1
|
Guo J, Lin S, Hung IYJ, Lin CF, Mo PC, Sun P, Jan YK. Using Wavelet Analysis of Blood Flow Oscillations to Investigate Differences in Skin Blood Flow Regulations Between the Upper and Lower Limbs. Skin Res Technol 2024; 30:e70089. [PMID: 39331571 PMCID: PMC11430774 DOI: 10.1111/srt.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The objective of this study was to investigate the differences in skin blood flow regulations between the upper and lower limbs in healthy adults using wavelet analysis of skin blood oscillations. To the best of our knowledge, this is the first study investigating the dominant skin blood flow control of the upper and lower limbs in healthy adults. METHODS Skin blood flow of the forearm and leg was simultaneously measured by laser Doppler flowmetry (LDF) in 17 healthy adults. Skin blood flow oscillations were analyzed using wavelet analysis to assess the dominant control among the metabolic endothelial (0.0095-0.02 Hz), neurogenic (0.02-0.05 Hz), myogenic (0.05-0.15 Hz), respiratory (0.15-0.4 Hz), and cardiac (0.4-2 Hz) origins. RESULTS Skin blood flow in the leg (11.13 ± 4.90 perfusion unit) was significantly higher than in the forearm (6.90 ± 2.50 perfusion unit, p < 0.001). The metabolic endothelial control is more dominant in the forearm (1.19 ±0.51 au) compared to the leg (0.73 ± 0.41 au, p < 0.01). The myogenic control is more dominant in the leg (1.18 ± 0.28 au) compared to the forearm (0.96±0.18 au, p < 0.05). CONCLUSION Through wavelet analysis of skin blood flow oscillations, the results indicate that metabolic endothelial control is more dominant in the forearm (upper limbs) and myogenic control is more dominant in the leg (lower limbs).
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Songmei Lin
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Isabella Yu-Ju Hung
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Cheng-Feng Lin
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan
| | - Pu-Chun Mo
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Pu Sun
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yih-Kuen Jan
- Department of Health and Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Fisher JT, Ciuha U, Mekjavić IB. The combined effects of temperature and posture on regional blood flow and haemodynamics. J Therm Biol 2024; 123:103937. [PMID: 39111062 DOI: 10.1016/j.jtherbio.2024.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Under simultaneous ambient temperature and postural stressors, integrated regional blood flow responses are required to maintain blood pressure and thermoregulatory homeostasis. The aim of the present study was to assess the effect of ambient temperature and body posture on regional regulation of microvascular blood flow, specifically in the arms and legs. Participants (N = 11) attended two sessions in which they experienced transient ambient conditions, in a climatic chamber. During each 60-min trial, ambient temperature increased from 15.7 (0.6) °C to 38.9 (0.6) °C followed by a linear decrease, and the participants were either standing or in a supine position throughout the trial; relative humidity in the chamber was maintained at 25.9 (6.6) %. Laser doppler flowmetry of the forearm (SkBFarm) and calf (SkBFcalf), and haemodynamic responses (heart rate, HR; stroke volume, SV; cardiac output, CO; blood pressure, BP), were measured continuously. Analyses of heart rate variability and wavelet transform were also conducted. SkBFarm increased significantly at higher ambient temperatures (p = 0.003), but not SkBFcalf. The standing posture caused lower overall SkBF in both regions throughout the protocol, regardless of temperature (p < 0.001). HR and BP were significantly elevated, and SV significantly lowered, in response to separate and combined effects of higher ambient temperatures and a standing position (all p < 0.05); CO remained unchanged. Mechanistic analyses identified greater sympathetic nerve activation, and higher calf myogenic activation at peak temperatures, in the standing condition. Mechanistically and functionally, arm vasculature responds to modulation from both thermoregulation and baroreceptor activity. The legs, meanwhile, are more sensitive to baroreflex regulatory mechanisms.
Collapse
Affiliation(s)
- Jason T Fisher
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Igor B Mekjavić
- Department of Automatics, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Teixeira AL, Gangat A, Bommarito JC, Burr JF, Millar PJ. Ischemic Preconditioning Acutely Improves Functional Sympatholysis during Handgrip Exercise in Healthy Males but not Females. Med Sci Sports Exerc 2023; 55:1250-1257. [PMID: 36878187 DOI: 10.1249/mss.0000000000003148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PURPOSE Ischemic preconditioning (IPC), a procedure that involves the cyclic induction of limb ischemia and reperfusion via tourniquet inflation, has been reported to improve exercise capacity and performance, but the underlying mechanisms remain unclear. During exercise, sympathetically mediated vasoconstriction is dampened in active skeletal muscle. This phenomenon, termed functional sympatholysis, plays a critical role in maintaining oxygen delivery to working skeletal muscle and may contribute to determining exercise capacity. Herein, we investigate the effects of IPC on functional sympatholysis in humans. METHODS In 20 (10M/10F) healthy young adults, forearm blood flow (Doppler ultrasound) and beat-to-beat arterial pressure (finger photoplethysmography) were measured during lower body negative pressure (LBNP; -20 mm Hg) applied at rest and simultaneously during rhythmic handgrip exercise (30% maximum contraction) before and after local IPC (4 × 5-min 220 mm Hg) or sham (4 × 5-min 20 mm Hg). Forearm vascular conductance (FVC) was calculated as forearm blood flow/mean arterial pressure and the magnitude of sympatholysis as the difference of LBNP-induced changes in FVC between handgrip and rest. RESULTS At baseline, LBNP decreased FVC (females [F] = ∆-41% ± 19%; males [M] = ∆-44% ± 10%), and these responses were attenuated during handgrip (F = ∆-8% ± 9%; M = ∆-8% ± 7%). After IPC, LBNP induced similar decreases in resting FVC (F = ∆-37% ± 19%; M = ∆-44% ± 13%). However, during handgrip, this response was further attenuated in males (∆-3% ± 9%, P = 0.02 vs pre) but not females (∆-5% ± 10%, P = 0.13 vs pre), which aligned with an IPC-mediated increase in sympatholysis (M-pre = 36% ± 10% vs post = 40% ± 9%, P = 0.01; F-pre = 32% ± 15% vs post = 32% ± 14%, P = 0.82). Sham IPC had no effect on any variables. CONCLUSIONS These findings highlight a sex-specific effect of IPC on functional sympatholysis and provide evidence of a potential mechanism underlying the beneficial effects of IPC on human exercise performance.
Collapse
Affiliation(s)
- André L Teixeira
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Ontario, CANADA
| | - Ayesha Gangat
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Ontario, CANADA
| | - Julian C Bommarito
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Ontario, CANADA
| | - Jamie F Burr
- Human Performance and Health Research Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Ontario, CANADA
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Ontario, CANADA
| |
Collapse
|
4
|
Fermoyle CC, La Salle DT, Alpenglow JK, Craig JC, Jarrett CL, Broxterman RM, McKenzie AI, Morgan DE, Birgenheier NM, Wray DW, Richardson RS, Trinity JD. Pharmacological modulation of adrenergic tone alters the vasodilatory response to passive leg movement in young but not in old adults. J Appl Physiol (1985) 2023; 134:1124-1134. [PMID: 36927146 PMCID: PMC10125034 DOI: 10.1152/japplphysiol.00682.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The age-related increase in α-adrenergic tone may contribute to decreased leg vascular conductance (LVC) both at rest and during exercise in the old. However, the effect on passive leg movement (PLM)-induced LVC, a measure of vascular function, which is markedly attenuated in this population, is unknown. Thus, in eight young (25 ± 5 yr) and seven old (65 ± 7 yr) subjects, this investigation examined the impact of systemic β-adrenergic blockade (propanalol, PROP) alone, and PROP combined with either α1-adrenergic stimulation (phenylephrine, PE) or α-adrenergic inhibition (phentolamine, PHEN), on PLM-induced vasodilation. LVC, calculated from femoral artery blood flow and pressure, was determined and PLM-induced Δ peak (LVCΔpeak) and total vasodilation (LVCAUC, area under curve) were documented. PROP decreased LVCΔpeak (PROP: 4.8 ± 1.8, Saline: 7.7 ± 2.7 mL·mmHg-1, P < 0.001) and LVCAUC (PROP: 1.1 ± 0.7, Saline: 2.4 ± 1.6 mL·mmHg-1, P = 0.002) in the young, but not in the old (LVCΔpeak, P = 0.931; LVCAUC, P = 0.999). PE reduced baseline LVC (PE: 1.6 ± 0.4, PROP: 2.3 ± 0.4 mL·min-1·mmHg-1, P < 0.01), LVCΔpeak (PE: 3.2 ± 1.3, PROP: 4.8 ± 1.8 mL·min-1·mmHg-1, P = 0.004), and LVCAUC (PE: 0.5 ± 0.4, PROP: 1.1 ± 0.7 mL·mmHg-1, P = 0.011) in the young, but not in the old (baseline LVC, P = 0.199; LVCΔpeak, P = 0.904; LVCAUC, P = 0.823). PHEN increased LVC at rest and throughout PLM in both groups (drug effect: P < 0.05), however LVCΔpeak was only improved in the young (PHEN: 6.4 ± 3.1, PROP: 4.4 ± 1.5 mL·min-1·mmHg-1, P = 0.004), and not in the old (P = 0.904). Furthermore, the magnitude of α-adrenergic modulation (PHEN - PE) of LVCΔpeak was greater in the young compared with the old (Young: 3.35 ± 2.32, Old: 0.40 ± 1.59 mL·min-1·mmHg-1, P = 0.019). Therefore, elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.NEW & NOTEWORTHY Stimulation of α1-adrenergic receptors eliminated age-related differences in passive leg movement (PLM) by decreasing PLM-induced vasodilation in the young. Systemic β-blockade attenuated the central hemodynamic component of the PLM response in young individuals. Inhibition of α-adrenergic receptors did not improve the PLM response in older individuals, though withdrawal of α-adrenergic modulation augmented baseline and maximal vasodilation in both groups. Accordingly, α-adrenergic signaling plays a role in modulating the PLM vasodilatory response in young but not in old adults, and elevated α-adrenergic tone does not appear to contribute to the attenuated vascular function with age identified by PLM.
