1
|
Matteoli G, Alvente S, Berteotti C, Coraci D, Lo Martire V, Lops M, Miglioranza E, Silvani A, Volino E, Zoccoli G, Bastianini S. Detection of central and obstructive sleep apneas in mice: A new surgical and recording protocol. PLoS One 2025; 20:e0320650. [PMID: 40153464 DOI: 10.1371/journal.pone.0320650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/21/2025] [Indexed: 03/30/2025] Open
Abstract
Sleep apnea is a common respiratory disorder in humans and consists of recurrent episodes of cessation of breathing or decrease in airflow during sleep. Sleep apnea can be classified as central or obstructive, based on its origin. Central sleep apnea results from an impaired transmission of the signal for inspiration from the brain to inspiratory muscles, while obstructive sleep apnea occurs in the presence of an obstruction of the upper airways during inspiration. This condition leads to repetitive episodes of reduced oxygen and elevated carbon dioxide levels in the bloodstream, which entail both direct and indirect adverse effects on vital organs, especially the brain and heart. Basic research on animal models has been instrumental in advancing the understanding of disease mechanisms and pathophysiology, and in expediting the development of targeted therapies in several medical fields. Among animal models, mice are the mammalian species of choice for functional genomics of integrative functions such as sleep. Mice have long been known to show sleep apneas, but the classification of sleep apneas as central or obstructive in mice is technically challenging due to the small size of these animals. Here we present a method aimed at identifying central and obstructive sleep apneas in mice. This method involves the surgical implantation of electrodes for recording the electroencephalogram and nuchal muscle electromyogram, which are the gold standard to study the wake-sleep cycle, and for recording the diaphragm electromyogram, which allows the detection of diaphragm contraction. The method also includes the simultaneous recording of the above-mentioned biological signals and breathing inside a whole-body plethysmograph and the data analysis allows to score wake-sleep states and to detect sleep apneas and categorize them into central and obstructive events.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sara Alvente
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Dario Coraci
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Martina Lops
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Emilia Volino
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Wang Y, Liu X, Zhang Q, Zhao D, Zhou B, Pan Z, Zha S, Hu K. Bioluminescence-optogenetics-mediated gene therapy in a sleep-disordered breathing mouse model. Biomed Pharmacother 2024; 178:117159. [PMID: 39029402 DOI: 10.1016/j.biopha.2024.117159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Obstructive sleep apnea (OSA) incurs a huge individual, societal, and economic burden. Specific and selective targeting of hypoglossal motor neurons could be an effective means to treat OSA. Bioluminescent-optogenetics (BL-OG) is a novel genetic regulatory approach in which luminopsins, fusion proteins of light-generating luciferase and light-sensing ion channels, increase neuronal excitability when exposed to a suitable substrate. Here we develop and validate the feasibility of BL-OG for sleep-disordered breathing (SDB). Upon confirming that diet-induced obese mice represent an excellent SDB model, we employed a method of targeting the hypoglossal nucleus (12 N) by peripherally injecting retrogradely transported rAAV2/Retro. With AAV transduction, the eLMO3 protein is expressed in hypoglossal motor neurons (HMN); administration of CTZ results in production of bioluminescence that in turn activates the tethered channelrhodopsin, leading to an increase in the firing of HMN and a 2.7 ± 0.8-fold increase in phasic activity of the genioglossus muscle, a 7.6 ± 1.8-fold increase in tonic activity, and improvements in hypoventilation and apnea index without impacting sleep structure. This is therefore the first study to leverage the rAAV2/Retro vector to execute the BL-OG approach in SDB, which amplified genioglossus muscle discharge activity and increased airflow in mice after activation. This study marks the pioneering utilization of BL-OG in SDB research.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xu Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingfeng Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Beini Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Pan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shiqian Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
3
|
Kostiew KN, Tuli D, Coborn JE, Sinton CM, Teske JA. Behavioral phenotyping based on physical inactivity can predict sleep in female rats before, during, and after sleep disruption. J Neurosci Methods 2024; 402:110030. [PMID: 38042303 DOI: 10.1016/j.jneumeth.2023.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND A noninvasive method that can accurately quantify sleep before, during, and after sleep disruption (SD) has not been validated in female rats across their estrous cycle. In female rats, we hypothesized that the duration of physical inactivity (PIA) required to predict sleep would 1) change with the differences in baseline sleep between the circadian and estrous cycle phases and 2) predict sleep and the change in sleep (Δsleep) before, during, and after SD independent of circadian and estrous cycle phase. NEW METHODS EEG, EMG, physical activity and estrous cycle phase were measured in female Sprague-Dawley rats before, during, and after SD. Sleep was determined by two methods [EEG/EMG and a duration of continuous PIA (i.e., PIA criterion)]. Reliability between the methods was tested with a previously validated criterion (40 s). Sensitivity analyses and criterion-related validity analyses for sleep during SD and recovery were conducted across multiple PIA criteria (10 s-120 s). Predictability between the two methods and Δsleep was calculated. RESULTS/COMPARISON WITH EXISTING METHODS Three criteria (10 s, 20 s, 30 s) predicted baseline sleep independent of circadian and estrous cycle phase. Sleep during SD and recovery were predicted by two criteria (30 s and 10 s). Δsleep between study periods was not reliably predicted by a single PIA criterion. CONCLUSION PIA predicted sleep independent of estrous cycle phase in female rats. However, the specific criterion was dependent upon the study period (before, during, and after SD) and circadian phase. Thus, prior work validating a PIA criterion in male rodents is not applicable to the female rat.
Collapse
Affiliation(s)
- Kora N Kostiew
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA
| | - Diya Tuli
- Keep Engaging Youth in Science, University of Arizona, Tucson, Arizona, USA
| | - Jamie E Coborn
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Christopher M Sinton
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Jennifer A Teske
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA; School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
4
|
Zhu H, Wu M, Mou J, Yang X, Xu Q, Zhang Y, Zhang H, Wang X, Xue H, Xu J, Chen L, Xu L. Behavior and physiology in female Cricetulus barabensis are associated with the expression of circadian genes. Front Endocrinol (Lausanne) 2024; 14:1281617. [PMID: 38374960 PMCID: PMC10875996 DOI: 10.3389/fendo.2023.1281617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 02/21/2024] Open
Abstract
The circadian clock regulates the behavior, physiology, and metabolism of mammals, and these characteristics, such as sleep-wake cycles, exercise capacity, and hormone levels, exhibit circadian rhythms. Light signaling is the main stimulator of the mammalian circadian system. The photoperiod regulates the reproductive cycle of seasonal breeding animals, and the circadian clock plays a pivotal role in this process. However, the role of the clock in coordinating animal behavior and physiology in response to photoperiodic changes needs further investigation. The present study investigated the changes and correlation of behavioral activities, physiological indicators, and gene expression in female striped hamsters (Cricetulus barabensis) within 24 h under a 12L:12D photoperiod. We found that the daily rhythms of sleep-wake and open field were significant in hamsters. The expression of clock genes, melatonin receptor genes, and genes involved in general metabolism oscillated significantly in central and peripheral tissues (brain, hypothalamus, liver, ovary, and thymus) and was significantly associated with behavior and physiology. Our results revealed that the neuroendocrine system regulated the rhythmicity of behavior and physiology, and central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1, and Cry2), melatonin receptor genes (MT1, MT2, and GPR50), and metabolizing genes (SIRT1, FGF21, and PPARα) played important roles. Our results suggest that central and peripheral circadian clocks, melatonin receptors, and genes involved in general metabolism may play key roles in maintaining circadian behavior and metabolic homeostasis in striped hamsters. Our results may have important implication for rodent pest control.
Collapse
|
5
|
Amorim MR, Wang X, Aung O, Bevans-Fonti S, Anokye-Danso F, Ribeiro C, Escobar J, Freire C, Pho H, Dergacheva O, Branco LGS, Ahima RS, Mendelowitz D, Polotsky VY. Leptin signaling in the dorsomedial hypothalamus couples breathing and metabolism in obesity. Cell Rep 2023; 42:113512. [PMID: 38039129 PMCID: PMC10804286 DOI: 10.1016/j.celrep.2023.113512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA.
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - O Aung
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shannon Bevans-Fonti
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Carla Freire
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Huy Pho
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Luiz G S Branco
- University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA; Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
6
|
Singer ML, Shin MK, Kim LJ, Freire C, Aung O, Pho H, East JA, Sgambati FP, Latremoliere A, Pham LV, Polotsky VY. The efficacy of intranasal leptin for opioid-induced respiratory depression depends on sex and obesity state. Front Physiol 2023; 14:1320151. [PMID: 38162827 PMCID: PMC10756673 DOI: 10.3389/fphys.2023.1320151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Opioid-induced respiratory depression (OIRD) is the primary cause of death associated with opioids and individuals with obesity are particularly susceptible due to comorbid obstructive sleep apnea (OSA). Repeated exposure to opioids, as in the case of pain management, results in diminished therapeutic effect and/or the need for higher doses to maintain the same effect. With limited means to address the negative impact of repeated exposure it is critical to develop drugs that prevent deaths induced by opioids without reducing beneficial analgesia. Methods: We hypothesized that OIRD as a result of chronic opioid use can be attenuated by administration of IN leptin while also maintaining analgesia in both lean mice and mice with diet-induced obesity (DIO) of both sexes. To test this hypothesis, an opioid tolerance protocol was developed and a model of OIRD in mice chronically receiving morphine and tolerant to morphine analgesia was established. Subsequently, breathing was recorded by barometric plethysmography in four experimental groups: obese male, obese female, lean male, and lean female following acute administration of IN leptin. Respiratory data were complemented with measures of arterial blood gas. Operant behavioral assays were used to determine the impact of IN leptin on the analgesic efficacy of morphine. Results: Acute administration of IN leptin significantly attenuated OIRD in DIO male mice decreasing the apnea index by 58.9% and apnea time by 60.1%. In lean mice leptin was ineffective. Blood gas measures confirmed the effectiveness of IN leptin for preventing respiratory acidosis in DIO male mice. However, IN leptin was not effective in lean mice of both sexes and appeared to exacerbate acid-base disturbances in DIO female mice. Additionally, morphine caused a complete loss of temperature aversion which was not reduced by intranasal leptin indicating IN leptin does not decrease morphine analgesia. Discussion: IN leptin effectively treated OIRD in morphine-tolerant DIO male mice without impacting analgesia. In contrast, IN leptin had no effect in lean mice of either sex or DIO female mice. The arterial blood gas data were consistent with ventilatory findings showing that IN leptin reversed morphine-induced respiratory acidosis only in DIO male mice but not in other mouse groups. Finally, a hypercapnic sensitivity study revealed that IN leptin rescued minute ventilation under hypercapnic conditions only in DIO male mice, which suggests that differential responses to IN leptin are attributable to different leptin sensitivities depending on sex and the obesity status.
