set mechanical breath can reduce the development of excessive fluid flux and pulmonary edema, which are a hallmark of ARDS pathology, are reviewed. Using our knowledge of how multiple parameters in the mechanical breath affect lung physiology, the optimal combination of pressures, volumes, flows, and durations that should offer maximum lung protection are postulated.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, New York;
| | - Louis A Gatto
- Biological Sciences Department, State University of New York, Cortland, New York; and
| | - Nader M Habashi
- R Adams Cowley Shock/Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
23
|
Dubsky S, Fouras A. Imaging regional lung function: a critical tool for developing inhaled antimicrobial therapies. Adv Drug Deliv Rev 2015; 85:100-9. [PMID: 25819486 DOI: 10.1016/j.addr.2015.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022]
Abstract
Alterations in regional lung function due to respiratory infection have a significant effect on the deposition of inhaled treatments. This has consequences for treatment effectiveness and hence recovery of lung function. In order to advance our understanding of respiratory infection and inhaled treatment delivery, we must develop imaging techniques that can provide regional functional measurements of the lung. In this review, we explore the role of functional imaging for the assessment of respiratory infection and development of inhaled treatments. We describe established and emerging functional lung imaging methods. The effect of infection on lung function is described, and the link between regional disease, function, and inhaled treatments is discussed. The potential for lung function imaging to provide unique insights into the functional consequences of infection, and its treatment, is also discussed.
Collapse
Affiliation(s)
- Stephen Dubsky
- Department of Mechanical & Aerospace Engineering, Monash University, Victoria 3800, Australia.
| | - Andreas Fouras
- Department of Mechanical & Aerospace Engineering, Monash University, Victoria 3800, Australia.
| |
Collapse
|
24
|
Kida S. [Toward physiologically-adaptive radiotherapy with lung functional imaging based on 4D CT]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2014; 70:1353-1359. [PMID: 25410344 DOI: 10.6009/jjrt.2014_jsrt_70.11.1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
25
|
Abstract
Chronic obstructive pulmonary disorder (COPD) is a systemic disease that affects the cardiovascular system through multiple pathways. Pulmonary hypertension, ventricular dysfunction, and atherosclerosis are associated with smoking and COPD, causing significant morbidity and poor prognosis. Coupling between the pulmonary and cardiovascular system involves mechanical interdependence and inflammatory pathways that potentially affect the entire circulation. Although treatments specific for COPD-related cardiovascular and pulmonary vascular disease are limited, early diagnosis, study of pathophysiology, and monitoring the effects of treatment are enhanced with improved imaging techniques. In this article, we review recent advancements in the imaging of the vasculature and the heart in patients with COPD. We also explore the potential mechanism of coupling between the progression of COPD and vascular disease. Imaging methods reviewed include specific implementations of computed tomography, magnetic resonance imaging, dual-energy computed tomography, positron emission tomography, and echocardiography. Specific applications to the proximal and distal pulmonary vasculature, as well as to the heart and systemic circulation, are also discussed.
Collapse
|
26
|
Yamamoto T, Kabus S, Lorenz C, Mittra E, Hong JC, Chung M, Eclov N, To J, Diehn M, Loo BW, Keall PJ. Pulmonary ventilation imaging based on 4-dimensional computed tomography: comparison with pulmonary function tests and SPECT ventilation images. Int J Radiat Oncol Biol Phys 2014; 90:414-22. [PMID: 25104070 DOI: 10.1016/j.ijrobp.2014.06.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/28/2014] [Accepted: 06/01/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. METHODS AND MATERIALS In an institutional review board-approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V4DCT) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volume change. V4DCT defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV1; % predicted) and FEV1/forced vital capacity (FVC; %). V4DCT was also compared with SPECT ventilation (VSPECT) to (1) test whether V4DCT in VSPECT defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V4DCT and VSPECT defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. RESULTS Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V4DCT defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V4DCT(HU) defect volume increased significantly with decreasing FEV1/FVC (R=-0.65, P<.01). V4DCT in VSPECT defect regions was significantly lower than in nondefect regions (mean V4DCT(HU) 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V4DCT(HU)0.39 ± 0.11). Furthermore, ventral-to-dorsal gradients of V4DCT were strong (V4DCT(HU) R(2) = 0.69, P=.08), which was similar to VSPECT (R(2) = 0.96, P<.01). CONCLUSIONS An 18-patient study demonstrated significant correlations between 4D-CT ventilation and PFT measurements as well as SPECT ventilation, providing evidence toward the validation of 4D-CT ventilation imaging.