Collapse
Affiliation(s)
- Caitlin C Fermoyle
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - Catherine L Jarrett
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - Ryan M Broxterman
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
| | - David E Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Nathaniel M Birgenheier
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Holwerda SW, Gangwish ME, Luehrs RE, Nuckols VR, Thyfault JP, Miles JM, Pierce GL. Concomitantly higher resting arterial blood pressure and transduction of sympathetic neural activity in human obesity without hypertension. J Hypertens 2023; 41:326-335. [PMID: 36583358 PMCID: PMC9812452 DOI: 10.1097/hjh.0000000000003335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Central (abdominal) obesity is associated with elevated adrenergic activity and arterial blood pressure (BP). Therefore, we tested the hypothesis that transduction of spontaneous muscle sympathetic nerve activity (MSNA) to BP, that is, sympathetic transduction, is augmented in abdominal obesity (increased waist circumference) and positively related to prevailing BP. METHODS Young/middle-aged obese (32 ± 7 years; BMI: 36 ± 5 kg/m2, n = 14) and nonobese (29 ± 10 years; BMI: 23 ± 4 kg/m2, n = 14) without hypertension (24-h ambulatory average BP < 130/80 mmHg) were included. MSNA (microneurography) and beat-to-beat BP (finger cuff) were measured continuously and the increase in mean arterial pressure (MAP) during 15 cardiac cycles following MSNA bursts of different patterns (single, multiples) and amplitude (quartiles) was signal-averaged over a 10 min baseline period. RESULTS MSNA burst frequency was not significantly higher in obese vs. nonobese (21 ± 3 vs. 17 ± 3 bursts/min, P = 0.34). However, resting supine BP was significantly higher in obese compared with nonobese (systolic: 127 ± 3 vs. 114 ± 3; diastolic: 76 ± 2 vs. 64 ± 1 mmHg, both P < 0.01). Importantly, obese showed greater increases in MAP following multiple MSNA bursts (P = 0.02) and MSNA bursts of higher amplitude (P = 0.02), but not single MSNA bursts (P = 0.24), compared with nonobese when adjusting for MSNA burst frequency. The increase in MAP following higher amplitude bursts among all participants was associated with higher resting supine systolic (R = 0.48; P = 0.01) and diastolic (R = 0.48; P = 0.01) BP when controlling for MSNA burst frequency, but not when also controlling for waist circumference (P > 0.05). In contrast, sympathetic transduction was not correlated with 24-h ambulatory average BP. CONCLUSION Sympathetic transduction to BP is augmented in abdominal obesity and positively related to higher resting supine BP but not 24-h ambulatory average BP.
Collapse
Affiliation(s)
- Seth W. Holwerda
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, Kansas
- Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas
| | - Megan E. Gangwish
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Rachel E. Luehrs
- Department of Kinesiology, North Central College, Naperville, Illinois
| | - Virginia R. Nuckols
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
| | - John P. Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, Kansas
- Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas
| | - John M. Miles
- Department of Internal Medicine-Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, Kansas
| | - Gary L. Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
6
|
Untracht GR, Dikaios N, Durrani AK, Bapir M, Sarunic MV, Sampson DD, Heiss C, Sampson DM. Pilot study of optical coherence tomography angiography-derived microvascular metrics in hands and feet of healthy and diabetic people. Sci Rep 2023; 13:1122. [PMID: 36670141 PMCID: PMC9853488 DOI: 10.1038/s41598-022-26871-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
Optical coherence tomography angiography (OCTA) is a non-invasive, high-resolution imaging modality with growing application in dermatology and microvascular assessment. Accepted reference values for OCTA-derived microvascular parameters in skin do not yet exist but need to be established to drive OCTA into the clinic. In this pilot study, we assess a range of OCTA microvascular metrics at rest and after post-occlusive reactive hyperaemia (PORH) in the hands and feet of 52 healthy people and 11 people with well-controlled type 2 diabetes mellitus (T2DM). We calculate each metric, measure test-retest repeatability, and evaluate correlation with demographic risk factors. Our study delivers extremity-specific, age-dependent reference values and coefficients of repeatability of nine microvascular metrics at baseline and at the maximum of PORH. Significant differences are not seen for age-dependent microvascular metrics in hand, but they are present for several metrics in the foot. Significant differences are observed between hand and foot, both at baseline and maximum PORH, for most of the microvascular metrics with generally higher values in the hand. Despite a large variability over a range of individuals, as is expected based on heterogeneous ageing phenotypes of the population, the test-retest repeatability is 3.5% to 18% of the mean value for all metrics, which highlights the opportunities for OCTA-based studies in larger cohorts, for longitudinal monitoring, and for assessing the efficacy of interventions. Additionally, branchpoint density in the hand and foot and changes in vessel diameter in response to PORH stood out as good discriminators between healthy and T2DM groups, which indicates their potential value as biomarkers. This study, building on our previous work, represents a further step towards standardised OCTA in clinical practice and research.
Collapse
Affiliation(s)
- Gavrielle R Untracht
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Perth, 6009, Australia
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
| | - Nikolaos Dikaios
- Mathematics Research Centre, Academy of Athens, Athens, 10679, Greece
| | - Abdullah K Durrani
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
- School of Physics, Advanced Technology Institute, The University of Surrey, Guildford, GU27XH, UK
| | - Mariam Bapir
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
| | - Marinko V Sarunic
- Institute of Ophthalmology, University College London, London, EC1V 2PD, UK
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - David D Sampson
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
- School of Physics, Advanced Technology Institute, The University of Surrey, Guildford, GU27XH, UK
| | - Christian Heiss
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK
- East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Redhill, RH15RH, UK
| | - Danuta M Sampson
- School of Biosciences and Medicine, The University of Surrey, Guildford, GU27XH, UK.
- Institute of Ophthalmology, University College London, London, EC1V 2PD, UK.
| |
Collapse
|
7
|
Nyberg M, Jones AM. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front Physiol 2022; 13:898395. [PMID: 35774284 PMCID: PMC9237395 DOI: 10.3389/fphys.2022.898395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the most dynamic metabolic organs as evidenced by increases in metabolic rate of >150-fold from rest to maximal contractile activity. Because of limited intracellular stores of ATP, activation of metabolic pathways is required to maintain the necessary rates of ATP re-synthesis during sustained contractions. During the very early phase, phosphocreatine hydrolysis and anaerobic glycolysis prevails but as activity extends beyond ∼1 min, oxidative phosphorylation becomes the major ATP-generating pathway. Oxidative metabolism of macronutrients is highly dependent on the cardiovascular system to deliver O2 to the contracting muscle fibres, which is ensured through a tight coupling between skeletal muscle O2 utilization and O2 delivery. However, to what extent O2 delivery is ideal in terms of enabling optimal metabolic and contractile function is context-dependent and determined by a complex interaction of several regulatory systems. The first part of the review focuses on local and systemic mechanisms involved in the regulation of O2 delivery and how integration of these influences the matching of skeletal muscle O2 demand and O2 delivery. In the second part, alterations in cardiovascular function and structure associated with aging and heart failure, and how these impact metabolic and contractile function, will be addressed. Where applicable, the potential of exercise training to offset/reverse age- and disease-related cardiovascular declines will be highlighted in the context of skeletal muscle metabolic function. The review focuses on human data but also covers animal observations.
Collapse
Affiliation(s)
- Michael Nyberg
- Vascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- *Correspondence: Michael Nyberg,
| | - Andrew M. Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Maharaj A, Fischer SM, Dillon KN, Kang Y, Martinez MA, Figueroa A. Acute Citrulline Blunts Aortic Systolic Pressure during Exercise and Sympathoactivation in Hypertensive Postmenopausal Women. Med Sci Sports Exerc 2022; 54:761-768. [PMID: 34974502 DOI: 10.1249/mss.0000000000002848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Hypertensive postmenopausal women (PMW) have exaggerated exercise systolic blood pressure (SBP) due to impaired functional sympatholysis. l-Citrulline (CIT) supplementation attenuates aortic SBP responses to cold pressor test (CPT)-induced vasoconstriction in young men. We hypothesized that acute CIT ingestion would attenuate aortic SBP and leg hemodynamic responses during exercise and CPT (EX + CPT). METHODS Fifteen hypertensive PMW (61 ± 7 yr) were randomly assigned to consume either 6 g of CIT or placebo (PL) separated by a minimum 3-d washout phase. Brachial and aortic blood pressure, femoral artery blood flow (FBF), and vascular conductance (FVC) were measured at rest and during 5 min of unilateral plantarflexion exercise with a CPT applied during minutes 4 and 5. RESULTS No differences between conditions were found in FBF, FVC, and brachial and aortic blood pressure at rest and during exercise alone. Changes in brachial SBP (CIT vs PL, 29 ± 12 vs 40 ± 10 mm Hg) and mean arterial pressure (CIT vs PL, 21 ± 10 vs 33 ± 11 mm Hg), and aortic SBP (CIT vs PL, 27 ± 11 vs 38 ± 9 mm Hg) and mean arterial pressure (CIT vs PL, 23 ± 9 vs 33 ± 11 mm Hg) to EX + CPT were lower in the CIT versus PL condition (P < 0.05). FBF, FVC, and functional sympatholysis (%ΔFVC) were not significantly different between conditions. CONCLUSIONS Acute CIT ingestion attenuated aortic SBP response to exercise and cold-induced sympathetic activation that may prevent left ventricle overload in hypertensive PMW.