Collapse
Affiliation(s)
- Michele L. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O Aung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua A. East
- The Johns Hopkins Center for Interdisciplinary Sleep Research and Education (CISRE), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Frank P. Sgambati
- The Johns Hopkins Center for Interdisciplinary Sleep Research and Education (CISRE), Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y. Polotsky
- Department of Anesthesiology and Critical Care Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, WA, United States
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, WA, United States
| |
Collapse
|
7
|
Yoshikawa A, Iizuka M, Kanamaru M, Kamijo S, Ohtaki H, Izumizaki M. Exercise evaluation with metabolic and ventilatory responses and blood lactate concentration in mice. Respir Physiol Neurobiol 2023; 318:104163. [PMID: 37734454 DOI: 10.1016/j.resp.2023.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to clarify the differential exercise capacity between 2-month-old and 10-month-old mice using an incremental running test. Metabolic and ventilatory responses and blood lactate concentration were measured to evaluate exercise capacity. We examined whether incremental running test results reflected metabolic and ventilatory responses and blood lactate concentration observed during the steady-state running test. Metabolic response significantly declined with age, whereas ventilatory response was similar between the groups. A low-intensity/moderate exercise load of 10/min in an incremental running test was performed on both mice for 30 min. They showed a characteristic pattern in ventilatory response in 10-month mice. The results of incremental running tests didn't necessarily reflect the steady-state metabolic and ventilatory responses because some parameters showed an approximation and others did not in incremental and steady-state tests, which changed with age. Our study suggests metabolic and ventilatory responses depending on age and provides basic knowledge regarding the objective and quantitative assessment of treadmill running in an animal model.
Collapse
Affiliation(s)
- Akira Yoshikawa
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan; Division of Health Science Education, Showa University School of Nursing and Rehabilitation Sciences, Yokohama, Japan.
| | - Makito Iizuka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Mitsuko Kanamaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan; Faculty of Arts and Sciences at Fujiyoshida, Showa University, Yamanashi, Japan
| | - Shotaro Kamijo
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan; Department of Physiology, Showa University School of Pharmacy, Tokyo, Japan
| | - Hirokazu Ohtaki
- Department of Functional Neurobiology, Tokyo University of Pharmacy and Life Sciences, School of Pharmacy, Hachioji, Japan; Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
DeRuisseau LR, Receno CN, Cunningham C, Bates ML, Goodell M, Liang C, Eassa B, Pascolla J, DeRuisseau KC. Breathing and Oxygen Carrying Capacity in Ts65Dn and Down Syndrome. FUNCTION 2023; 4:zqad058. [PMID: 37954975 PMCID: PMC10634617 DOI: 10.1093/function/zqad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Individuals with Down syndrome (Ds) are at increased risk of respiratory infection, aspiration pneumonia, and apnea. The Ts65Dn mouse is a commonly used model of Ds, but there have been no formal investigations of awake breathing and respiratory muscle function in these mice. We hypothesized that breathing would be impaired in Ts65Dn vs. wild-type (WT), and would be mediated by both neural and muscular inputs. Baseline minute ventilation was not different at 3, 6, or 12 mo of age. However, VT/Ti, a marker of the neural drive to breathe, was lower in Ts65Dn vs. WT and central apneas were more prevalent. The response to breathing hypoxia was not different, but the response to hypercapnia was attenuated, revealing a difference in carbon dioxide sensing, and/or motor output in Ts65Dn. Oxygen desaturations were present in room air, demonstrating that ventilation may not be sufficient to maintain adequate oxygen saturation in Ts65Dn. We observed no differences in arterial PO2 or PCO2, but Ts65Dn had lower hemoglobin and hematocrit. A retrospective medical record review of 52,346 Ds and 52,346 controls confirmed an elevated relative risk of anemia in Ds. We also performed eupneic in-vivo electromyography and in-vitro muscle function and histological fiber typing of the diaphragm, and found no difference between strains. Overall, conscious respiration is impaired in Ts65Dn, is mediated by neural mechanisms, and results in reduced hemoglobin saturation. Oxygen carrying capacity is reduced in Ts65Dn vs. WT, and we demonstrate that individuals with Ds are also at increased risk of anemia.
Collapse
Affiliation(s)
- Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY 14850, USA
| | - Caitlin Cunningham
- Department of Statistics, Mathematics and Computer Science, Le Moyne College, Syracuse, NY 13214, USA
| | - Melissa L Bates
- Departments of Health and Human Physiology, Internal Medicine, and the Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Morgan Goodell
- Lake Erie College of Osteopathic Medicine, Elmira, NY 14901, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642,USA
| | - Brianna Eassa
- Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Jessica Pascolla
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Keith C DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Kim LJ, Pho H, Anokye-Danso F, Ahima RS, Pham LV, Polotsky VY. The effect of diet-induced obesity on sleep and breathing in female mice. Sleep 2023; 46:zsad158. [PMID: 37262435 PMCID: PMC10424169 DOI: 10.1093/sleep/zsad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity and male sex are main risk factors for sleep-disordered breathing (SDB). We have shown that male diet-induced obesity (DIO) mice develop hypoventilation, sleep apnea, and sleep fragmentation. The effects of DIO on breathing and sleep architecture in females have not been investigated. We hypothesized that female mice are less susceptible to the detrimental effects of DIO on sleep and SDB compared to males. Female DIO-C57BL/6J and lean C57BL/6J mice underwent 24-hour metabolic studies and were exposed to 8% CO2 to measure the hypercapnic ventilatory response (HCVR), and sleep studies. Ventilatory response to arousals was calculated as ratio of the average and peak minute ventilation (VE) during each arousal relative to the baseline VE. Breathing stability was measured with Poincaré plots of VE. Female obesity was associated with decreased metabolism, indicated by reduced oxygen consumption (VO2) and CO2 production (VCO2). VE in 8% CO2 and HCVR were significantly attenuated during wakefulness. NREM sleep duration was reduced in DIO mice, but REM sleep was preserved. Ventilation during NREM and REM sleep was augmented compared to lean mice. Arousal frequency was similar between groups. Obesity increased the frequency of spontaneous arousals, whereas the apnea index was 4-fold reduced in DIO compared to lean mice. Obesity decreased pre- and post-apnea arousals. Obese mice had more stable breathing with reduced ventilatory response to arousals, compared to lean females. We conclude that obese female mice are protected against SDB, which appears to be related to an attenuated CO2 responsiveness, compared to the lean state.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Alvente S, Matteoli G, Miglioranza E, Zoccoli G, Bastianini S. How to study sleep apneas in mouse models of human pathology. J Neurosci Methods 2023; 395:109923. [PMID: 37459897 DOI: 10.1016/j.jneumeth.2023.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sleep apnea, the most widespread sleep-related breathing disorder (SBD), consists of recurrent episodes of breathing cessation during sleep. This condition can be classified as either central (CSA) or obstructive (OSA) sleep apnea, with the latest being the most common and toxic. Due to the complexity of living organisms, animal models and, particularly, mice still represent an essential tool for the study of SBD. In the present review we first discuss the methodological pros and cons in the use of whole-body plethysmography to coupling respiratory and sleep measurements and to characterize CSA and OSA in mice; then, we draw an updated and objective picture of the methods used so far in the study of sleep apnea in mice. Most of the studies present in the literature used intermittent hypoxia to mimic OSA in mice and to investigate consequent pathological correlates. On the contrary, few studies using genetic manipulation or high-fat diets investigated the pathogenesis or potential treatments of sleep apnea. To date, mice lacking orexins, hemeoxygenase-2, monoamine oxidase A, Phox2b or Cdkl5 can be considered validated mouse models of sleep apnea. Moreover, genetically- or diet-induced obese mice, and mice recapitulating Down syndrome were proposed as OSA models. In conclusion, our review shows that despite the growing interest in the field and the need of new therapeutical approaches, technical complexity and inter-study variability strongly limit the availability of validated mouse of sleep apnea, which are essential in biomedical research.