Collapse
Affiliation(s)
- Tokihiro Yamamoto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California.
| | - Sven Kabus
- Department of Digital Imaging, Philips Research Europe, Hamburg, Germany
| | - Cristian Lorenz
- Department of Digital Imaging, Philips Research Europe, Hamburg, Germany
| | - Erik Mittra
- Departments of Radiology, Stanford University School of Medicine, Stanford, California
| | - Julian C Hong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Melody Chung
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Neville Eclov
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Jacqueline To
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Paul J Keall
- Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
27
|
Du K, Bayouth JE, Ding K, Christensen GE, Cao K, Reinhardt JM. Reproducibility of intensity-based estimates of lung ventilation. Med Phys 2014; 40:063504. [PMID: 23718615 DOI: 10.1118/1.4805106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Lung function depends on lung expansion and contraction during the respiratory cycle. Respiratory-gated CT imaging and image registration can be used to estimate the regional lung volume change by observing CT voxel density changes during inspiration or expiration. In this study, the authors examine the reproducibility of intensity-based estimates of lung tissue expansion and contraction in three mechanically ventilated sheep and ten spontaneously breathing humans. The intensity-based estimates are compared to the estimates of lung function derived from image registration deformation field. METHODS 4DCT data set was acquired for a cohort of spontaneously breathing humans and anesthetized and mechanically ventilated sheep. For each subject, two 4DCT scans were performed with a short time interval between acquisitions. From each 4DCT data set, an image pair consisting of a volume reconstructed near end inspiration and a volume reconstructed near end exhalation was selected. The end inspiration and end exhalation images were registered using a tissue volume preserving deformable registration algorithm. The CT density change in the registered image pair was used to compute intensity-based specific air volume change (SAC) and the intensity-based Jacobian (IJAC), while the transformation-based Jacobian (TJAC) was computed directly from the image registration deformation field. IJAC is introduced to make the intensity-based and transformation-based methods comparable since SAC and Jacobian may not be associated with the same physiological phenomenon and have different units. Scan-to-scan variations in respiratory effort were corrected using a global scaling factor for normalization. A gamma index metric was introduced to quantify voxel-by-voxel reproducibility considering both differences in ventilation and distance between matching voxels. The authors also tested how different CT prefiltering levels affected intensity-based ventilation reproducibility. RESULTS Higher reproducibility was found for anesthetized mechanically ventilated animals than for the humans for both the intensity-based (IJAC) and transformation-based (TJAC) ventilation estimates. The human IJAC maps had scan-to-scan correlation coefficients of 0.45 ± 0.14, a gamma pass rate 70 ± 8 without normalization and 75 ± 5 with normalization. The human TJAC maps had correlation coefficients 0.81 ± 0.10, a gamma pass rate 86 ± 11 without normalization and 93 ± 4 with normalization. The gamma pass rate and correlation coefficient of the IJAC maps gradually increased with increased smoothing, but were still much lower than those of the TJAC maps. CONCLUSIONS The transformation-based ventilation maps show better reproducibility than the intensity-based maps, especially in human subjects. Reproducibility was also found to depend on variations in respiratory effort; all techniques were better when applied to images from mechanically ventilated sheep compared to spontaneously breathing human subjects. Nevertheless, intensity-based techniques applied to mechanically ventilated sheep were less reproducible than the transformation-based applied to spontaneously breathing humans, suggesting the method used to determine ventilation maps is important. Prefiltering of the CT images may help to improve the reproducibility of the intensity-based ventilation estimates, but even with filtering the reproducibility of the intensity-based ventilation estimates is not as good as that of transformation-based ventilation estimates.