Collapse
Affiliation(s)
- Arun Maharaj
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX
| | | | | | | | | | | |
Collapse
|
9
|
Hansen AB, Amin SB, Hofstätter F, Mugele H, Simpson LL, Gasho C, Dawkins TG, Tymko MM, Ainslie PN, Villafuerte FC, Hearon CM, Lawley JS, Moralez G. Global Reach 2018: sympathetic neural and hemodynamic responses to submaximal exercise in Andeans with and without chronic mountain sickness. Am J Physiol Heart Circ Physiol 2022; 322:H844-H856. [PMID: 35333117 PMCID: PMC9018046 DOI: 10.1152/ajpheart.00555.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS+, n = 7) and without (CMS-, n = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each]. Cycling caused similar increases in heart rate, cardiac output, and oxygen delivery at both workloads between both Andean groups. However, at 60% PPO, CMS+ had a blunted reduction in Δtotal peripheral resistance (CMS-, -10.7 ± 3.8 vs. CMS+, -4.9 ± 4.1 mmHg·L-1·min-1; P = 0.012; d = 1.5) that coincided with a greater Δforearm vasoconstriction (CMS-, -0.2 ± 0.6 vs. CMS+, 1.5 ± 1.3 mmHg·mL-1·min-1; P = 0.008; d = 1.7) and a rise in Δdiastolic blood pressure (CMS-, 14.2 ± 7.2 vs. CMS+, 21.6 ± 4.2 mmHg; P = 0.023; d = 1.2) compared with CMS-. Interestingly, although MSNA burst frequency did not change at 30% or 60% of PPO in either group, at 60% Δburst incidence was attenuated in CMS+ (P = 0.028; d = 1.4). These findings indicate that in Andeans with polycythemia, light intensity exercise elicited similar cardiovascular and autonomic responses compared with CMS-. Furthermore, convective oxygen delivery is maintained during moderate-intensity exercise despite higher peripheral resistance. In addition, the elevated peripheral resistance during exercise was not mediated by greater sympathetic neural outflow, thus other neural and/or nonneural factors are perhaps involved.NEW & NOTEWORTHY During submaximal exercise, convective oxygen transport is maintained in Andeans suffering from polycythemia. Light intensity exercise elicited similar cardiovascular and autonomic responses compared with healthy Andeans. However, during moderate-intensity exercise, we observed a blunted reduction in total peripheral resistance, which cannot be ascribed to an exaggerated increase in muscle sympathetic nerve activity, indicating possible contributions from other neural and/or nonneural mechanisms.
Collapse
Affiliation(s)
- Alexander B Hansen
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Sachin B Amin
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofstätter
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hendrik Mugele
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Lydia L Simpson
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Linda, Loma Linda, California
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Michael M Tymko
- Physical Activity and Diabetes Laboratory, Faculty of Kinesiology and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Francisco C Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología del Transporte de Oxígeno Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Christopher M Hearon
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas
| | - Justin S Lawley
- Division of Performance, Physiology and Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Sugimoto H, Hamaoka T, Murai H, Hirai T, Mukai Y, Kusayama T, Takashima S, Kato T, Takata S, Usui S, Sakata K, Kawashiri M, Takamura M. Relationships between muscle sympathetic nerve activity and novel indices of arterial stiffness using single oscillometric cuff in patients with hypertension. Physiol Rep 2022; 10:e15270. [PMID: 35587702 PMCID: PMC9118049 DOI: 10.14814/phy2.15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023] Open
Abstract
The arterial velocity pulse index (AVI) and arterial pressure-volume index (API) have been proposed as new arterial stiffness indices that can be measured using an oscillometric cuff. Sympathetic nerve activity (SNA) contributes to arterial stiffness via increasing vascular smooth muscle tone. However, the associations between SNA and the AVI or API are not understood. The purpose of this study was to evaluate the relationships between muscle sympathetic nerve activity (MSNA) and the AVI or API in healthy individuals and patients with hypertension (HT). Forty healthy individuals (40.1 ± 15.2 years, 8 females) (healthy group) and 40 patients with HT (60.2 ± 13.6, 18 females) (HT group) were included in this study. The AVI, API, MSNA, beat-by-beat blood pressure, and heart rate were recorded simultaneously. The AVI and API were higher in the HT group than in the healthy group (AVI, 26.1 ± 7.6 vs. 16.5 ± 4.0, p < 0.001; API, 31.2 ± 8.6 vs. 25.5 ± 7.2, p = 0.002). MSNA in the HT group was also higher than in the healthy group (p < 0.001). MSNA was correlated with the AVI, but not with the API, in both the healthy group (R = 0.52, p = 0.001) and HT group (R = 0.57, p < 0.001). MSNA was independently correlated with the AVI in multivariate analysis (ß = 0.34, p = 0.001). In conclusion, AVI, obtained by a simple and less user-dependent method, was related to the MSNA in healthy individuals and patients with HT.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takuto Hamaoka
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Hisayoshi Murai
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
- Kanazawa Municipal HospitalKanazawaJapan
| | - Tadayuki Hirai
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Yusuke Mukai
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takashi Kusayama
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Shinichiro Takashima
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Takeshi Kato
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | | | - Soichiro Usui
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Kenji Sakata
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Masa‐Aki Kawashiri
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| | - Masayuki Takamura
- Department of Cardiovascular MedicineKanazawa University Graduate School of Medical SciencesKanazawaJapan
| |
Collapse
|
11
|
Holwerda SW. Crossing the intersection of human hypertension and adrenergic vasoconstriction using innovative methods. J Hum Hypertens 2022; 36:1-2. [PMID: 34453102 DOI: 10.1038/s41371-021-00571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/31/2023]
Affiliation(s)
- Seth W Holwerda
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Nyberg M, Christensen PM, Blackwell JR, Hostrup M, Jones AM, Bangsbo J. Nitrate-rich beetroot juice ingestion reduces skeletal muscle O 2 uptake and blood flow during exercise in sedentary men. J Physiol 2021; 599:5203-5214. [PMID: 34587650 DOI: 10.1113/jp281995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V ̇ O 2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V ̇ O 2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V ̇ O 2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V ̇ O 2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V ̇ O 2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V ̇ O 2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V ̇ O 2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark.,Team Danmark (Danish Elite Sports Organization), Copenhagen, Denmark
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter St Luke's Campus, Exeter, UK
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, Integrative Physiology Section, Cardiovascular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Limberg JK, Soares RN, Power G, Harper JL, Smith JA, Shariffi B, Jacob DW, Manrique-Acevedo C, Padilla J. Hyperinsulinemia blunts sympathetic vasoconstriction: a possible role of β-adrenergic activation. Am J Physiol Regul Integr Comp Physiol 2021; 320:R771-R779. [PMID: 33851554 DOI: 10.1152/ajpregu.00018.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein we report in a sample of healthy young men (n = 14) and women (n = 12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized that this prominent peripheral vasodilation is possibly due to the ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n = 9) and women (n = 7) that systemic infusion of insulin blunts sympathetically mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following β-adrenergic receptor blockade. In accordance, we also reveal that insulin augments β-adrenergic-mediated vasorelaxation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of β-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rogerio N Soares
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Gavin Power
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Brian Shariffi
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
Young BE, Greaney JL, Keller DM, Fadel PJ. Sympathetic transduction in humans: recent advances and methodological considerations. Am J Physiol Heart Circ Physiol 2021; 320:H942-H953. [PMID: 33416453 DOI: 10.1152/ajpheart.00926.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ever since their origin more than one half-century ago, microneurographic recordings of sympathetic nerve activity have significantly advanced our understanding of the generation and regulation of central sympathetic outflow in human health and disease. For example, it is now appreciated that a myriad of disease states exhibit chronic sympathetic overactivity, a significant predictor of cardiovascular morbidity and mortality. Although microneurographic recordings allow for the direct quantification of sympathetic outflow, they alone do not provide information with respect to the ensuing sympathetically mediated vasoconstriction and blood pressure (BP) response. Therefore, the study of vascular and/or BP responses to sympathetic outflow (i.e., sympathetic transduction) has now emerged as an area of growing interest within the field of neural cardiovascular control in human health and disease. To date, studies have primarily examined sympathetic transduction under two distinct paradigms: when reflexively evoking sympatho-excitation through the induction of a laboratory stressor (i.e., sympathetic transduction during stress) and/or following spontaneous bursts of sympathetic outflow occurring under resting conditions (i.e., sympathetic transduction at rest). The purpose of this brief review is to highlight how our physiological understanding of sympathetic transduction has been advanced by these studies and to evaluate the primary analytical techniques developed to study sympathetic transduction in humans. We also discuss the framework by which the assessment of sympathetic transduction during stress reflects a fundamentally different process relative to sympathetic transduction at rest and why findings from investigations using these different techniques should be interpreted as such and not necessarily be considered one and the same.