Collapse
Affiliation(s)
- Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elena Miglioranza
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
11
|
Eden MJ, Matz J, Garg P, Gonzalez MP, McElderry K, Wang S, Gollner MJ, Oakes JM, Bellini C. Prolonged smoldering Douglas fir smoke inhalation augments respiratory resistances, stiffens the aorta, and curbs ejection fraction in hypercholesterolemic mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160609. [PMID: 36470384 PMCID: PMC10699119 DOI: 10.1016/j.scitotenv.2022.160609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 μm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 μL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 μm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 μm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 μm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, MA, USA
| | - Priya Garg
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | | | - Siyan Wang
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Michael J Gollner
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, MA, USA.
| |
Collapse
|
12
|
Kim LJ, Alexandre C, Pho H, Latremoliere A, Polotsky VY, Pham LV. Diet-induced obesity leads to sleep fragmentation independently of the severity of sleep-disordered breathing. J Appl Physiol (1985) 2022; 133:1284-1294. [PMID: 36201322 PMCID: PMC9678416 DOI: 10.1152/japplphysiol.00386.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with sleep-disordered breathing (SDB) and unrefreshing sleep. Residual daytime sleepiness and sleep impairments often persist after SDB treatment in patients with obesity, which suggests an independent effect of obesity on breathing and sleep. However, examining the relationship between sleep architecture and SDB in patients with obesity is complex and can be confounded by multiple factors. The main goal of this study was to examine the relationship between obesity-related changes in sleep architecture and SDB. Sleep recordings were performed in 15 lean C57BL/6J and 17 diet-induced obesity (DIO) mice of the same genetic background. Arousals from sleep and apneas were manually scored. Respiratory arousals were classified as events associated with ≥30% drops in minute ventilation (VE) from baseline. We applied Poincaré analysis of VE during sleep to estimate breathing variability. Obesity augmented the frequency of arousals by 45% and this increase was independent of apneas. Respiratory arousals comprised only 15% of the arousals in both groups of mice. Breathing variability during non-rapid-eye-movment (NREM) sleep was significantly higher in DIO mice, but it was not associated with arousal frequency. Our results suggest that obesity induces sleep fragmentation independently of SDB severity.NEW & NOTEWORTHY Our diet-induced obesity (DIO) model reproduces sleep features of human obesity, including sleep fragmentation, increased apnea frequency, and larger breathing variability. DIO induces sleep fragmentation independently of apnea severity. Sleep fragmentation in DIO mice is mainly attributed to non-respiratory arousals. Increased breathing variability during sleep did not account for the higher arousal frequency in DIO. Our results provide a rationale to examine sleep in patients with obesity even when they are adequately treated for sleep-disordered breathing.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chloe Alexandre
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alban Latremoliere
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Kim LJ, Shin MK, Pho H, Tang WY, Hosamane N, Anokye-Danso F, Ahima RS, Sham JSK, Pham LV, Polotsky VY. TRPM7 channels regulate breathing during sleep in obesity by acting peripherally in the carotid bodies. J Physiol 2022; 600:5145-5162. [PMID: 36214387 PMCID: PMC11991346 DOI: 10.1113/jp283678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 01/05/2023] Open
Abstract
Sleep-disordered breathing (SDB) affects over 50% of obese individuals. Exaggerated hypoxic chemoreflex is a cardinal trait of SDB in obesity. We have shown that leptin acts in the carotid bodies (CB) to augment chemoreflex and that leptin activates the transient receptor potential melastatin 7 (TRPM7) channel. However, the effect of leptin-TRPM7 signalling in CB on breathing and SDB has not been characterized in diet-induced obesity (DIO). We hypothesized that leptin acts via TRPM7 in the CB to increase chemoreflex leading to SDB in obesity. DIO mice were implanted with EEG/EMG electrodes and transfected with Leprb short hairpin RNA (shRNA) or Trpm7 shRNA vs. control shRNA in the CB area bilaterally. Mice underwent a full-polysomnography and metabolic studies at baseline and after transfection. Ventilatory responses to hypoxia and hypercapnia were assessed during wakefulness. Leprb and Trpm7 were upregulated and their promoters were demethylated in the CB of DIO mice. Leprb knockdown in the CB did not significantly affect ventilation. Trpm7 knockdown in the CB stimulated breathing during sleep in normoxia. These effects were not driven by changes in CB chemosensitivity or metabolism. Under sustained hypoxia, Trpm7 shRNA in the CB augmented ventilation during sleep, but decreased oxyhaemoglobin saturation. We conclude that the suppression of TRPM7 in the CB improved sleep-related hypoventilation and that the respiratory effects of CB TRPM7 channels in obesity are independent of leptin. TRPM7 signalling in the CB could be a therapeutic target for the treatment of obesity-related SDB. KEY POINTS: The leptin-TRPM7 axis in the carotid bodies may play an important role in the pathogenesis of sleep-disordered breathing. TRPM7 channels regulate breathing during sleep by acting peripherally in the carotid bodies. Suppression of TRPM7 signalling in the carotid bodies improves the obesity-induced hypoventilation in mice. Pharmacological blockade of TRPM7 channels in the carotid bodies could be a therapy for sleep-disordered breathing in obesity.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan-Yee Tang
- Department of Occupational and Environmental Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Qian L, Rawashdeh O, Kasas L, Milne MR, Garner N, Sankorrakul K, Marks N, Dean MW, Kim PR, Sharma A, Bellingham MC, Coulson EJ. Cholinergic basal forebrain degeneration due to sleep-disordered breathing exacerbates pathology in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:6543. [PMID: 36323689 PMCID: PMC9630433 DOI: 10.1038/s41467-022-33624-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Although epidemiological studies indicate that sleep-disordered breathing (SDB) such as obstructive sleep apnea is a strong risk factor for the development of Alzheimer's disease (AD), the mechanisms of the risk remain unclear. Here we developed a method of modeling SDB in mice that replicates key features of the human condition: altered breathing during sleep, sleep disruption, moderate hypoxemia, and cognitive impairment. When we induced SDB in a familial AD model, the mice displayed exacerbation of cognitive impairment and the pathological features of AD, including increased levels of amyloid-beta and inflammatory markers, as well as selective degeneration of cholinergic basal forebrain neurons. These pathological features were not induced by chronic hypoxia or sleep disruption alone. Our results also revealed that the cholinergic neurodegeneration was mediated by the accumulation of nuclear hypoxia inducible factor 1 alpha. Furthermore, restoring blood oxygen levels during sleep to prevent hypoxia prevented the pathological changes induced by the SDB. These findings suggest a signaling mechanism whereby SDB induces cholinergic basal forebrain degeneration.
Collapse
Affiliation(s)
- Lei Qian
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Oliver Rawashdeh
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Leda Kasas
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Michael R. Milne
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Nicholas Garner
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Kornraviya Sankorrakul
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.10223.320000 0004 1937 0490Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Nicola Marks
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew W. Dean
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Pu Reum Kim
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Aanchal Sharma
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Mark C. Bellingham
- grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Elizabeth J. Coulson
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
15
|
Amorim MR, Aung O, Mokhlesi B, Polotsky VY. Leptin-mediated neural targets in obesity hypoventilation syndrome. Sleep 2022; 45:zsac153. [PMID: 35778900 PMCID: PMC9453616 DOI: 10.1093/sleep/zsac153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity hypoventilation syndrome (OHS) is defined as daytime hypercapnia in obese individuals in the absence of other underlying causes. In the United States, OHS is present in 10%-20% of obese patients with obstructive sleep apnea and is linked to hypoventilation during sleep. OHS leads to high cardiorespiratory morbidity and mortality, and there is no effective pharmacotherapy. The depressed hypercapnic ventilatory response plays a key role in OHS. The pathogenesis of OHS has been linked to resistance to an adipocyte-produced hormone, leptin, a major regulator of metabolism and control of breathing. Mechanisms by which leptin modulates the control of breathing are potential targets for novel therapeutic strategies in OHS. Recent advances shed light on the molecular pathways related to the central chemoreceptor function in health and disease. Leptin signaling in the nucleus of the solitary tract, retrotrapezoid nucleus, hypoglossal nucleus, and dorsomedial hypothalamus, and anatomical projections from these nuclei to the respiratory control centers, may contribute to OHS. In this review, we describe current views on leptin-mediated mechanisms that regulate breathing and CO2 homeostasis with a focus on potential therapeutics for the treatment of OHS.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - O Aung
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Babak Mokhlesi
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Eden MJ, Farra YM, Matz J, Bellini C, Oakes JM. Pharmacological and physiological response in Apoe -/- mice exposed to cigarette smoke or e-cigarette aerosols. Inhal Toxicol 2022; 34:260-274. [PMID: 35793285 DOI: 10.1080/08958378.2022.2086948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Electronic cigarettes (e-cigs) are popular nicotine delivery devices, yet the health effects remain unclear. To determine equivalent biomarkers, we characterized the immediate response in Apoe-/- mice exposed to tank/box-mod e-cig (e-cigtank), pod e-cig (e-cigpod), or cig smoke. MATERIALS AND METHODS Reproducible puff profiles were generated for each aerosol and delivered to Apoe-/- mice via a nose-only exposure system. Serum cotinine levels were quantified at various time points through ELISA and utilized to model cotinine pharmacokinetics. In addition, particle size measurements and mouse respiratory function were characterized to calculate particle dosimetry. RESULTS AND DISCUSSION Cig and e-cigtank particles were lognormally distributed with similar count median diameters (cig: 178 ± 2, e-cigtank: 200 ± 34nm), while e-cigpod particles were bimodally distributed and smaller (116 ± 13 and 13.3 ± 0.4 nm). Minute volumes decreased with cig exposure (5.4 ± 2.7 mL/min) compared to baseline (90.8 ± 11.6 mL/min), and less so with e-cigtank (45.2 ± 9.2 mL/min) and e-cigpod exposures (58.6 ± 6.8 mL/min), due to periods of apnea in the cig exposed groups. Cotinine was absorbed and eliminated most rapidly in the e-cigpod group (tmax = 14.5; t1/2' = 51.9 min), whereas cotinine was absorbed (cig: 50.4, e-cigtank: 40.1 min) and eliminated (cig: 104.6, e-cigtank: 94.1 min) similarly in the cig and e-cigtank groups. For exposure times which equate the area under the cotinine-concentration curve, ∼6.4× (e-cigtank) and 4.6× (e-cigpod) more nicotine deposited in e-cig compared to cig exposed mice. CONCLUSIONS This study provides a basis for incorporating cotinine pharmacokinetics into preclinical exposure studies, allowing for longitudinal studies of structural and functional changes due to exposure.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
17
|
Fares R, Flénet T, Vial J, Ravaz M, Roger V, Bory C, Baudet S. Non invasive jacketed telemetry in socially-housed rats for a combined assessment of respiratory system, electrocardiogram and activity using the DECRO system. J Pharmacol Toxicol Methods 2022; 117:107195. [PMID: 35779850 DOI: 10.1016/j.vascn.2022.107195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/08/2023]
Abstract
Respiratory and cardiovascular systems are among the vital organ systems that should be studied in safety pharmacology core battery test. Non-invasive jacketed external telemetry technology that enables concomitant monitoring of both systems has been available and used widely for non-rodent species. Recently, the DECRO system, a miniaturized technology system in line with the "3Rs" principles, has been developed to provide a similar approach in rats. However, data to evaluate this system in socially-housed rats is lacking. Therefore, the objectives of this study were to determine the tolerability and the material integrity of this novel solution in pair-housed rats in two conditions: i) in a single session of 22 h simulating a stand-alone safety pharmacology study design, and ii) in three repeated sessions of 22 h each, simulating the inclusion of safety pharmacology endpoints in a 1-month toxicology study. In both conditions, the GABAB receptor agonist baclofen was used as a reference compound inducing cardiorespiratory changes. Our results provided evidence that this novel solution was well tolerated, the material was resistant to deterioration and that it allowed the accurate recording, in a non-invasive manner, of cardiorespiratory parameters and activity level in freely moving, pair-housed rats in the above two conditions. In addition, the expected respiratory depressant effects of baclofen were recorded. These results pave the way for considering this novel solution as an enhanced approach for nonclinical safety assessment in rats.