Collapse
Affiliation(s)
- Kaifang Du
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
28
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
29
|
Lilburn DML, Hughes-Riley T, Six JS, Stupic KF, Shaw DE, Pavlovskaya GE, Meersmann T. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI. PLoS One 2013; 8:e73468. [PMID: 24023683 PMCID: PMC3758272 DOI: 10.1371/journal.pone.0073468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/21/2013] [Indexed: 12/15/2022] Open
Abstract
Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) (129)Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129)Xe. Straightforward hp (129)Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp (129)Xe probe volumes during the inhalation cycle. Hp (129)Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.
Collapse
Affiliation(s)
- David M. L. Lilburn
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph S. Six
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Karl F. Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dominick E. Shaw
- Nottingham Respiratory Research Unit, Nottingham City Hospital, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Du K, Bayouth JE, Cao K, Christensen GE, Ding K, Reinhardt JM. Reproducibility of registration-based measures of lung tissue expansion. Med Phys 2013; 39:1595-608. [PMID: 22380392 DOI: 10.1118/1.3685589] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Lung function depends on lung expansion and contraction during the respiratory cycle. Respiratory-gated CT imaging and 3D image registration can be used to locally estimate lung tissue expansion and contraction (regional lung volume change) by computing the determinant of the Jacobian matrix of the image registration deformation field. In this study, the authors examine the reproducibility of Jacobian-based measures of lung tissue expansion in two repeat 4DCT acquisitions of mechanically ventilated sheep and free-breathing humans. METHODS 4DCT image data from three white sheep and nine human subjects were used for this analysis. In each case, two 4DCT studies were acquired for each subject within a short time interval. The animal subjects were anesthetized and mechanically ventilated, while the humans were awake and spontaneously breathing based on respiratory pacing audio cues. From each 4DCT data set, an image pair consisting of a volume reconstructed near end inspiration and a volume reconstructed near end exhalation was selected. The end inspiration and end exhalation images were registered using a tissue volume preserving deformable registration algorithm and the Jacobian of the registration deformation field was used to measure regional lung expansion. The Jacobian map from the baseline data set was compared to the Jacobian map from the followup data by measuring the voxel-by-voxel Jacobian ratio. RESULTS In the animal subjects, the mean Jacobian ratio (baseline scan Jacobian divided by followup scan Jacobian, voxel-by-voxel) was 0.9984±0.021 (mean ± standard deviation, averaged over the entire lung region). The mean Jacobian ratio was 1.0224±0.058 in the human subjects. The reproducibility of the Jacobian values was found to be strongly dependent on the reproducibility of the subject's respiratory effort and breathing pattern. CONCLUSIONS Lung expansion, a surrogate for lung function, can be assessed using two or more respiratory-gated CT image acquisitions. The results show that good reproducibility can be obtained in anesthetized, mechanically ventilated animals, but variations in respiratory effort and breathing patterns reduce reproducibility in spontaneously-breathing humans. The global linear normalization can globally compensate for breathing effort differences, but a homogeneous scaling does not account for differences in regional lung expansion rates. Additional work is needed to develop compensation procedures or normalization schemes that can account for local variations in lung expansion during respiration.
Collapse
Affiliation(s)
- Kaifang Du
- Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Circulation in the lungs and microcirculation in the alveoli. Respir Physiol Neurobiol 2013; 187:26-30. [DOI: 10.1016/j.resp.2013.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 11/21/2022]
|
32
|
Venegas J, Winkler T, Harris RS. Lung Physiology and Aerosol Deposition Imaged with Positron Emission Tomography. J Aerosol Med Pulm Drug Deliv 2013; 26:1-8. [DOI: 10.1089/jamp.2011.0944] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jose Venegas
- Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - R. Scott Harris
- Department of Pulmonary, Critical Care, and Sleep Medicine, MGH/Harvard, Boston, Massachusetts
| |
Collapse
|
33
|
Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT. Eur J Radiol 2012; 82:557-62. [PMID: 23238360 DOI: 10.1016/j.ejrad.2012.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/24/2012] [Accepted: 10/28/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. METHODS The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. RESULTS Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. CONCLUSIONS Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function.