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jody L Greaney
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
15
|
Soares RN, Reimer RA, Doyle-Baker PK, Murias JM. Mild obesity does not affect the forearm muscle microvascular responses to hyperglycemia. Microcirculation 2020; 28:e12669. [PMID: 33150675 DOI: 10.1111/micc.12669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mild obesity has been associated with postprandial brachial artery vascular dysfunction. However, direct assessment of these effects within the forearm skeletal muscle microcirculation remains unclear. Thus, this study aimed to investigate the effects of mild obesity on the arm micro- and macrovascular responses to glucose ingestion. METHODS This cross-sectional study combined NIRS assessments of forearm skeletal muscle (FDS) reactivity (reperfusion slope) with %FMD of conduit artery function (brachial artery) before (Pre), as well as 60 and 120 min after glucose ingestion in 10 lean (BMI 23.9 ± 1.8) and 10 obese (BMI 32.9 ± 1.9) individuals. RESULTS Both groups showed a significant increase in the reperfusion slope at 60 and 120 min after glucose ingestion compared with the pre-glucose ingestion measurements. Obese individuals showed a significant (p < .05) reduction in %FMD at 60 min after glucose ingestion, while no significant changes in postprandial %FMD were observed in lean participants. CONCLUSION Even though obese individuals showed impaired postprandial brachial artery function, the current findings suggest that mild obesity does not affect the forearm skeletal muscle responses to glucose ingestion.
Collapse
Affiliation(s)
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia K Doyle-Baker
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Faculty of Environmental Design, University of Calgary, Calgary, AB, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Romero SA, Moralez G, Jaffery MF, Huang MU, Engelland RE, Cramer MN, Crandall CG. Exercise Training Improves Microvascular Function in Burn Injury Survivors. Med Sci Sports Exerc 2020; 52:2430-2436. [PMID: 33064412 DOI: 10.1249/mss.0000000000002379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Vasodilator function is impaired in individuals with well-healed burn injuries; however, therapeutic interventions that lessen or reverse this maladaptation are lacking. The purpose of this study was to test the hypothesis that a 6-month community-based exercise training program would increase microvascular dilator function in individuals with well-healed burn injuries, irrespective of the magnitude of the injured body surface area. Further, we hypothesize that macrovascular dilator function would remain unchanged posttraining. METHODS Microvascular function (forearm reactive hyperemia), macrovascular function (brachial artery flow-mediated dilation), and the maximal vasodilatory response after ischemic handgrip exercise (an estimate of microvascular remodeling) were assessed before and after exercise training in nonburned control subjects (n = 11) and individuals with burn injuries covering a moderate body surface area (26% ± 7%; n = 13) and a high body surface area (59% ± 15%; n = 19). RESULTS Peak vascular conductance and area under the curve during postocclusive reactive hyperemia increased from pretraining to posttraining in control and burn injury groups (both P < 0.05), the magnitude of which did not differ between groups (both P = 0.6). Likewise, the maximal vasodilatory response after ischemic handgrip exercise increased in all groups after exercise training (P < 0.05). Macrovascular dilator function did not differ across time or between groups (P = 0.8). CONCLUSIONS These data suggest that a community-based exercise training program improves microvascular function in individuals with well-healed burn injuries, which may be due in part to vascular remodeling.
Collapse
Affiliation(s)
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - M U Huang
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | | | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX
| |
Collapse
|
17
|
Hansen AB, Moralez G, Romero SA, Gasho C, Tymko MM, Ainslie PN, Hofstätter F, Rainer SL, Lawley JS, Hearon CM. Mechanisms of sympathetic restraint in human skeletal muscle during exercise: role of α-adrenergic and nonadrenergic mechanisms. Am J Physiol Heart Circ Physiol 2020; 319:H192-H202. [PMID: 32502375 DOI: 10.1152/ajpheart.00208.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction is mediated by α-adrenergic receptors under resting conditions. During exercise, increased sympathetic nerve activity (SNA) is directed to inactive and active skeletal muscle; however, it is unclear what mechanism(s) are responsible for vasoconstriction during large muscle mass exercise in humans. The aim of this study was to determine the contribution of α-adrenergic receptors to sympathetic restraint of inactive skeletal muscle and active skeletal muscle during cycle exercise in healthy humans. In ten male participants (18-35 yr), mean arterial pressure (intra-arterial catheter) and forearm vascular resistance (FVR) and conductance (FVC) were assessed during cycle exercise (60% total peak workload) alone and during combined cycle exercise + handgrip exercise (HGE) before and after intra-arterial blockade of α- and β-adrenoreceptors via phentolamine and propranolol, respectively. Cycle exercise caused vasoconstriction in the inactive forearm that was attenuated ~80% with adrenoreceptor blockade (%ΔFVR, +81.7 ± 84.6 vs. +9.7 ± 30.7%; P = 0.05). When HGE was performed during cycle exercise, the vasodilatory response to HGE was restrained by ~40% (ΔFVC HGE, +139.3 ± 67.0 vs. cycle exercise: +81.9 ± 66.3 ml·min-1·100 mmHg-1; P = 0.03); however, the restraint of active skeletal muscle blood flow was not due to α-adrenergic signaling. These findings highlight that α-adrenergic receptors are the primary, but not the exclusive mechanism by which sympathetic vasoconstriction occurs in inactive and active skeletal muscle during exercise. Metabolic activity or higher sympathetic firing frequencies may alter the contribution of α-adrenergic receptors to sympathetic vasoconstriction. Finally, nonadrenergic vasoconstrictor mechanisms may be important for understanding the regulation of blood flow during exercise.NEW & NOTEWORTHY Sympathetic restraint of vascular conductance to inactive skeletal muscle is critical to maintain blood pressure during moderate- to high-intensity whole body exercise. This investigation shows that cycle exercise-induced restraint of inactive skeletal muscle vascular conductance occurs primarily because of activation of α-adrenergic receptors. Furthermore, exercise-induced vasoconstriction restrains the subsequent vasodilatory response to hand-grip exercise; however, the restraint of active skeletal muscle vasodilation was in part due to nonadrenergic mechanisms. We conclude that α-adrenergic receptors are the primary but not exclusive mechanism by which sympathetic vasoconstriction restrains blood flow in humans during whole body exercise and that metabolic activity modulates the contribution of α-adrenergic receptors.
Collapse
Affiliation(s)
- Alexander B Hansen
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gilbert Moralez
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven A Romero
- University of North Texas Health Science Center, Fort Worth, Texas
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, Department of Medicine, University of Loma Lida, Loma Lida, California
| | - Michael M Tymko
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada.,Physical Activity and Diabetes Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Philip N Ainslie
- Centre of Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Florian Hofstätter
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Simon L Rainer
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Justin S Lawley
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Christopher M Hearon
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Gunnarsson TP, Ehlers TS, Fiorenza M, Nyberg M, Bangsbo J. Essential hypertension is associated with blunted smooth muscle cell vasodilator responsiveness and is reversed by 10-20-30 training in men. Am J Physiol Cell Physiol 2020; 318:C1252-C1263. [DOI: 10.1152/ajpcell.00047.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Essential hypertension is associated with impairments in vascular function and sympathetic nerve hyperactivity; however, the extent to which the lower limbs are affected remains unclear. We examined the leg vascular responsiveness to infusion of acetylcholine (ACh), sodium nitroprusside (SNP), and phenylephrine (PEP) in 10 hypertensive men [HYP: age 59.5 ± 9.7 (means ± SD) yr; clinical and nighttime blood pressure: 142 ± 10/86 ± 10 and 141 ± 11/83 ± 6 mmHg, respectively; and body mass index (BMI): 29.2 ± 4.0 kg/m2] and 8 age-matched normotensive counterparts (NORM: age 57.9 ± 10.8 yr; clinical and nighttime blood pressure: 128 ± 9/78 ± 7 and 116 ± 3/69 ± 3 mmHg, respectively; and BMI: 26.3 ± 3.1 kg/m2). The vascular responsiveness was evaluated before and after 6 wk of 10-20-30 training, consisting of 3 × 5 × 10-s sprint followed by 30 and 20 s of low- to moderate-intensity cycling, respectively, interspersed by 3 min of rest. Before training, the vascular responsiveness to infusion of SNP was lower ( P < 0.05) in HYP compared with NORM, with no difference in the responsiveness to infusion of ACh and PEP. The vascular responsiveness to infusion of SNP and ACh improved ( P < 0.05) with training in HYP, with no change in NORM. With training, intra-arterial systolic blood pressure decreased ( P < 0.05) by 9 mmHg in both HYP and NORM whereas diastolic blood pressure decreased (5 mmHg; P < 0.05) in HYP only. We provide here the first line of evidence in humans that smooth muscle cell vasodilator responsiveness is blunted in the lower limbs of hypertensive men. This impairment can be reversed by 10-20-30 training, which is an effective intervention to improve the responsiveness of smooth muscle cells in men with essential hypertension.