Collapse
Affiliation(s)
- Raafat Fares
- Etisense SAS, 60A Avenue Rockefeller, 69008 Lyon, France.
| | - Timothé Flénet
- Etisense SAS, 60A Avenue Rockefeller, 69008 Lyon, France.
| | - Jonathan Vial
- Charles River Laboratories France Safety Assessment SAS, Department of Safety Pharmacology, 329, Impasse du Domaine Rozier, 69210 Saint Germain-Nuelles, France
| | - Marine Ravaz
- Charles River Laboratories France Safety Assessment SAS, Department of Safety Pharmacology, 329, Impasse du Domaine Rozier, 69210 Saint Germain-Nuelles, France
| | - Virginie Roger
- Charles River Laboratories France Safety Assessment SAS, Department of Safety Pharmacology, 329, Impasse du Domaine Rozier, 69210 Saint Germain-Nuelles, France
| | - Christophe Bory
- Charles River Laboratories France Safety Assessment SAS, Department of Safety Pharmacology, 329, Impasse du Domaine Rozier, 69210 Saint Germain-Nuelles, France
| | - Stéphane Baudet
- Charles River Laboratories France Safety Assessment SAS, Department of Safety Pharmacology, 329, Impasse du Domaine Rozier, 69210 Saint Germain-Nuelles, France.
| |
Collapse
|
18
|
Pho H, Amorim MR, Qiu Q, Shin M, Kim LJ, Anokye‐Danso F, Jun JJ, Ahima RS, Branco LGS, Kuhn DM, Mateika JH, Polotsky VY. The effect of brain serotonin deficiency on breathing is magnified by age. Physiol Rep 2022; 10:e15245. [PMID: 35581741 PMCID: PMC9114658 DOI: 10.14814/phy2.15245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/13/2022] [Indexed: 11/24/2022] Open
Abstract
Serotonin is an important mediator modulating behavior, metabolism, sleep, control of breathing, and upper airway function, but the role of aging in serotonin-mediated effects has not been previously defined. Our study aimed to examine the effect of brain serotonin deficiency on breathing during sleep and metabolism in younger and older mice. We measured breathing during sleep, hypercapnic ventilatory response (HCVR), CO2 production (VCO2 ), and O2 consumption (VO2 ) in 16-18-week old and 40-44-week old mice with deficiency of tryptophan hydroxylase 2 (Tph2), which regulates serotonin synthesis specifically in neurons, compared to Tph2+/+ mice. As expected, aging decreased VCO2 and VO2 . Tph2 knockout resulted in an increase in both metabolic indexes and no interaction between age and the genotype was observed. During wakefulness, neither age nor genotype had an effect on minute ventilation. The genotype did not affect hypercapnic sensitivity in younger mice. During sleep, Tph2-/- mice showed significant decreases in maximal inspiratory flow in NREM sleep, respiratory rate, and oxyhemoglobin saturation in REM sleep, compared to wildtype, regardless of age. Neither serotonin deficiency nor aging affected the frequency of flow limited breaths (a marker of upper airway closure) or apneas. Serotonin deficiency increased the amount and efficiency of sleep only in older animals. In conclusion, younger Tph2-/- mice were able to defend their ventilation and phenotypically did not differ from wildtype during wakefulness. In contrast, both young and old Tph2-/- mice showed sleep-related hypoventilation, which was manifested by hypoxemia during REM sleep.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mateus R. Amorim
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Qingchao Qiu
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
| | - Mi‐Kyung Shin
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lenise J. Kim
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Frederick Anokye‐Danso
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan J. Jun
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rexford S. Ahima
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Luiz G. S. Branco
- Dental School of Ribeirão PretoUniversity of São PauloSão PauloBrazil
| | - Donald M. Kuhn
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichiganUSA
- John D. Dingell Veterans Affairs Medical CenterDetroitMichiganUSA
| | - Jason H. Mateika
- Department of PhysiologyWayne State UniversityDetroitMichiganUSA
- John D. Dingell Veterans Affairs Medical CenterDetroitMichiganUSA
- Department of Internal MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
19
|
Amorim MR, Amin R, Polotsky VY. Of Mice and Babies: PHOX2B and Obstructive Apneas in Congenital Central Hypoventilation Syndrome. Am J Respir Crit Care Med 2021; 204:1128-1130. [PMID: 34634223 PMCID: PMC8759302 DOI: 10.1164/rccm.202108-1989ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Mateus Ramos Amorim
- Department of Medicine Johns Hopkins University School of Medicine Baltimore, Maryland
| | - Raouf Amin
- Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati, Ohio
| | - Vsevolod Y Polotsky
- Department of Medicine Johns Hopkins University School of Medicine Baltimore, Maryland
| |
Collapse
|
20
|
Bartolucci ML, Berteotti C, Alvente S, Bastianini S, Guidi S, Lo Martire V, Matteoli G, Silvani A, Stagni F, Bosi M, Alessandri-Bonetti G, Bartesaghi R, Zoccoli G. Obstructive sleep apneas naturally occur in mice during REM sleep and are highly prevalent in a mouse model of Down syndrome. Neurobiol Dis 2021; 159:105508. [PMID: 34509609 DOI: 10.1016/j.nbd.2021.105508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
STUDY OBJECTIVES The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. METHODS In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. RESULTS OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. CONCLUSIONS Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies.
Collapse
Affiliation(s)
- Maria Lavinia Bartolucci
- Section of Orthodontics, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy; PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sara Alvente
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Stefano Bastianini
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Gabriele Matteoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Alessandro Silvani
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Marcello Bosi
- Sleep Disorder Center, Villa Igea-Ospedali Privati Forlì, Forlì, Italy
| | - Giulio Alessandri-Bonetti
- Section of Orthodontics, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| |
Collapse
|
21
|
Kim LJ, Shin MK, Pho H, Otvos L, Tufik S, Andersen ML, Pham LV, Polotsky VY. Leptin Receptor Blockade Attenuates Hypertension, but Does Not Affect Ventilatory Response to Hypoxia in a Model of Polygenic Obesity. Front Physiol 2021; 12:688375. [PMID: 34276408 PMCID: PMC8283021 DOI: 10.3389/fphys.2021.688375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. Methods Male NZO mice, 12–13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. Results Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. Conclusion Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.
Collapse
Affiliation(s)
- Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laszlo Otvos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Arrevus, Inc., Raleigh, NC, United States.,OLPE, LLC, Audubon, PA, United States
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Amorim MR, Dergacheva O, Fleury-Curado T, Pho H, Freire C, Mendelowitz D, Branco LGS, Polotsky VY. The Effect of DREADD Activation of Leptin Receptor Positive Neurons in the Nucleus of the Solitary Tract on Sleep Disordered Breathing. Int J Mol Sci 2021; 22:6742. [PMID: 34201760 PMCID: PMC8269100 DOI: 10.3390/ijms22136742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/14/2022] Open
Abstract
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway due to the loss of upper airway muscle tone during sleep. OSA is highly prevalent, especially in obesity. There is no pharmacotherapy for OSA. Previous studies have demonstrated the role of leptin, an adipose-tissue-produced hormone, as a potent respiratory stimulant. Leptin signaling via a long functional isoform of leptin receptor, LEPRb, in the nucleus of the solitary tract (NTS), has been implicated in control of breathing. We hypothesized that leptin acts on LEPRb positive neurons in the NTS to increase ventilation and maintain upper airway patency during sleep in obese mice. We expressed designer receptors exclusively activated by designer drugs (DREADD) selectively in the LEPRb positive neurons of the NTS of Leprb-Cre-GFP mice with diet-induced obesity (DIO) and examined the effect of DREADD ligand, J60, on tongue muscle activity and breathing during sleep. J60 was a potent activator of LEPRb positive NTS neurons, but did not stimulate breathing or upper airway muscles during NREM and REM sleep. We conclude that, in DIO mice, the stimulating effects of leptin on breathing during sleep are independent of LEPRb signaling in the NTS.
Collapse
Affiliation(s)
- Mateus R. Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (T.F.-C.); (H.P.); (C.F.)
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil;
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA; (O.D.); (D.M.)
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (T.F.-C.); (H.P.); (C.F.)
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (T.F.-C.); (H.P.); (C.F.)
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (T.F.-C.); (H.P.); (C.F.)
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA; (O.D.); (D.M.)
| | - Luiz G. S. Branco
- Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil;
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; (T.F.-C.); (H.P.); (C.F.)
| |
Collapse
|
23
|
Pho H, Berger S, Freire C, Kim LJ, Shin MK, Streeter SR, Hosamane N, Cabassa ME, Anokye-Danso F, Dergacheva O, Amorim MR, Fleury-Curado T, Jun JC, Schwartz AR, Ahima RS, Mendelowitz D, Polotsky VY. Leptin receptor expression in the dorsomedial hypothalamus stimulates breathing during NREM sleep in db/db mice. Sleep 2021; 44:6149135. [PMID: 33624805 PMCID: PMC8193564 DOI: 10.1093/sleep/zsab046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY OBJECTIVES Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.