Collapse
|
34
|
Simon BA, Kaczka DW, Bankier AA, Parraga G. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol (1985) 2012; 113:647-57. [PMID: 22653989 DOI: 10.1152/japplphysiol.00353.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This review provides a summary of pulmonary functional imaging approaches for determining pulmonary ventilation, with a specific focus on multi-detector x-ray computed tomography and magnetic resonance imaging (MRI). We provide the important functional definitions of pulmonary ventilation typically used in medicine and physiology and discuss the fact that some of the imaging literature describes gas distribution abnormalities in pulmonary disease that may or may not be related to the physiological definition or clinical interpretation of ventilation. We also review the current state-of-the-field in terms of the key physiological questions yet unanswered related to ventilation and gas distribution in lung disease. Current and emerging imaging research methods are described, including their strengths and the challenges that remain to translate these methods to more wide-spread research and clinical use. We also examine how computed tomography and MRI might be used in the future to gain more insight into gas distribution and ventilation abnormalities in pulmonary disease.
Collapse
Affiliation(s)
- Brett A Simon
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Several methods allow regional gas exchange to be inferred from imaging of regional ventilation and perfusion (V/Q) ratios. Each method measures slightly different aspects of gas exchange and has inherent advantages and drawbacks that are reviewed. Single photon emission computed tomography can provide regional measure of ventilation and perfusion from which regional V/Q ratios can be derived. PET methods using inhaled or intravenously administered nitrogen-13 provide imaging of both regional blood flow, shunt, and ventilation. Electric impedance tomography has recently been refined to allow simultaneous measurements of both regional ventilation and blood flow. MRI methods utilizing hyperpolarized helium-3 or xenon-129 are currently being refined and have been used to estimate local PaO(2) in both humans and animals. Microsphere methods are included in this review as they provide measurements of regional ventilation and perfusion in animals. One of their advantages is their greater spatial resolution than most imaging methods and the ability to use them as gold standards against which new imaging methods can be tested. In general, the reviewed methods differ in characteristics such as spatial resolution, possibility of repeated measurements, radiation exposure, availability, expensiveness, and their current stage of development.
Collapse
Affiliation(s)
- Johan Petersson
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Solna, Stockholm, Sweden.
| | | |
Collapse
|
36
|
Hofman MS, Beauregard JM, Barber TW, Neels OC, Eu P, Hicks RJ. 68Ga PET/CT Ventilation–Perfusion Imaging for Pulmonary Embolism: A Pilot Study with Comparison to Conventional Scintigraphy. J Nucl Med 2011; 52:1513-9. [DOI: 10.2967/jnumed.111.093344] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Lung imaging during acute respiratory distress syndrome: CT- and PET-scanning. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2011. [DOI: 10.1016/j.tacc.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Lung imaging in asthmatic patients: the picture is clearer. J Allergy Clin Immunol 2011; 128:467-78. [PMID: 21636118 DOI: 10.1016/j.jaci.2011.04.051] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 04/10/2011] [Accepted: 04/18/2011] [Indexed: 01/11/2023]
Abstract
Imaging of the lungs in patients with asthma has evolved dramatically over the last decade with sophisticated techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography. New insights into current and future modalities for imaging in asthmatic patients and their application are discussed to potentially shed a clearer picture of the underlying pathophysiology of asthma, especially severe asthma, and the proposed clinical utility of imaging in patients with this common disease.
Collapse
|
39
|
van Echteld CJA, Beckmann N. A view on imaging in drug research and development for respiratory diseases. J Pharmacol Exp Ther 2011; 337:335-49. [PMID: 21317353 DOI: 10.1124/jpet.110.172635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
With the incidence of respiratory diseases increasing throughout the world, new therapies are needed. This review provides a short overview of different imaging techniques of interest for drug discovery and development within the pulmonary disease area. The focus is on studies performed in both animals and humans, which are of importance for understanding pathophysiological aspects and evaluating new drugs. Rather than emphasizing particular lung diseases, the noninvasive diagnosis and quantification of a number of characteristics related to several pathological conditions of the lung are addressed: inflammation, mucus secretion and clearance, emphysema, ventilation, perfusion, fibrosis, airway remodeling, and pulmonary arterial hypertension. Techniques are discussed based on their present use or potential future utilization in the context of drug studies.