Collapse
Affiliation(s)
- Thomas P. Gunnarsson
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S. Ehlers
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Fiorenza
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Stuckless TJR, Vermeulen TD, Brown CV, Boulet LM, Shafer BM, Wakeham DJ, Steinback CD, Ayas NT, Floras JS, Foster GE. Acute intermittent hypercapnic hypoxia and sympathetic neurovascular transduction in men. J Physiol 2020; 598:473-487. [PMID: 31805605 DOI: 10.1113/jp278941] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Intermittent hypoxia leads to long-lasting increases in muscle sympathetic nerve activity and blood pressure, contributing to increased risk for hypertension in obstructive sleep apnoea patients. We determined whether augmented vascular responses to increasing sympathetic vasomotor outflow, termed sympathetic neurovascular transduction (sNVT), accompanied changes in blood pressure following acute intermittent hypercapnic hypoxia in men. Lower body negative pressure was utilized to induce a range of sympathetic vasoconstrictor firing while measuring beat-by-beat blood pressure and forearm vascular conductance. IH reduced vascular shear stress and steepened the relationship between diastolic blood pressure and sympathetic discharge frequency, suggesting greater systemic sNVT. Our results indicate that recurring cycles of acute intermittent hypercapnic hypoxia characteristic of obstructive sleep apnoea could promote hypertension by increasing sNVT. ABSTRACT Acute intermittent hypercapnic hypoxia (IH) induces long-lasting elevations in sympathetic vasomotor outflow and blood pressure in healthy humans. It is unknown whether IH alters sympathetic neurovascular transduction (sNVT), measured as the relationship between sympathetic vasomotor outflow and either forearm vascular conductance (FVC; regional sNVT) or diastolic blood pressure (systemic sNVT). We tested the hypothesis that IH augments sNVT by exposing healthy males to 40 consecutive 1 min breathing cycles, each comprising 40 s of hypercapnic hypoxia ( P ETC O 2 : +4 ± 3 mmHg above baseline; P ET O 2 : 48 ± 3 mmHg) and 20 s of normoxia (n = 9), or a 40 min air-breathing control (n = 7). Before and after the intervention, lower body negative pressure (LBNP; 3 min at -15, -30 and -45 mmHg) was applied to elicit reflex increases in muscle sympathetic nerve activity (MSNA, fibular microneurography) when clamping end-tidal gases at baseline levels. Ventilation, arterial pressure [systolic blood pressure, diastolic blood pressure, mean arterial pressure (MAP)], brachial artery blood flow ( Q ̇ BA ), FVC ( Q ̇ BA /MAP) and MSNA burst frequency were measured continuously. Following IH, but not control, ventilation [5 L min-1 ; 95% confidence interval (CI) = 1-9] and MAP (5 mmHg; 95% CI = 1-9) were increased, whereas FVC (-0.2 mL min-1 mmHg-1 ; 95% CI = -0.0 to -0.4) and mean shear rate (-21.9 s-1 ; 95% CI = -5.8 to -38.0; all P < 0.05) were reduced. Systemic sNVT was increased following IH (0.25 mmHg burst-1 min-1 ; 95% CI = 0.01-0.49; P < 0.05), whereas changes in regional forearm sNVT were similar between IH and sham. Reductions in vessel wall shear stress and, consequently, nitric oxide production may contribute to heightened systemic sNVT and provide a potential neurovascular mechanism for elevated blood pressure in obstructive sleep apnoea.
Collapse
Affiliation(s)
- Troy J R Stuckless
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Tyler D Vermeulen
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Courtney V Brown
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Brooke M Shafer
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Denis J Wakeham
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Craig D Steinback
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Najib T Ayas
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - John S Floras
- University Health Network and Mount Sinai Hospital Division of Cardiology, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| |
Collapse
|
20
|
Limberg JK, Casey DP, Trinity JD, Nicholson WT, Wray DW, Tschakovsky ME, Green DJ, Hellsten Y, Fadel PJ, Joyner MJ, Padilla J. Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. Am J Physiol Heart Circ Physiol 2019; 318:H301-H325. [PMID: 31886718 DOI: 10.1152/ajpheart.00649.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The introduction of duplex Doppler ultrasound almost half a century ago signified a revolutionary advance in the ability to assess limb blood flow in humans. It is now widely used to assess blood flow under a variety of experimental conditions to study skeletal muscle resistance vessel function. Despite its pervasive adoption, there is substantial variability between studies in relation to experimental protocols, procedures for data analysis, and interpretation of findings. This guideline results from a collegial discussion among physiologists and pharmacologists, with the goal of providing general as well as specific recommendations regarding the conduct of human studies involving Doppler ultrasound-based measures of resistance vessel function in skeletal muscle. Indeed, the focus is on methods used to assess resistance vessel function and not upstream conduit artery function (i.e., macrovasculature), which has been expertly reviewed elsewhere. In particular, we address topics related to experimental design, data collection, and signal processing as well as review common procedures used to assess resistance vessel function, including postocclusive reactive hyperemia, passive limb movement, acute single limb exercise, and pharmacological interventions.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | | | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Holwerda SW, Luehrs RE, DuBose L, Collins MT, Wooldridge NA, Stroud AK, Fadel PJ, Abboud FM, Pierce GL. Elevated Muscle Sympathetic Nerve Activity Contributes to Central Artery Stiffness in Young and Middle-Age/Older Adults. Hypertension 2019; 73:1025-1035. [PMID: 30905199 DOI: 10.1161/hypertensionaha.118.12462] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Muscle sympathetic nerve activity (MSNA) influences the mechanical properties (ie, vascular smooth muscle tone and stiffness) of peripheral arteries, but it remains controversial whether MSNA contributes to stiffness of central arteries, such as the aorta and carotids. We examined whether elevated MSNA (age-related) would be independently associated with greater stiffness of central (carotid-femoral pulse wave velocity [PWV]) and peripheral (carotid-brachial PWV) arteries, in addition to lower carotid compliance coefficient, in healthy men and women (n=88, age: 19-73 years, 52% men). We also examined whether acute elevations in MSNA without increases in mean arterial pressure using graded levels of lower body negative pressure would augment central and peripheral artery stiffness in young (n=15, 60% men) and middle-age/older (MA/O, n=14, 43% men) adults. Resting MSNA burst frequency (bursts·min-1) was significantly correlated with carotid-femoral PWV ( R=0.44, P<0.001), carotid-brachial PWV ( R=0.32, P=0.004), and carotid compliance coefficient ( R=0.28, P=0.01) after controlling for sex, mean arterial pressure, heart rate, and waist-to-hip ratio (central obesity), but these correlations were abolished after further controlling for age (all P>0.05). In young and MA/O adults, MSNA was elevated during lower body negative pressure ( P<0.001) and produced significant increases in carotid-femoral PWV (young: Δ+1.3±0.3 versus MA/O: Δ+1.0±0.3 m·s-1, P=0.53) and carotid-brachial PWV (young: Δ+0.7±0.3 versus MA/O: Δ+0.7±0.5 m·s-1, P=0.92), whereas carotid compliance coefficient during lower body negative pressure was significantly reduced in young but not MA/O (young: Δ-0.04±0.01 versus MA/O: Δ0.001±0.008 mm2·mm Hg-1, P<0.01). Collectively, these data demonstrate the influence of MSNA on central artery stiffness and its potential contribution to age-related increases in stiffness of both peripheral and central arteries.
Collapse
Affiliation(s)
- Seth W Holwerda
- From the Department of Health and Human Physiology (S.W.H., R.E.L., M.T.C., N.A.W., G.L.P.).,Abboud Cardiovascular Research Center (S.W.H., F.M.A., G.L.P.)
| | - Rachel E Luehrs
- From the Department of Health and Human Physiology (S.W.H., R.E.L., M.T.C., N.A.W., G.L.P.)
| | | | - Michael T Collins
- From the Department of Health and Human Physiology (S.W.H., R.E.L., M.T.C., N.A.W., G.L.P.)
| | - Nealy A Wooldridge
- From the Department of Health and Human Physiology (S.W.H., R.E.L., M.T.C., N.A.W., G.L.P.)
| | | | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington (P.J.F.)
| | - Francois M Abboud
- Abboud Cardiovascular Research Center (S.W.H., F.M.A., G.L.P.).,Department of Internal Medicine (F.M.A.).,Department of Molecular Physiology and Biophysics (F.M.A.)
| | - Gary L Pierce
- From the Department of Health and Human Physiology (S.W.H., R.E.L., M.T.C., N.A.W., G.L.P.).,Abboud Cardiovascular Research Center (S.W.H., F.M.A., G.L.P.).,Fraternal Order of Eagles Diabetes Research Center (G.L.P.)
| |
Collapse
|
22
|
Soares RN, Murias JM, Saccone F, Puga L, Moreno G, Resnik M, De Roia GF. Effects of a rehabilitation program on microvascular function of CHD patients assessed by near-infrared spectroscopy. Physiol Rep 2019; 7:e14145. [PMID: 31190469 PMCID: PMC6562121 DOI: 10.14814/phy2.14145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to evaluate whether near-infrared spectroscopy (NIRS)-derived reperfusion slope would detect the effects of a 12-week rehabilitation program on lower limb microvascular responsiveness in patients with coronary heart disease (CHD). Ten CHD patients (7 males and 3 females; 57.3 ± 7.6 years) underwent 12 weeks of drug treatment and high-intensity interval training (HIIT), 2 times per week (40 min/session). Microvascular responsiveness was assessed by using NIRS assessment of muscle oxygen saturation (StO2 ) combined with a vascular occlusion test (VOT) (NIRS-VOT). NIRS-VOT measures were taken at pre- and postintervention, and microvascular responsiveness was evaluated by examining the slope 2 of re-oxygenation rate (slope 2 StO2 ) and the area under the curve (StO2AUC ) of StO2 signal following cuff release subsequent to a 5-min occlusion period. The slope 2 StO2 was significantly steeper after 12 weeks of training (4.8 ± 1.6% sec-1 ) compared to the pretraining (3.1 ± 1.6% sec-1 ) (P < 0.05). The area under the curve for the change in the % StO2 signal during re-oxygenation increased significantly from 3494 ± 2372%∙sec at pretraining to 9006 ± 4311%∙sec at post-training (P < 0.05). NIRS-VOT technique detected the improvements of 12 weeks of rehabilitation program in the lower limb microvascular responsiveness of CHD patients.