Collapse
Affiliation(s)
- Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nishitha Hosamane
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meaghan E Cabassa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick Anokye-Danso
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mateus R Amorim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. Vsevolod (Seva) Y. Polotsky, Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Johns Hopkins Asthma and Allergy Center, Rm 4B65, Baltimore, MD 21224.
| |
Collapse
|
24
|
Baddam P, Biancardi V, Roth DM, Eaton F, Thereza-Bussolaro C, Mandal R, Wishart DS, Barr A, MacLean J, Flores-Mir C, Pagliardini S, Graf D. Neural crest-specific deletion of Bmp7 leads to midfacial hypoplasia, nasal airway obstruction, and disordered breathing modelling Obstructive Sleep Apnea. Dis Model Mech 2021; 14:dmm.047738. [PMID: 33431521 PMCID: PMC7888714 DOI: 10.1242/dmm.047738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Pediatric obstructive sleep apnea (OSA), a relatively common sleep-related breathing disorder (SRBD) affecting approximately 1-5% of children, is often caused by anatomical obstruction and/or collapse of the nasal and/or pharyngeal airways. The resulting sleep disruption and intermittent hypoxia lead to various systemic morbidities. Predicting the development of OSA from craniofacial features alone is currently not possible and a controversy remains if upper airway obstruction facilitates reduced midfacial growth or vice-versa. Currently, there is no rodent model that recapitulates both the development of craniofacial abnormalities and upper airway obstruction to address these questions. Here, we describe that mice with a neural crest-specific deletion of Bmp7 (Bmp7ncko) present with shorter, more acute angled cranial base, midfacial hypoplasia, nasal septum deviation, turbinate swelling and branching defects, and nasal airway obstruction. Interestingly, several of these craniofacial features develop after birth during periods of rapid midfacial growth and precede the development of an upper airway obstruction. We identified that in this rodent model, no single feature appeared to predict upper airway obstruction, but the sum of those features resulted in a reduced breathing frequency, apneas and overall reduced oxygen consumption. Metabolomics analysis of serum from peripheral blood identified increased levels of hydroxyproline, a metabolite upregulated under hypoxic conditions. As this model recapitulates many features observed in OSA, it offers unique opportunities for studying how upper airway obstruction affects breathing physiology and leads to systemic morbidities.
Collapse
Affiliation(s)
- Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Vivian Biancardi
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Equal contributions
| | - Daniela M Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Equal contributions
| | - Farah Eaton
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Claudine Thereza-Bussolaro
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Dentistry, Hospital dos Pinheiros, UNIFASIPE, Sinop, Mato Grosso, Brazil
| | - Rupasri Mandal
- The Metabolomics Innovation Centre, Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - David S Wishart
- The Metabolomics Innovation Centre, Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Amy Barr
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Joanna MacLean
- Department of Pediatrics and the Women & Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta
- Stollery Children's Hospital; Edmonton, AB, Canada
| | - Carlos Flores-Mir
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Karklus AA, Sladky KK, Johnson SM. Respiratory and antinociceptive effects of dexmedetomidine and doxapram in ball pythons ( Python regius). Am J Vet Res 2020; 82:11-21. [PMID: 33369496 DOI: 10.2460/ajvr.82.1.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effects of dexmedetomidine, doxapram, and dexmedetomidine plus doxapram on ventilation ([Formula: see text]e), breath frequency, and tidal volume (Vt) in ball pythons (Python regius) and of doxapram on the thermal antinociceptive efficacy of dexmedetomidine. ANIMALS 14 ball pythons. PROCEDURES Respiratory effects of dexmedetomidine and doxapram were assessed with whole-body, closed-chamber plethysmography, which allowed for estimates of [Formula: see text]e and Vt. In the first experiment of this study with a complete crossover design, snakes were injected, SC, with saline (0.9% NaCl) solution, dexmedetomidine (0.1 mg/kg), doxapram (10 mg/kg), or dexmedetomidine and doxapram, and breath frequency, [Formula: see text]e, and Vt were measured before and every 30 minutes thereafter, through 240 minutes. In the second experiment, antinociceptive efficacy of saline solution, dexmedetomidine, and dexmedetomidine plus doxapram was assessed by measuring thermal withdrawal latencies before and 60 minutes after SC injection. RESULTS Dexmedetomidine significantly decreased breath frequency and increased Vt but did not affect [Formula: see text]e at all time points, compared with baseline. Doxapram significantly increased [Formula: see text]e, breath frequency, and Vt at 60 minutes after injection, compared with saline solution. The combination of dexmedetomidine and doxapram, compared with dexmedetomidine alone, significantly increased [Formula: see text]e at 30 and 60 minutes after injection and did not affect breath frequency and Vt at all time points. Thermal withdrawal latencies significantly increased when snakes received dexmedetomidine or dexmedetomidine plus doxapram, versus saline solution. CONCLUSIONS AND CLINICAL RELEVANCE Concurrent administration of doxapram may mitigate the dexmedetomidine-induced reduction of breathing frequency without disrupting thermal antinociceptive efficacy in ball pythons.
Collapse
|
26
|
Freire C, Pho H, Kim LJ, Wang X, Dyavanapalli J, Streeter SR, Fleury-Curado T, Sennes LU, Mendelowitz D, Polotsky VY. Intranasal Leptin Prevents Opioid-induced Sleep-disordered Breathing in Obese Mice. Am J Respir Cell Mol Biol 2020; 63:502-509. [PMID: 32603263 DOI: 10.1165/rcmb.2020-0117oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Respiratory depression is the main cause of morbidity and mortality associated with opioids. Obesity increases opioid-related mortality, which is mostly related to comorbid obstructive sleep apnea. Naloxone, a μ-opioid receptor blocker, is an effective antidote, but it reverses analgesia. Like humans with obesity, mice with diet-induced obesity hypoventilate during sleep and develop obstructive sleep apnea, which can be treated with intranasal leptin. We hypothesized that intranasal leptin reverses opioid-induced sleep-disordered breathing in obese mice without decreasing analgesia. To test this hypothesis, mice with diet-induced obesity were treated with morphine at 10 mg/kg subcutaneously and with leptin or placebo intranasally. Sleep and breathing were recorded by barometric plethysmography, and pain sensitivity was measured by the tail-flick test. Excitatory postsynaptic currents were recorded in vitro from hypoglossal motor neurons after the application of the μ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin and leptin. Morphine dramatically increased the frequency of apneas and greatly increased the severity of hypoventilation and obstructive sleep apnea. Leptin decreased the frequency of apneas, improved obstructive sleep apnea, and completely reversed hypoventilation, whereas morphine analgesia was enhanced. Our in vitro studies demonstrated that [D-Ala2, N-MePhe4, Gly-ol]-enkephalin reduced the frequency of excitatory postsynaptic currents in hypoglossal motoneurons and that application of leptin restored excitatory synaptic neurotransmission. Our findings suggest that intranasal leptin may prevent opioid respiratory depression during sleep in patients with obesity receiving opioids without reducing analgesia.
Collapse
Affiliation(s)
- Carla Freire
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil; and
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xin Wang
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| | - Stone R Streeter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomaz Fleury-Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Otolaryngology, University of São Paulo, São Paulo, Brazil; and
| | - Luiz U Sennes
- Department of Otolaryngology, University of São Paulo, São Paulo, Brazil; and
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Kloefkorn H, Aiani LM, Lakhani A, Nagesh S, Moss A, Goolsby W, Rehg JM, Pedersen NP, Hochman S. Noninvasive three-state sleep-wake staging in mice using electric field sensors. J Neurosci Methods 2020; 344:108834. [PMID: 32619585 PMCID: PMC7454007 DOI: 10.1016/j.jneumeth.2020.108834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
STUDY OBJECTIVE Validate a novel method for sleep-wake staging in mice using noninvasive electric field (EF) sensors. METHODS Mice were implanted with electroencephalogram (EEG) and electromyogram (EMG) electrodes and housed individually. Noninvasive EF sensors were attached to the exterior of each chamber to record respiration and other movement simultaneously with EEG, EMG, and video. A sleep-wake scoring method based on EF sensor data was developed with reference to EEG/EMG and then validated by three expert scorers. Additionally, novice scorers without sleep-wake scoring experience were self-trained to score sleep using only the EF sensor data, and results were compared to those from expert scorers. Lastly, ability to capture three-state sleep-wake staging with EF sensors attached to traditional mouse home-cages was tested. RESULTS EF sensors quantified wake, rapid eye movement (REM) sleep, and non-REM sleep with high agreement (>93%) and comparable inter- and intra-scorer error as EEG/EMG. Novice scorers successfully learned sleep-wake scoring using only EF sensor data and scoring criteria, and achieved high agreement with expert scorers (>91%). When applied to traditional home-cages, EF sensors enabled classification of three-state (wake, NREM and REM) sleep-wake independent of EEG/EMG. CONCLUSIONS EF sensors score three-state sleep-wake architecture with high agreement to conventional EEG/EMG sleep-wake scoring 1) without invasive surgery, 2) from outside the home-cage, and 3) and without requiring specialized training or equipment. EF sensors provide an alternative method to assess rodent sleep for animal models and research laboratories in which EEG/EMG is not possible or where noninvasive approaches are preferred.