Collapse
Affiliation(s)
- Cees J A van Echteld
- Novartis Institutes for BioMedical Research, Clinical Imaging Group, Basel, Switzerland.
| | | |
Collapse
|
40
|
Kenne E, Lindbom L. Imaging inflammatory plasma leakage in vivo. Thromb Haemost 2011; 105:783-9. [PMID: 21437352 DOI: 10.1160/th10-10-0635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/10/2011] [Indexed: 12/15/2022]
Abstract
Increased vascular permeability and consequent plasma leakage from postcapillary venules is a cardinal sign of inflammation. Although the movement of plasma constituents from the vasculature to the affected tissue aids in clearing the inflammatory stimulus, excessive plasma extravasation can lead to hospitalisation or death in cases such as influenza-induced pneumonia, burns or brain injury. The use of intravital imaging has significantly contributed to the understanding of the mechanisms controlling the vascular permeability alterations that occur during inflammation. Today, intravital imaging can be performed using optical and non-optical techniques. Optical techniques, which are generally used in experimental settings, include traditional intravital fluorescence microscopy and near-infrared fluorescence imaging. Magnetic resonance (MRI) and radioisotopic imaging are used mainly in the clinical setting, but are increasingly used in experimental work, and can detect plasma leakage without optics. Although these methods are all able to visualise inflammatory plasma leakage in vivo, the spatial and temporal resolution differs between the techniques. In addition, they vary with regards to invasiveness and availability. This overview discusses the use of imaging techniques in the visualisation of inflammatory plasma leakage.
Collapse
Affiliation(s)
- E Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
41
|
Yamamoto T, Kabus S, Klinder T, Lorenz C, von Berg J, Blaffert T, Loo BW, Keall PJ. Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions. Phys Med Biol 2011; 56:2279-98. [PMID: 21411868 DOI: 10.1088/0031-9155/56/7/023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIR(sur)) and volumetric (DIR(vol)), and two metrics: Hounsfield unit (HU) change (V(HU)) and Jacobian determinant of deformation (V(Jac)), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. V(HU) resulted in statistically significant differences for both DIR(sur) (0.14 ± 0.14 versus 0.29 ± 0.16, p = 0.01) and DIR(vol) (0.13 ± 0.13 versus 0.27 ± 0.15, p < 0.01). However, V(Jac) resulted in non-significant differences for both DIR(sur) (0.15 ± 0.07 versus 0.17 ± 0.08, p = 0.20) and DIR(vol) (0.17 ± 0.08 versus 0.19 ± 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A further study is needed to confirm these results.
Collapse
Affiliation(s)
- Tokihiro Yamamoto
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr, Stanford, CA 94305-5847, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yamamoto T, Kabus S, Klinder T, von Berg J, Lorenz C, Loo BW, Keall PJ. Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics. Med Phys 2011; 38:1348-58. [DOI: 10.1118/1.3547719] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Steimle KL, Mogensen ML, Karbing DS, Bernardino de la Serna J, Andreassen S. A model of ventilation of the healthy human lung. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 101:144-155. [PMID: 20655612 DOI: 10.1016/j.cmpb.2010.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 05/29/2023]
Abstract
This paper presents a model of the lung mechanics which simulates the pulmonary alveolar ventilation. The model includes aspects of: the alveolar geometry; pressure due to the chest wall; pressure due to surface tension determined by surfactant activity; pressure due to lung tissue elasticity; and pressure due to the hydrostatic effects of the lung tissue and blood. The cross-sectional area of the lungs in the supine position derived from computed tomography is used to construct a horizontally layered model, which simulates heterogeneous ventilation distribution from the non-dependent to the dependent layers of the lungs. The model is in agreement with experimentally measured hysteresis of the pressure-volume curve of the lungs, static lung compliance, changes in lung depth during breathing and density distributions at total lung capacity (TLC) and residual volume (RV). In the dependent layers of the lungs, alveolar collapse may occur at RV, depending on the assumptions concerning lung tissue elasticity at very low alveolar volumes. The model simulations showed that ventilation increased with depth in the lungs, although not as pronounced as observed experimentally. The model simulates alveolar ventilation including all of the mentioned components of the respiratory system and to be validated against all the above mentioned experimental data.