Collapse
Affiliation(s)
| | - Juan M. Murias
- University of CalgaryFaculty of KinesiologyCalgaryAlbertaCanada
| | | | | | - Gustavo Moreno
- Sanatorio Dr. Julio MendezCABABuenos AiresArgentina
- CENARDCentro Nacional de Alto Rendimiento DeportivoCABABuenos AiresArgentina
| | - Miguel Resnik
- Sanatorio Dr. Julio MendezCABABuenos AiresArgentina
- CENARDCentro Nacional de Alto Rendimiento DeportivoCABABuenos AiresArgentina
| | | |
Collapse
|
23
|
Barrett-O'Keefe Z, Lee JF, Ives SJ, Trinity JD, Witman MAH, Rossman MJ, Groot HJ, Sorensen JR, Morgan DE, Nelson AD, Stehlik J, Richardson RS, Wray DW. α-Adrenergic receptor regulation of skeletal muscle blood flow during exercise in heart failure patients with reduced ejection fraction. Am J Physiol Regul Integr Comp Physiol 2019; 316:R512-R524. [PMID: 30789790 DOI: 10.1152/ajpregu.00345.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients suffering from heart failure with reduced ejection fraction (HFrEF) experience impaired limb blood flow during exercise, which may be due to a disease-related increase in α-adrenergic receptor vasoconstriction. Thus, in eight patients with HFrEF (63 ± 4 yr) and eight well-matched controls (63 ± 2 yr), we examined changes in leg blood flow (Doppler ultrasound) during intra-arterial infusion of phenylephrine (PE; an α1-adrenergic receptor agonist) and phentolamine (Phen; a nonspecific α-adrenergic receptor antagonist) at rest and during dynamic single-leg knee-extensor exercise (0, 5, and 10 W). At rest, the PE-induced reduction in blood flow was significantly attenuated in patients with HFrEF (-15 ± 7%) compared with controls (-36 ± 5%). During exercise, the controls exhibited a blunted reduction in blood flow induced by PE (-12 ± 4, -10 ± 4, and -9 ± 2% at 0, 5, and 10 W, respectively) compared with rest, while the PE-induced change in blood flow was unchanged compared with rest in the HFrEF group (-8 ± 5, -10 ± 3, and -14 ± 3%, respectively). Phen administration increased leg blood flow to a greater extent in the HFrEF group at rest (+178 ± 34% vs. +114 ± 28%, HFrEF vs. control) and during exercise (36 ± 6, 37 ± 7, and 39 ± 6% vs. 13 ± 3, 14 ± 1, and 8 ± 3% at 0, 5, and 10 W, respectively, in HFrEF vs. control). Together, these findings imply that a HFrEF-related increase in α-adrenergic vasoconstriction restrains exercising skeletal muscle blood flow, potentially contributing to diminished exercise capacity in this population.
Collapse
Affiliation(s)
| | - Joshua F Lee
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah
| | - Stephen J Ives
- Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - Melissa A H Witman
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Matthew J Rossman
- Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah
| | - H Jon Groot
- Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah
| | - Jacob R Sorensen
- Department of Exercise and Sport Science, University of Utah , Salt Lake City, Utah
| | - David E Morgan
- Department of Anesthesiology, University of Utah , Salt Lake City, Utah
| | - Ashley D Nelson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Josef Stehlik
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center , Salt Lake City, Utah.,Department of Internal Medicine, University of Utah , Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
24
|
Ichinose M, Nakabayashi M, Ono Y. Sympathoexcitation constrains vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. Am J Physiol Heart Circ Physiol 2018; 315:H242-H253. [DOI: 10.1152/ajpheart.00010.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We used diffuse correlation spectroscopy to investigate sympathetic vasoconstriction, local vasodilation, and integration of these two responses in the skeletal muscle microvasculature of 20 healthy volunteers. Diffuse correlation spectroscopy probes were placed on the flexor carpi radialis muscle or vastus lateralis muscle, and a blood flow index was derived continuously. We measured hemodynamic responses during sympathoexcitation induced by forehead cooling, after which the effects of the increased sympathetic tone on vasodilatory responses during postocclusive reactive hyperemia (PORH) were examined. PORH was induced by releasing arterial occlusion (3 min) in an arm or leg. To increase sympathetic tone during PORH, forehead cooling was begun 60 s before the occlusion release and ended 60 s after the release. During forehead cooling, mean arterial pressure rose significantly and was sustained at an elevated level. Significant vasoconstriction and decreases in blood flow index followed by gradual blunting of the vasoconstriction also occurred. The time course of these responses is in good agreement with previous observations in animals. The acute sympathoexcitation diminished the peak vasodilation during PORH only in the vastus lateralis muscle, but it hastened the decline in vasodilation after the peak in both the flexor carpi radialis muscle and vastus lateralis muscle. Consequently, the total vasodilatory response assessed as the area of the vascular conductance during the first minute of PORH was significantly diminished in both regions. We conclude that, in humans, the integrated effects of sympathetic vasoconstriction and local vasodilation have an important role in vascular regulation and control of perfusion in the skeletal muscle microcirculation. NEW & NOTEWORTHY We used diffuse correlation spectroscopy to demonstrate that acute sympathoexcitation constrains local vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. This finding indicates that integration of sympathetic vasoconstriction and local vasodilation is importantly involved in vascular regulation and the control of perfusion of the skeletal muscle microcirculation in humans.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Mikie Nakabayashi
- Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| |
Collapse
|
25
|
Kruse NT, Hughes WE, Ueda K, Hanada S, Feider AJ, Iwamoto E, Bock JM, Casey DP. Impaired modulation of postjunctional α 1 - but not α 2 -adrenergic vasoconstriction in contracting forearm muscle of postmenopausal women. J Physiol 2018; 596:2507-2519. [PMID: 29708589 DOI: 10.1113/jp275777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS Contraction-mediated blunting of postjunctional α-adrenergic vasoconstriction (functional sympatholysis) is attenuated in skeletal muscle of ageing males, brought on by altered postjunctional α1 - and α2 -adrenergic receptor sensitivity. The extent to which postjunctional α-adrenergic vasoconstriction occurs in the forearms at rest and during exercise in postmenopausal women remains unknown. The novel findings indicate that contraction-mediated blunting of α1 - (via intra-arterial infusion of phenylephrine) but not α2 -adrenergic (via intra-arterial infusion of dexmedetomidine) vasoconstriction was attenuated in postmenopausal women compared to young women. Additional important findings revealed that postjunctional α-adrenergic vasoconstrictor responsiveness at rest does not appear to be affected by age in women. Collectively, these results contribute to our understanding of local neurovascular control at rest and during exercise with age in women. ABSTRACT Contraction-mediated blunting of postjunctional α-adrenergic vasoconstriction (functional sympatholysis) is attenuated in older males; however, direct confirmation of this effect remains unknown in postmenopausal women (PMW). The present study examined whether PMW exhibit augmented postjunctional α-adrenergic receptor vasoconstriction at rest and during forearm exercise compared to young women (YW). Eight YW (24 ± 1 years) and eight PMW (65 ± 1 years) completed a series of randomized experimental trials: (1) at rest, (2) under high flow (adenosine infusion) conditions and (3) during 6 min of forearm exercise at relative (20% of maximum) and absolute (7 kg) intensities. Phenylephrine (α1 -agonist) or dexmedetomidine (α2 -agonist) was administered during the last 3 min of each trial to elicit α-adrenergic vasoconstriction. Forearm vascular conductance (FVC) was calculated from blood flow and blood pressure. Vasoconstrictor responsiveness was identified as the change in FVC (%) during α-adrenergic agonist infusions from baseline (resting trial) or from steady-state conditions (high flow and exercise trials). During resting and high flow trials, the %FVC during α1 - and α2 -agonist stimulation was similar between YW and PMW. During exercise, α1 -mediated vasoconstriction was blunted in YW vs. PMW at relative (-6 ± 2% vs. -15 ± 3%) and absolute (-4 ± 2% vs. -14 ± 5%) workloads, such that blood flow and FVC were lower in PMW (P < 0.05 for all). Conversely, α2 -mediated vasoconstriction was similar between YW and PMW at relative (-22 ± 3% vs. -22 ± 4%; P > 0.05) and absolute (-19 ± 3% vs. -18 ± 4%; P > 0.05) workloads. Collectively, these findings demonstrate that despite similar α-adrenergic vasoconstrictor responsiveness at rest, PMW have a decreased ability to attenuate α1 -adrenergic vasoconstriction in contracting skeletal muscle.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
26
|
Holwerda SW, Luehrs RE, Gremaud AL, Wooldridge NA, Stroud AK, Fiedorowicz JG, Abboud FM, Pierce GL. Relative burst amplitude of muscle sympathetic nerve activity is an indicator of altered sympathetic outflow in chronic anxiety. J Neurophysiol 2018. [PMID: 29537916 DOI: 10.1152/jn.00064.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Relative burst amplitude of muscle sympathetic nerve activity (MSNA) is an indicator of augmented sympathetic outflow and contributes to greater vasoconstrictor responses. Evidence suggests anxiety-induced augmentation of relative MSNA burst amplitude in patients with panic disorder; thus we hypothesized that acute stress would result in augmented relative MSNA burst amplitude and vasoconstriction in individuals with chronic anxiety. Eighteen participants with chronic anxiety (ANX; 8 men, 10 women, 32 ± 2 yr) and 18 healthy control subjects with low or no anxiety (CON; 8 men, 10 women, 39 ± 3 yr) were studied. Baseline MSNA and 24-h blood pressure were similar between ANX and CON ( P > 0.05); however, nocturnal systolic blood pressure % dipping was blunted among ANX ( P = 0.02). Relative MSNA burst amplitude was significantly greater among ANX compared with CON immediately preceding (anticipation) and during physiological stress [2-min cold pressor test; ANX: 73 ± 5 vs. CON: 59 ± 3% arbitrary units (AU), P = 0.03] and mental stress (4-min mental arithmetic; ANX: 65 ± 3 vs. CON: 54 ± 3% AU, P = 0.02). Increases in MSNA burst frequency, incidence, and total activity in response to stress were not augmented among ANX compared with CON ( P > 0.05), and reduction in brachial artery conductance during cold stress was similar between ANX and CON ( P = 0.92). Relative MSNA burst amplitude during mental stress was strongly correlated with state ( P < 0.01) and trait ( P = 0.01) anxiety (State-Trait Anxiety Inventory), independent of age, sex, and body mass index. Thus in response to acute stress, both mental and physiological, individuals with chronic anxiety demonstrate selective augmentation in relative MSNA burst amplitude, indicating enhanced sympathetic drive in a population with higher risk for cardiovascular disease. NEW & NOTEWORTHY Relative burst amplitude of muscle sympathetic nerve activity in response to acute mental and physiological stress is selectively augmented in individuals with chronic anxiety, which is a prevalent condition that is associated with the development of cardiovascular disease. Augmented sympathetic burst amplitude occurs with chronic anxiety in the absence of common comorbidities. These findings provide important insight into the relation between anxiety, acute stress and sympathetic activation.