Collapse
Affiliation(s)
- H Kloefkorn
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - L M Aiani
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - A Lakhani
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - S Nagesh
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - A Moss
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - W Goolsby
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - J M Rehg
- School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - N P Pedersen
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - S Hochman
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Kim LJ, Polotsky VY. Carotid Body and Metabolic Syndrome: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2020; 21:E5117. [PMID: 32698380 PMCID: PMC7404212 DOI: 10.3390/ijms21145117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
The carotid body (CB) is responsible for the peripheral chemoreflex by sensing blood gases and pH. The CB also appears to act as a peripheral sensor of metabolites and hormones, regulating the metabolism. CB malfunction induces aberrant chemosensory responses that culminate in the tonic overactivation of the sympathetic nervous system. The sympatho-excitation evoked by CB may contribute to the pathogenesis of metabolic syndrome, inducing systemic hypertension, insulin resistance and sleep-disordered breathing. Several molecular pathways are involved in the modulation of CB activity, and their pharmacological manipulation may lead to overall benefits for cardiometabolic diseases. In this review, we will discuss the role of the CB in the regulation of metabolism and in the pathogenesis of the metabolic dysfunction induced by CB overactivity. We will also explore the potential pharmacological targets in the CB for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Lenise J. Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA;
| | | |
Collapse
|
29
|
Barros D, García-Río F. Obstructive sleep apnea and dyslipidemia: from animal models to clinical evidence. Sleep 2020; 42:5204276. [PMID: 30476296 DOI: 10.1093/sleep/zsy236] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/02/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023] Open
Abstract
Lipid metabolism deregulation constitutes the pathogenic basis for the development of atherosclerosis and justifies a high incidence of cardiovascular-related morbidity and mortality. Some data suggest that dyslipidemia may be associated with sleep-disordered breathing, mainly obstructive sleep apnea (OSA), due to alterations in fundamental biochemical processes, such as intermittent hypoxia (IH). The aim of this systematic review was to identify and critically evaluate the current evidence supporting the existence of a possible relationship between OSA and alterations in lipid metabolism. Much evidence shows that, during the fasting state, OSA and IH increase lipid delivery from the adipose tissue to the liver through an up-regulation of the sterol regulatory element-binding protein-1 and stearoyl-CoA desaturase-1, increasing the synthesis of cholesterol esters and triglycerides. In the postprandial state, lipoprotein clearance is delayed due to lower lipoprotein lipase activity, probably secondary to IH-up-regulation of angiopoietin-like protein 4 and decreased activity of the peroxisome proliferator-activated receptor alpha. Moreover, oxidative stress can generate dysfunctional oxidized lipids and reduce the capacity of high-density lipoproteins (HDL) to prevent low-density lipoprotein (LDL) oxidation. In the clinical field, several observational studies and a meta-regression analysis support the existence of a link between OSA and dyslipidemia. Although there is evidence of improved lipid profile after apnea-hypopnea suppression with continuous positive airway pressure (CPAP), the majority of the data come from observational studies. In contrast, randomized controlled trials evaluating the effects of CPAP on lipid metabolism present inconclusive results and two meta-analyses provide contradictory evidence.
Collapse
Affiliation(s)
- David Barros
- Servicio de Neumología, Hospital Montecelo, Pontevedra, Spain
| | - Francisco García-Río
- Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Berger S, Pho H, Fleury-Curado T, Bevans-Fonti S, Younas H, Shin MK, Jun JC, Anokye-Danso F, Ahima RS, Enquist LW, Mendelowitz D, Schwartz AR, Polotsky VY. Intranasal Leptin Relieves Sleep-disordered Breathing in Mice with Diet-induced Obesity. Am J Respir Crit Care Med 2020; 199:773-783. [PMID: 30309268 DOI: 10.1164/rccm.201805-0879oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Leptin treats upper airway obstruction and alveolar hypoventilation in leptin-deficient ob/ob mice. However, obese humans and mice with diet-induced obesity (DIO) are resistant to leptin because of poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep-disordered breathing in obesity. OBJECTIVES To assess if intranasal leptin can treat obesity hypoventilation and upper airway obstruction during sleep in mice with DIO. METHODS Male C57BL/6J mice were fed with a high-fat diet for 16 weeks. A single dose of leptin (0.4 mg/kg) or BSA (vehicle) were administered intranasally or intraperitoneally, followed by either sleep studies (n = 10) or energy expenditure measurements (n = 10). A subset of mice was treated with leptin daily for 14 days for metabolic outcomes (n = 20). In a separate experiment, retrograde viral tracers were used to examine connections between leptin receptors and respiratory motoneurons. MEASUREMENTS AND MAIN RESULTS Acute intranasal, but not intraperitoneal, leptin decreased the number of oxygen desaturation events in REM sleep, and increased ventilation in non-REM and REM sleep, independently of metabolic effects. Chronic intranasal leptin decreased food intake and body weight, whereas intraperitoneal leptin had no effect. Intranasal leptin induced signal transducer and activator of transcription 3 phosphorylation in hypothalamic and medullary centers, whereas intraperitoneal leptin had no effect. Leptin receptor-positive cells were synaptically connected to respiratory motoneurons. CONCLUSIONS In mice with DIO, intranasal leptin bypassed leptin resistance and significantly attenuated sleep-disordered breathing independently of body weight.
Collapse
Affiliation(s)
- Slava Berger
- 1 Division of Pulmonary and Critical Care Medicine and
| | - Huy Pho
- 1 Division of Pulmonary and Critical Care Medicine and
| | | | | | - Haris Younas
- 1 Division of Pulmonary and Critical Care Medicine and
| | - Mi-Kyung Shin
- 1 Division of Pulmonary and Critical Care Medicine and
| | | | - Frederick Anokye-Danso
- 2 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rexford S Ahima
- 2 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lynn W Enquist
- 3 Department of Molecular Biology and.,4 Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey; and
| | - David Mendelowitz
- 5 Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | | | | |
Collapse
|
31
|
Kim LJ, Freire C, Fleury Curado T, Jun JC, Polotsky VY. The Role of Animal Models in Developing Pharmacotherapy for Obstructive Sleep Apnea. J Clin Med 2019; 8:jcm8122049. [PMID: 31766589 PMCID: PMC6947279 DOI: 10.3390/jcm8122049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent disease characterized by recurrent closure of the upper airway during sleep. It has a complex pathophysiology involving four main phenotypes. An abnormal upper airway anatomy is the key factor that predisposes to sleep-related collapse of the pharynx, but it may not be sufficient for OSA development. Non-anatomical traits, including (1) a compromised neuromuscular response of the upper airway to obstruction, (2) an unstable respiratory control (high loop gain), and (3) a low arousal threshold, predict the development of OSA in association with anatomical abnormalities. Current therapies for OSA, such as continuous positive airway pressure (CPAP) and oral appliances, have poor adherence or variable efficacy among patients. The search for novel therapeutic approaches for OSA, including pharmacological agents, has been pursued over the past years. New insights into OSA pharmacotherapy have been provided by preclinical studies, which highlight the importance of appropriate use of animal models of OSA, their applicability, and limitations. In the present review, we discuss potential pharmacological targets for OSA discovered using animal models.
Collapse
|
32
|
Shin MK, Kim LJ, Caballero-Eraso C, Polotsky VY. Experimental Approach to Examine Leptin Signaling in the Carotid Bodies and its Effects on Control of Breathing. J Vis Exp 2019. [PMID: 31710041 DOI: 10.3791/60298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An adipocyte-produced hormone leptin is a potent respiratory stimulant, which may play an important role in defending respiratory function in obesity. The carotid bodies (CB), a key organ of peripheral hypoxic sensitivity, express the long functional isoform of leptin receptor (LepRb) but the role of leptin signaling in control of breathing has not been fully elucidated. We examined the hypoxic ventilatory response (HVR) (1) in C57BL/6J mice before and after leptin infusion at baseline and after CB denervation; (2) in LepRb-deficient obese db/db mice at baseline and after LepRb overexpression in CBs. In C57BL/6J mice, leptin increased HVR and effects of leptin on HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB augmented the HVR. Therefore, we conclude that leptin acts in CB to augment responses to hypoxia.
Collapse
Affiliation(s)
| | - Lenise J Kim
- Department of Medicine, Johns Hopkins University
| | - Candela Caballero-Eraso
- Instituto de Biomedicina de Sevilla (IBiS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Hospital Universitario Virgen del Rocío/Universidad de Sevilla
| | | |
Collapse
|
33
|
Fleury Curado T, Pho H, Berger S, Caballero-Eraso C, Shin MK, Sennes LU, Pham L, Schwartz AR, Polotsky VY. Sleep-disordered breathing in C57BL/6J mice with diet-induced obesity. Sleep 2019; 41:4996050. [PMID: 29767787 DOI: 10.1093/sleep/zsy089] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 01/19/2023] Open
Abstract
Obesity leads to sleep-disordered breathing (SDB) manifested by recurrent upper airway obstructions termed obstructive sleep apnea (OSA) and carbon dioxide retention due to hypoventilation. The objective of this work was to characterize breathing during sleep in C57BL6/J mice with diet-induced obesity (DIO). Arterial blood gas was measured in nine obese and nine lean mice during wakefulness. Nine male mice with DIO and six lean male C57BL/6J mice were head mounted with electroencephalogram (EEG) and electromyogram (EMG) electrodes. Sleep recordings were performed in the whole body plethysmography chamber; upper airway obstruction was characterized by the presence of inspiratory flow limitation in which airflow plateaus with increases in inspiratory effort. Obese mice showed significantly lower pH and higher partial pressure of arterial CO2 (PaCO2) in arterial blood gas compared to lean mice, 7.35 ± 0.04 versus 7.46 ± 0.06 (p < 0.001) and 38 ± 8 mm Hg versus 30 ± 5 mm Hg (p < 0.001). Obese mice had similar levels of minute ventilation to lean mice during sleep and wakefulness, despite higher body weight and temperature, indicating an increase in the metabolic rate and hypoventilation. Obese mice also showed baseline hypoxemia with decreased mean oxyhemoglobin saturation across sleep/wake states. Obese mice had a higher prevalence of flow-limited breathing compared to lean mice during sleep. However, the oxygen desaturation index in lean and obese mice did not differ. We conclude that DIO in mice leads to hypoventilation. Obesity also increases the frequency of inspiratory limited breaths, but it does not translate into progression of OSA.
Collapse
Affiliation(s)
- Thomaz Fleury Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Otolaryngology, University of Sao Paulo, Sao Paulo, Brazil
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD
| | - Candela Caballero-Eraso
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Luu Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Caballero-Eraso C, Shin MK, Pho H, Kim LJ, Pichard LE, Wu ZJ, Gu C, Berger S, Pham L, Yeung HYB, Shirahata M, Schwartz AR, Tang WYW, Sham JSK, Polotsky VY. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. J Physiol 2018; 597:151-172. [PMID: 30285278 DOI: 10.1113/jp276900] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ F I O 2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.