Collapse
Affiliation(s)
- K L Steimle
- Center for Model-Based Medical Decision Support, Aalborg University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
44
|
Tensor grid based image registration with application to ventilation estimation on 4D CT lung data. Int J Comput Assist Radiol Surg 2010; 5:583-93. [DOI: 10.1007/s11548-010-0419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
|
45
|
Ding K, Bayouth JE, Buatti JM, Christensen GE, Reinhardt JM. 4DCT-based measurement of changes in pulmonary function following a course of radiation therapy. Med Phys 2010; 37:1261-72. [PMID: 20384264 DOI: 10.1118/1.3312210] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Radiation therapy (RT) for lung cancer is commonly limited to subtherapeutic doses due to unintended toxicity to normal lung tissue. Reducing the frequency of occurrence and magnitude of normal lung function loss may benefit from treatment plans that incorporate the regional lung and radiation dose information. In this article, the authors propose a method that quantitatively measures the regional changes in lung tissue function following a course of radiation therapy by using 4DCT and image registration techniques. METHODS 4DCT data sets before and after RT from two subjects are used in this study. Nonlinear 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration to estimate the pulmonary function. The Jacobian of the image registration transformation, indicating local lung expansion or contraction, serves as an index of regional pulmonary function. Approximately 120 annotated vascular bifurcation points are used as landmarks to evaluate registration accuracy. The authors compare regional pulmonary function before and after RT to the planned radiation dose at different locations of the lung. RESULTS In all registration pairs, the average landmark distances after registration are on the order of 1 mm. The pulmonary function change as indicated by the Jacobian change ranges from -0.15 to 0.1 in the contralateral lung and -0.22 to 0.23 in the ipsilateral lung for subject A, and ranges from -0.4 to 0.39 in the contralateral lung and -0.25 to 0.5 in the ipsilateral lung for subject B. Both of the subjects show larger range of the increase in the pulmonary function in the ipsilateral lung than the contralateral lung. For lung tissue regions receiving a radiation dose larger than 24 Gy, a decrease in pulmonary function was observed. For regions receiving a radiation dose smaller than 24 Gy, either an increase or a decrease in pulmonary function was observed. The relationship between the pulmonary function change and the radiation dose varies at different locations. CONCLUSIONS With the use of 4DCT and image registration techniques, the pulmonary function prior to and following a course of radiation therapy can be measured. In the preliminary application of this approach for two subjects, changes in pulmonary function were observed with a weak correlation between the dose and pulmonary function change. In certain sections of the lung, detected locally compromised pulmonary function may have resulted from radiation injury.
Collapse
Affiliation(s)
- Kai Ding
- Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
46
|
Hsia CCW, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010; 181:394-418. [PMID: 20130146 DOI: 10.1164/rccm.200809-1522st] [Citation(s) in RCA: 703] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci U S A 2010; 107:3693-7. [PMID: 20142483 DOI: 10.1073/pnas.1000386107] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Early and specific detection of metastatic cancer cells in the lung (the most common organ targeted by metastases) could significantly improve cancer treatment outcomes. However, the most widespread lung imaging methods use ionizing radiation and have low sensitivity and/or low specificity for cancer cells. Here we address this problem with an imaging method to detect submillimeter-sized metastases with molecular specificity. Cancer cells are targeted by iron oxide nanoparticles functionalized with cancer-binding ligands, then imaged by high-resolution hyperpolarized (3)He MRI. We demonstrate in vivo detection of pulmonary micrometastates in mice injected with breast adenocarcinoma cells. The method not only holds promise for cancer imaging but more generally suggests a fundamentally unique approach to molecular imaging in the lungs.
Collapse
|
48
|
|
49
|
Determinants of regional ventilation and blood flow in the lung. Intensive Care Med 2009; 35:1833-42. [DOI: 10.1007/s00134-009-1649-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 08/12/2009] [Indexed: 11/26/2022]
|
50
|
Scholz AW, Wolf U, Fabel M, Weiler N, Heussel CP, Eberle B, David M, Schreiber WG. Comparison of magnetic resonance imaging of inhaled SF6 with respiratory gas analysis. Magn Reson Imaging 2009; 27:549-56. [DOI: 10.1016/j.mri.2008.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 10/21/2022]
|