Collapse
Affiliation(s)
- Seth W Holwerda
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Rachel E Luehrs
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Allene L Gremaud
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Nealy A Wooldridge
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa
| | - Amy K Stroud
- Department of Psychiatry, University of Iowa , Iowa City, Iowa
| | - Jess G Fiedorowicz
- Department of Psychiatry, University of Iowa , Iowa City, Iowa.,Department of Epidemiology, University of Iowa , Iowa City, Iowa.,Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Francois M Abboud
- Department of Internal Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
27
|
Credeur DP, Reynolds LJ, Holwerda SW, Vranish JR, Young BE, Wang J, Thyfault JP, Fadel PJ. Influence of physical inactivity on arterial compliance during a glucose challenge. Exp Physiol 2018; 103:483-494. [PMID: 29315921 DOI: 10.1113/ep086713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022]
Abstract
NEW FINDINGS What is the central question of this study? To understand better the effects of acute hyperglycaemia on arterial stiffness in healthy young individuals, we assessed arterial stiffness in physically active men before and after reduced ambulatory physical activity to decrease insulin sensitivity. What is the main finding and its importance? During an oral glucose tolerance test, we identified an increase in leg arterial stiffness (i.e. reduced femoral artery compliance) only when subjects were inactive for 5 days (<5000 steps day-1 ) and not when they were engaging in regular physical activity (>10,000 steps day-1 ). These results demonstrate the deleterious consequence of acute reductions in daily physical activity on the response of the peripheral vasculature to acute hyperglycaemia. ABSTRACT Acute hyperglycaemia has been shown to augment indices of arterial stiffness in patients with insulin resistance and other co-morbidities; however, conflicting results exist in healthy young individuals. We examined whether acute hyperglycaemia after an oral glucose tolerance test (OGTT) increases arterial stiffness in healthy active men before and after reduced ambulatory physical activity to decrease insulin sensitivity. High-resolution arterial diameter traces acquired from Doppler ultrasound allowed an arterial blood pressure (BP) waveform to be obtained from the diameter trace within a cardiac cycle. In 24 subjects, this method demonstrated sufficient agreement with the traditional approach for assessing arterial compliance using applanation tonometry. In 10 men, continuous recordings of femoral and brachial artery diameter and beat-to-beat BP (Finometer) were acquired at rest, 60 and 120 min of an OGTT before and after 5 days of reduced activity (from >10,000 to <5000 steps day-1 ). Compliance and β-stiffness were quantified. Before the reduction in activity, the OGTT had no effect on arterial compliance or β-stiffness. However, after the reduction in activity, femoral compliance was decreased (rest, 0.10 ± 0.03 mm2 mmHg-1 versus 120 min OGTT, 0.06 ± 0.02 mm2 mmHg-1 ; P < 0.001) and femoral β-stiffness increased (rest, 8.7 ± 2.7 a.u. versus 120 min OGTT, 15.3 ± 6.5 a.u.; P < 0.001) during OGTT, whereas no changes occurred in brachial artery compliance (P = 0.182) or stiffness (P = 0.892). Insulin sensitivity (Matsuda index) was decreased after the reduction in activity (P = 0.002). In summary, in young healthy men the femoral artery becomes susceptible to acute hyperglycaemia after 5 days of reduced activity and the resultant decrease in insulin sensitivity, highlighting the strong influence of daily physical activity levels on vascular physiology.
Collapse
Affiliation(s)
- Daniel P Credeur
- School of Kinesiology, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Leryn J Reynolds
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Seth W Holwerda
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Jennifer R Vranish
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Jing Wang
- College of Nursing, University of Texas at Arlington, Arlington, TX, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
28
|
Shoemaker JK, Klassen SA, Badrov MB, Fadel PJ. Fifty years of microneurography: learning the language of the peripheral sympathetic nervous system in humans. J Neurophysiol 2018; 119:1731-1744. [PMID: 29412776 DOI: 10.1152/jn.00841.2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a primary component of homeostasis, the sympathetic nervous system enables rapid adjustments to stress through its ability to communicate messages among organs and cause targeted and graded end organ responses. Key in this communication model is the pattern of neural signals emanating from the central to peripheral components of the sympathetic nervous system. But what is the communication strategy employed in peripheral sympathetic nerve activity (SNA)? Can we develop and interpret the system of coding in SNA that improves our understanding of the neural control of the circulation? In 1968, Hagbarth and Vallbo (Hagbarth KE, Vallbo AB. Acta Physiol Scand 74: 96-108, 1968) reported the first use of microneurographic methods to record sympathetic discharges in peripheral nerves of conscious humans, allowing quantification of SNA at rest and sympathetic responsiveness to physiological stressors in health and disease. This technique also has enabled a growing investigation into the coding patterns within, and cardiovascular outcomes associated with, postganglionic SNA. This review outlines how results obtained by microneurographic means have improved our understanding of SNA outflow patterns at the action potential level, focusing on SNA directed toward skeletal muscle in conscious humans.
Collapse
Affiliation(s)
- J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Stephen A Klassen
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Mark B Badrov
- School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington , Arlington, Texas
| |
Collapse
|
29
|
Nyberg M, Piil P, Kiehn OT, Maagaard C, Jørgensen TS, Egelund J, Isakson BE, Nielsen MS, Gliemann L, Hellsten Y. Probenecid Inhibits α-Adrenergic Receptor-Mediated Vasoconstriction in the Human Leg Vasculature. Hypertension 2018; 71:151-159. [PMID: 29084879 PMCID: PMC5876717 DOI: 10.1161/hypertensionaha.117.10251] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/11/2017] [Accepted: 10/09/2017] [Indexed: 01/07/2023]
Abstract
Coordination of vascular smooth muscle cell tone in resistance arteries plays an essential role in the regulation of peripheral resistance and overall blood pressure. Recent observations in animals have provided evidence for a coupling between adrenoceptors and Panx1 (pannexin-1) channels in the regulation of sympathetic nervous control of peripheral vascular resistance and blood pressure; however, evidence for a functional coupling in humans is lacking. We determined Panx1 expression and effects of treatment with the pharmacological Panx1 channel inhibitor probenecid on the vasoconstrictor response to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle. Probenecid treatment increased (P<0.05) leg vascular conductance at baseline by ≈15% and attenuated (P<0.05) the leg vasoconstrictor response to arterial infusion of tyramine (α1- and α2-adrenergic receptor stimulation) by ≈15%, whereas the response to the α1-agonist phenylephrine was unchanged. Inhibition of α1-adrenoceptors prevented the probenecid-induced increase in baseline leg vascular conductance, but did not alter the effect of probenecid on the vascular response to tyramine. No differences with probenecid treatment were detected in the forearm. These observations provide the first line of evidence in humans for a functional role of Panx1 channels in setting resting tone via α1-adrenoceptors and in the constrictive effect of noradrenaline via α2-adrenoceptors, thereby contributing to the regulation of peripheral vascular resistance and blood pressure in humans.