Collapse
Affiliation(s)
- Candela Caballero-Eraso
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lenise J Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis E Pichard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhi-Juan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luu Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ho-Yee Bonnie Yeung
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Machiko Shirahata
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan-Yee Winnie Tang
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
35
|
Fleury Curado TA, Pho H, Dergacheva O, Berger S, Lee R, Freire C, Asherov A, Sennes LU, Mendelowitz D, Schwartz AR, Polotsky VY. Silencing of Hypoglossal Motoneurons Leads to Sleep Disordered Breathing in Lean Mice. Front Neurol 2018; 9:962. [PMID: 30487776 PMCID: PMC6246694 DOI: 10.3389/fneur.2018.00962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/25/2018] [Indexed: 12/15/2022] Open
Abstract
Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice. In the in vivo experiment, 4 weeks after the viral administration mice were injected with a DREADD ligand clozapine-N-oxide (CNO, i.p., 1mg/kg) or saline followed by a sleep study; a week later treatments were alternated and a second sleep study was performed. Inspiratory flow limitation was recognized by the presence of a plateau in mid-respiratory flow; oxyhemoglobin desaturations were defined as desaturations >4% from baseline. In the in vitro electrophysiology experiment, four males and three females of 5 days of age were used. Sixteen-nineteen days after DREADD injection brain slices of medulla were prepared and individual hypoglossal motoneurons were recorded before and after CNO application. Positive mCherry staining was detected in the hypoglossal nucleus in all mice confirming successful targeting. In sleep studies, CNO markedly increased the frequency of flow limitation n NREM sleep (from 1.9 ± 1.3% after vehicle injection to 14.2 ± 3.4% after CNO, p < 0.05) and REM sleep (from 22.3% ± 4.1% to 30.9 ± 4.6%, respectively, p < 0.05) compared to saline treatment, but there was no significant oxyhemoglobin desaturation or sleep fragmentation. Electrophysiology recording in brain slices showed that CNO inhibited firing frequency of DREADD-containing hypoglossal motoneurons. We conclude that chemogenetic approach allows to silence hypoglossal motoneurons in mice, which leads to sleep disordered breathing manifested by inspiratory flow limitation during NREM and REM sleep without oxyhemoglobin desaturation or sleep fragmentation. Other co-morbid factors, such as compromised upper airway anatomy, may be needed to achieve recurrent pharyngeal obstruction observed in OSA.
Collapse
Affiliation(s)
- Thomaz A Fleury Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Otolaryngology, University of Sao Paulo, São Paulo, Brazil
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Slava Berger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carla Freire
- Department of Otolaryngology, University of Sao Paulo, São Paulo, Brazil
| | - Aya Asherov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Luis U Sennes
- Department of Otolaryngology, University of Sao Paulo, São Paulo, Brazil
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
36
|
Framnes SN, Arble DM. The Bidirectional Relationship Between Obstructive Sleep Apnea and Metabolic Disease. Front Endocrinol (Lausanne) 2018; 9:440. [PMID: 30127766 PMCID: PMC6087747 DOI: 10.3389/fendo.2018.00440] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep disorder, effecting 17% of the total population and 40-70% of the obese population (1, 2). Multiple studies have identified OSA as a critical risk factor for the development of obesity, diabetes, and cardiovascular diseases (3-5). Moreover, emerging evidence indicates that metabolic disorders can exacerbate OSA, creating a bidirectional relationship between OSA and metabolic physiology. In this review, we explore the relationship between glycemic control, insulin, and leptin as both contributing factors and products of OSA. We conclude that while insulin and leptin action may contribute to the development of OSA, further research is required to determine the mechanistic actions and relative contributions independent of body weight. In addition to increasing our understanding of the etiology, further research into the physiological mechanisms underlying OSA can lead to the development of improved treatment options for individuals with OSA.
Collapse
Affiliation(s)
| | - Deanna M. Arble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
37
|
Fleury Curado T, Fishbein K, Pho H, Brennick M, Dergacheva O, Sennes LU, Pham LV, Ladenheim EE, Spencer R, Mendelowitz D, Schwartz AR, Polotsky VY. Chemogenetic stimulation of the hypoglossal neurons improves upper airway patency. Sci Rep 2017; 7:44392. [PMID: 28281681 PMCID: PMC5345079 DOI: 10.1038/srep44392] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstruction during sleep. OSA leads to high cardiovascular morbidity and mortality. The pathogenesis of OSA has been linked to a defect in neuromuscular control of the pharynx. There is no effective pharmacotherapy for OSA. The objective of this study was to determine whether upper airway patency can be improved using chemogenetic approach by deploying designer receptors exclusively activated by designer drug (DREADD) in the hypoglossal motorneurons. DREADD (rAAV5-hSyn-hM3(Gq)-mCherry) and control virus (rAAV5-hSyn-EGFP) were stereotactically administered to the hypoglossal nucleus of C57BL/6J mice. In 6-8 weeks genioglossus EMG and dynamic MRI of the upper airway were performed before and after administration of the DREADD ligand clozapine-N-oxide (CNO) or vehicle (saline). In DREADD-treated mice, CNO activated the genioglossus muscle and markedly dilated the pharynx, whereas saline had no effect. Control virus treated mice showed no effect of CNO. Our results suggest that chemogenetic approach can be considered as a treatment option for OSA and other motorneuron disorders.
Collapse
Affiliation(s)
- Thomaz Fleury Curado
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, the University of São Paulo, São Paulo, Brazil
| | - Kenneth Fishbein
- National Institutes of Health, National Institute of Aging, Baltimore, MD, USA
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Brennick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC USA
| | - Luiz U Sennes
- Department of Otolaryngology, the University of São Paulo, São Paulo, Brazil
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen E Ladenheim
- Department of Psychiatry, The John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Spencer
- National Institutes of Health, National Institute of Aging, Baltimore, MD, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC USA
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Chopra S, Polotsky VY, Jun JC. Sleep Apnea Research in Animals. Past, Present, and Future. Am J Respir Cell Mol Biol 2016; 54:299-305. [PMID: 26448201 DOI: 10.1165/rcmb.2015-0218tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common disorder that describes recurrent collapse of the upper airway during sleep. Animal models have been pivotal to the understanding of OSA pathogenesis, consequences, and treatment. In this review, we highlight the history of OSA research in animals and include the discovery of animals with spontaneous OSA, the induction of OSA in animals, and the emulation of OSA using exposures to intermittent hypoxia and sleep fragmentation.
Collapse
Affiliation(s)
- Swati Chopra
- Division of Pulmonary and Critical Care Medicine Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
39
|
Liu N, Adams V, Kalmar L, Ladlow J, Sargan D. Whole-Body Barometric Plethysmography Characterizes Upper Airway Obstruction in 3 Brachycephalic Breeds of Dogs. J Vet Intern Med 2016; 30:853-65. [PMID: 27159898 PMCID: PMC4913582 DOI: 10.1111/jvim.13933] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/09/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A novel test using whole-body barometric plethysmography (WBBP) was developed recently to diagnose brachycephalic obstructive airway syndrome (BOAS) in unsedated French bulldogs. HYPOTHESIS/OBJECTIVES The hypotheses of this study were: (1) respiratory characteristics are different between healthy nonbrachycephalic dogs and brachycephalic dogs; and among pugs, French bulldogs, and bulldogs; and (2) obesity and stenotic nares are risk factors for BOAS. The main objective was to establish a diagnostic test for BOAS in these 3 breeds. ANIMALS A total of 266 brachycephalic dogs (100 pugs, 100 French bulldogs, and 66 bulldogs) and 28 nonbrachycephalic dogs. METHODS Prospective study. Exercise tolerance tests with respiratory functional grading, and WBBP were performed on all dogs. Data from WBBP were associated with functional grades to train quadratic discriminant analysis tools to assign dogs to BOAS+ and BOAS- groups. A BOAS index (0-100%) was calculated for each dog. Receiver operating characteristic (ROC) curves were used to evaluate classification ability. RESULTS Minute volume was decreased significantly in asymptomatic pugs (P = .009), French bulldogs (P = .026), and bulldogs (P < .0001) when compared to nonbrachycephalic controls. Respiratory characteristics were different among breeds and affected dogs had a significant increase in trace variation. The BOAS index predicted BOAS status for each breed with 94-97% (95% confidence interval [CI], 88.9-100%) accuracy (area under the ROC curve). Both obesity (P = .04) and stenotic nares (P = .004) were significantly associated with BOAS. CONCLUSIONS AND CLINICAL IMPORTANCE The WBBP can be used as a clinical tool to diagnose BOAS noninvasively and objectively.
Collapse
Affiliation(s)
- N‐C. Liu
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - L. Kalmar
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - J.F. Ladlow
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - D.R. Sargan
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
40
|
Yao Q, Pho H, Kirkness J, Ladenheim EE, Bi S, Moran TH, Fuller DD, Schwartz AR, Polotsky VY. Localizing Effects of Leptin on Upper Airway and Respiratory Control during Sleep. Sleep 2016; 39:1097-106. [PMID: 26951402 DOI: 10.5665/sleep.5762] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022] Open
Abstract
STUDY OBJECTIVES Obesity hypoventilation and obstructive sleep apnea are common complications of obesity linked to defects in respiratory pump and upper airway neural control. Leptin-deficient ob/ob mice have impaired ventilatory control and inspiratory flow limitation during sleep, which are both reversed with leptin. We aimed to localize central nervous system (CNS) site(s) of leptin action on respiratory and upper airway neuroventilatory control. METHODS We localized the effect of leptin to medulla versus hypothalamus by administering intracerbroventricular leptin (10 μg/2 μL) versus vehicle to the lateral (n = 14) versus fourth ventricle (n = 11) of ob/ob mice followed by polysomnographic recording. Analyses were stratified for effects on respiratory (nonflow-limited breaths) and upper airway (inspiratory flow limitation) functions. CNS loci were identified by (1) leptin-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation and (2) projections of respiratory and upper airway motoneurons with a retrograde transsynaptic tracer (pseudorabies virus). RESULTS Both routes of leptin administration increased minute ventilation during nonflow-limited breathing in sleep. Phrenic motoneurons were synaptically coupled to the nucleus of the solitary tract, which also showed STAT3 phosphorylation, but not to the hypothalamus. Inspiratory flow limitation and obstructive hypopneas were attenuated by leptin administration to the lateral but not to the fourth cerebral ventricle. Upper airway motoneurons were synaptically coupled with the dorsomedial hypothalamus, which exhibited STAT3 phosphorylation. CONCLUSIONS Leptin relieves upper airway obstruction in sleep apnea by activating the forebrain, possibly in the dorsomedial hypothalamus. In contrast, leptin upregulates ventilatory control through hindbrain sites of action, possibly in the nucleus of the solitary tract.
Collapse
Affiliation(s)
- Qiaoling Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology; Preclinical School, Xinjiang Medical University, Xinjiang, China
| | - Huy Pho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason Kirkness
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ellen E Ladenheim
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sheng Bi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Timothy H Moran
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David D Fuller
- Departments of Physical Therapy, University of Florida, Gainesville, FL.,McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Quindry JC, Ballmann CG, Epstein EE, Selsby JT. Plethysmography measurements of respiratory function in conscious unrestrained mice. J Physiol Sci 2016; 66:157-64. [PMID: 26459291 PMCID: PMC10717823 DOI: 10.1007/s12576-015-0408-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
Whole body plethysmography (WBP) is used to quantify pulmonary function in conscious, unrestrained mice. We determined currently whether time of day and environmental lighting influence day-to-day reproducibility of pulmonary function, and quantifed the necessary habituation time in the WBP chamber. Two-month-old male C57BL6 and mdx mice (n = 8/group, reverse light cycle), were examined on consecutive days using a calibrated WBP chamber and manufacturer software was used to calculate respiratory measures. Respiratory data stabilized between 5-10 min for all variables. Mice exhibited time of day respiratory differences, performing more forceful and less frequent breaths midday (11:45 a.m. and 3:00 p.m.) compared to 7:30 a.m. WBP performed in darkened conditions elicited more forceful breathing than lit conditions. Day-to-day reproducibility during controlled conditions ranged from r(2) = 0.58 to 0.62 for the functional measures. Findings indicate reproducible respiratory data are obtainable following a 15-min chamber habituation and standardization of time of day and room lighting.
Collapse
Affiliation(s)
- John C Quindry
- Cardioprotection Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36830, USA.
| | - Christopher G Ballmann
- Cardioprotection Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36830, USA
| | - Erin E Epstein
- Cardioprotection Laboratory, School of Kinesiology, Auburn University, Auburn, AL, 36830, USA
| | | |
Collapse
|
42
|
Sunagawa G, Sumiyama K, Ukai-Tadenuma M, Perrin D, Fujishima H, Ukai H, Nishimura O, Shi S, Ohno RI, Narumi R, Shimizu Y, Tone D, Ode K, Kuraku S, Ueda H. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene. Cell Rep 2016; 14:662-677. [DOI: 10.1016/j.celrep.2015.12.052] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 11/24/2022] Open
|
43
|
Pho H, Hernandez AB, Arias RS, Leitner EB, Van Kooten S, Kirkness JP, Schneider H, Smith PL, Polotsky VY, Schwartz AR. The effect of leptin replacement on sleep-disordered breathing in the leptin-deficient ob/ob mouse. J Appl Physiol (1985) 2015; 120:78-86. [PMID: 26472867 DOI: 10.1152/japplphysiol.00494.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022] Open
Abstract
Obese leptin-deficient (ob/ob) mice demonstrate defects in upper airway structural and neuromuscular control. We hypothesized that these defects predispose to upper airway obstruction during sleep, and improve with leptin administration. High-fidelity polysomnographic recordings were conducted to characterize sleep and breathing patterns in conscious, unrestrained ob/ob mice (23 wk, 67.2 ± 4.1 g, n = 13). In a parallel-arm crossover study, we compared responses to subcutaneous leptin (1 μg/h) vs. vehicle on respiratory parameters during NREM and REM sleep. Upper airway obstruction was defined by the presence of inspiratory airflow limitation (IFL), as characterized by an early inspiratory plateau in airflow at a maximum level (V̇Imax) with increasing effort. The severity of upper airway obstruction (V̇Imax) was assessed along with minute ventilation (V̇E), tidal volume (VT), respiratory rate (RR), inspiratory duty cycle, and mean inspiratory flow at each time point. IFL occurred more frequently in REM sleep (37.6 ± 0.2% vs. 1.1 ± 0.0% in NREM sleep, P < 0.001), and leptin did not alter its frequency. V̇Imax (3.7 ± 1.1 vs. 2.7 ± 0.8 ml/s, P < 0.001) and V̇E increased (55.4 ± 22.0 vs. 39.8 ± 16.4 ml/min, P < 0.001) with leptin vs. vehicle administration. The increase in V̇E was due to a significant increase in VT (0.20 ± 0.06 vs. 0.16 ± 0.05 ml, P < 0.01) rather than RR. Increases in V̇E were attributable to increases in mean inspiratory flow (2.5 ± 0.8 vs. 1.8 ± 0.6 ml/s, P < 0.001) rather than inspiratory duty cycle. Similar increases in V̇E and its components were observed in non-flow-limited breaths during NREM and REM sleep. These responses suggest that leptin stabilized pharyngeal patency and increased drive to both the upper airway and diaphragm during sleep.
Collapse
Affiliation(s)
- H Pho
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - A B Hernandez
- Department of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Hospital, New York, New York
| | - R S Arias
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - E B Leitner
- University of Michigan Medical School, Ann Arbor, Michigan; and
| | - S Van Kooten
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - J P Kirkness
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - H Schneider
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - P L Smith
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - V Y Polotsky
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - A R Schwartz
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
44
|
Drager LF, Polotsky VY, O'Donnell CP, Cravo SL, Lorenzi-Filho G, Machado BH. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol 2015; 309:H1101-11. [PMID: 26232233 DOI: 10.1152/ajpheart.00094.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
Obstructive sleep apnea (OSA) is known to be independently associated with several cardiovascular diseases including hypertension, myocardial infarction, and stroke. To determine how OSA can increase cardiovascular risk, animal models have been developed to explore the underlying mechanisms and the cellular and end-organ targets of the predominant pathophysiological disturbance in OSA-intermittent hypoxia. Despite several limitations in translating data from animal models to the clinical arena, significant progress has been made in our understanding of how OSA confers increased cardiovascular risk. It is clear now that the hypoxic stress associated with OSA can elicit a broad spectrum of pathological systemic events including sympathetic activation, systemic inflammation, impaired glucose and lipid metabolism, and endothelial dysfunction, among others. This review provides an update of the basic, clinical, and translational advances in our understanding of the metabolic dysfunction and cardiovascular consequences of OSA and highlights the most recent findings and perspectives in the field.
Collapse
Affiliation(s)
- Luciano F Drager
- Hypertension Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; Hypertension Unit, Renal Division, University of São Paulo Medical School, São Paulo, Brazil;
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher P O'Donnell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sergio L Cravo
- Department of Physiology, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Sleep Laboratory, Pulmonary Division, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil; and
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Zhang B, McDonald FB, Cummings KJ, Frappell PB, Wilson RJ. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung. Respir Physiol Neurobiol 2014; 201:75-83. [DOI: 10.1016/j.resp.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 11/29/2022]
|
46
|
Davis EM, Locke LW, McDowell AL, Strollo PJ, O'Donnell CP. Obesity accentuates circadian variability in breathing during sleep in mice but does not predispose to apnea. J Appl Physiol (1985) 2013; 115:474-82. [PMID: 23722707 DOI: 10.1152/japplphysiol.00330.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is a primary risk factor for the development of obstructive sleep apnea in humans, but the impact of obesity on central sleep apnea is less clear. Given the comorbidities associated with obesity in humans, we developed techniques for long-term recording of diaphragmatic EMG activity and polysomnography in obese mice to assess breathing patterns during sleep and to determine the effect of obesity on apnea generation. We hypothesized that genetically obese ob/ob mice would exhibit less variability in breathing across the 24-h circadian cycle, be more prone to central apneas, and be more likely to exhibit patterns of increased diaphragm muscle activity consistent with obstructive apneas compared with lean mice. Unexpectedly, we found that obese mice exhibited a greater circadian impact on respiratory rate and diaphragmatic burst amplitude than lean mice, particularly during rapid eye movement (REM) sleep. Central apneas were more common in REM sleep (42 ± 17 h(-1)) than non-REM (NREM) sleep (14 ± 5 h(-1)) in obese mice (P < 0.05), but rates were not different between lean and obese mice in either sleep state. Even after experimentally enhancing central apnea generation by acute withdrawal of hypoxic chemoreceptor activation during sleep, central apnea rates remained comparable between lean and obese mice. Last, we were unable to detect patterns of diaphragmatic burst activity suggestive of obstructive apnea events in obese mice. In summary, obesity does not predispose mice to increased occurrence of central or obstructive apneas during sleep, but does lead to a more pronounced circadian variability in respiration.
Collapse
Affiliation(s)
- Eric M Davis
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
47
|
Davis EM, O'Donnell CP. Rodent models of sleep apnea. Respir Physiol Neurobiol 2013; 188:355-61. [PMID: 23722067 DOI: 10.1016/j.resp.2013.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/31/2022]
Abstract
Rodent models of sleep apnea have long been used to provide novel insight into the generation and predisposition to apneas as well as to characterize the impact of sleep apnea on cardiovascular, metabolic, and psychological health in humans. Given the significant body of work utilizing rodent models in the field of sleep apnea, the aims of this review are three-fold: first, to review the use of rodents as natural models of sleep apnea; second, to provide an overview of the experimental interventions employed in rodents to simulate sleep apnea; third, to discuss the refinement of rodent models to further our understanding of breathing abnormalities that occur during sleep. Given mounting evidence that sleep apnea impairs cognitive function, reduces quality of life, and exacerbates the course of multiple chronic diseases, rodent models will remain a high priority as a tool to interrogate both the pathophysiology and sequelae of breathing related abnormalities during sleep and to improve approaches to diagnosis and therapy.
Collapse
Affiliation(s)
- Eric M Davis
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|