Collapse
Affiliation(s)
- Michael Nyberg
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Peter Piil
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Oliver T Kiehn
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Christian Maagaard
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Tue S Jørgensen
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Jon Egelund
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Brant E Isakson
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Morten S Nielsen
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Lasse Gliemann
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.)
| | - Ylva Hellsten
- From the Department of Nutrition, Exercise and Sports (M.N., P.P., O.T.K., C.M., T.S.J., J.E., L.G., Y.H.) and Department of Biomedical Sciences, Faculty of Health and Medical Sciences (M.S.N.), University of Copenhagen, Denmark; Department of Orthopedics, Herlev and Gentofte Hospital, Hellerup, Denmark (T.S.J.); and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville (B.E.I.).
| |
Collapse
|
30
|
Kruse NT, Hughes WE, Hanada S, Ueda K, Bock JM, Iwamoto E, Casey DP. Evidence of a greater functional sympatholysis in habitually aerobic trained postmenopausal women. J Appl Physiol (1985) 2017; 124:583-591. [PMID: 28970201 DOI: 10.1152/japplphysiol.00411.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Habitual aerobic exercise attenuates elevated vasoconstriction during acute exercise (functional sympatholysis) in older men; however, this effect remains unknown in postmenopausal women (PMW). This study tested the hypothesis that PMW who participate in habitual aerobic exercise demonstrate a greater functional sympatholysis compared with their untrained counterparts. Nineteen PMW (untrained n = 9 vs. trained n = 10) performed 5 min of steady-state (SS) forearm exercise at relative [10% and 20% of maximum voluntary contraction (MVC)] and absolute (5 kg) contraction intensities. Lower-body negative pressure (LBNP) was used to increase sympathetic vasoconstriction during rest and forearm exercise. Brachial artery diameter and blood velocities (via Doppler ultrasound) determined forearm blood flow (FBF; ml/min). Forearm muscle oxygen consumption ([Formula: see text]; ml/min) and arteriovenous oxygen difference (a-vO2diff) were estimated during SS-exercise and SS-exercise with LBNP. Forearm vascular conductance (FVC; ml·min-1·100 mmHg-1) was calculated from FBF and mean arterial pressure (MAP; mmHg). Vasoconstrictor responsiveness was determined as the %change in FVC during LBNP. The reduction in FVC (% change FVC) during LBNP was lower in trained compared with untrained PMW at 10% MVC (-7.3 ± 1.2% vs. -13.0 ± 1.1%; P < 0.05), 20% MVC (-4.4 ± 0.8% vs. -8.6 ± 1.4%; P < 0.05), and 5 kg (-5.3 ± 0.8% vs. -8.9 ± 1.4%; P < 0.05) conditions, whereas there were no differences at rest (-32.7 ± 4.4% vs. -33.7 ± 4.0%). Peripheral (FVC, FBF, and [Formula: see text]) and the magnitude change in systemic hemodynamics (heart rate and MAP) did not differ between groups during exercise. Collectively, the findings present the first evidence suggesting that PMW who participate in aerobic exercise demonstrate a greater functional sympatholysis compared with untrained PMW during mild to moderate forearm exercise. NEW & NOTEWORTHY Habitual aerobic exercise attenuates the elevated sympathetic nervous system-induced vasoconstriction during an acute bout of exercise (improved functional sympatholysis) in aging men; however, this effect remains unknown in postmenopausal women (PMW). The novel findings of this study suggest that habitual aerobic exercise results in an enhanced functional sympatholysis in PMW. Conversely, habitual aerobic exercise does not alter blood flow and oxygen utilization during acute forearm exercise compared with PMW who do not habitually exercise.
Collapse
Affiliation(s)
- Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Joshua M Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
31
|
Romero SA, Gagnon D, Adams AN, Moralez G, Kouda K, Jaffery MF, Cramer MN, Crandall CG. Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans. Am J Physiol Heart Circ Physiol 2017; 313:H658-H666. [PMID: 28667051 DOI: 10.1152/ajpheart.00234.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
Skeletal muscle blood flow is attenuated in aged humans performing dynamic exercise, which is due, in part, to impaired local vasodilatory mechanisms. Recent evidence suggests that folic acid improves cutaneous vasodilation during localized and whole body heating through nitric oxide-dependent mechanisms. However, it is unclear whether folic acid improves vasodilation in other vascular beds during conditions of increased metabolism (i.e., exercise). The purpose of this study was to test the hypothesis that folic acid ingestion improves skeletal muscle blood flow in aged adults performing graded handgrip and plantar flexion exercise via increased vascular conductance. Nine healthy, aged adults (two men and seven women; age: 68 ± 5 yr) performed graded handgrip and plantar flexion exercise before (control), 2 h after (acute, 5 mg), and after 6 wk (chronic, 5 mg/day) folic acid ingestion. Forearm (brachial artery) and leg (superficial femoral artery) blood velocity and diameter were measured via Duplex ultrasonography and used to calculate blood flow. Acute and chronic folic acid ingestion increased serum folate (both P < 0.05 vs. control). During handgrip exercise, acute and chronic folic acid ingestion increased forearm blood flow (both conditions P < 0.05 vs. control) and vascular conductance (both P < 0.05 vs. control). During plantar flexion exercise, acute and chronic folic acid ingestion increased leg blood flow (both P < 0.05 vs. control), but only acute folic acid ingestion increased vascular conductance (P < 0.05 vs. control). Taken together, folic acid ingestion increases blood flow to active skeletal muscle primarily via improved local vasodilation in aged adults.NEW & NOTEWORTHY Our findings demonstrate that folic acid ingestion improves blood flow via enhanced vascular conductance in the exercising skeletal muscle of aged humans. These findings provide evidence for the therapeutic use of folic acid to improve skeletal muscle blood flow, and perhaps exercise and functional capacity, in human primary aging.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/folic-acid-and-exercise-hyperemia-in-aging/.
Collapse
Affiliation(s)
- Steven A Romero
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Daniel Gagnon
- Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada.,Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada; and
| | - Amy N Adams
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Gilbert Moralez
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Ken Kouda
- Wakayama Medical University, Wakayama, Japan
| | - Manall F Jaffery
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Matthew N Cramer
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas
| | - Craig G Crandall
- University of Texas Southwestern Medical Center and Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas;
| |
Collapse
|
32
|
Tremblay JC, Boulet LM, Tymko MM, Foster GE. Intermittent hypoxia and arterial blood pressure control in humans: role of the peripheral vasculature and carotid baroreflex. Am J Physiol Heart Circ Physiol 2016; 311:H699-706. [PMID: 27402667 DOI: 10.1152/ajpheart.00388.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
Abstract
Intermittent hypoxia (IH) occurs in association with obstructive sleep apnea and likely contributes to the pathogenesis of hypertension. The purpose of this study was to examine the putative early adaptations at the level of the peripheral vasculature and carotid baroreflex (CBR) that may promote the development of hypertension. Ten healthy male participants (26 ± 1 yr, BMI = 24 ± 1 kg/m(2)) were exposed to 6 h of IH (1-min cycles of normoxia and hypoxia) and SHAM in a single-blinded, counterbalanced crossover study design. Ambulatory blood pressure was measured during each condition and the following night. Vascular strain of the carotid and femoral artery, a measure of localized arterial stiffness, and hemodynamic shear patterns in the brachial and femoral arteries were measured during each condition. Brachial artery reactive hyperemia flow-mediated vasodilation was assessed before and after each condition as a measure of endothelial function. CBR function and its control over leg vascular conductance (LVC) were measured after each condition with a variable-pressure neck chamber. Intermittent hypoxia 1) increased nighttime pulse pressure by 3.2 ± 1.3 mmHg, 2) altered femoral but not brachial artery hemodynamics, 3) did not affect brachial artery endothelial function, 4) reduced vascular strain in the carotid and possibly femoral artery, and 5) shifted CBR mean arterial pressure (MAP) to higher MAP while blunting LVC responses to CBR loading. These results suggest limb-specific vascular impairments, reduced vascular strain, and CBR resetting combined with blunted LVC responses are factors in the early pathogenesis of IH-induced development of hypertension.
Collapse
Affiliation(s)
- Joshua C Tremblay
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Lindsey M Boulet
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Michael M Tymko
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, Canada
| |
Collapse
|
33
|
Eiken O, Mekjavic IB, Kounalakis SN, Kölegård R. Pressure distension in leg vessels as influenced by prolonged bed rest and a pressure habituation regimen. J Appl Physiol (1985) 2016; 120:1458-65. [DOI: 10.1152/japplphysiol.00922.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/08/2016] [Indexed: 11/22/2022] Open
Abstract
Bed rest increases pressure distension in arteries, arterioles, and veins of the leg. We hypothesized that bed-rest-induced deconditioning of leg vessels is governed by the removal of the local increments in transmural pressure induced by assuming erect posture and, therefore, can be counteracted by intermittently increasing local transmural pressure during the bed rest. Ten men underwent 5 wk of horizontal bed rest. A subatmospheric pressure (−90 mmHg) was intermittently applied to one lower leg [pressure habituation (PH) leg]. Vascular pressure distension was investigated before and after the bed rest, both in the PH and control (CN) leg by increasing local distending pressure, stepwise up to +200 mmHg. Vessel diameter and blood flow were measured in the posterior tibial artery and vessel diameter in the posterior tibial vein. In the CN leg, bed rest led to 5-fold and 2.7-fold increments ( P < 0.01) in tibial artery pressure-distension and flow responses, respectively, and to a 2-fold increase in tibial vein pressure distension. In the PH leg, arterial pressure-distension and flow responses were unaffected by bed rest, whereas bed rest led to a 1.5-fold increase in venous pressure distension. It thus appears that bed-rest-induced deconditioning of leg arteries, arterioles, and veins is caused by removal of gravity-dependent local pressure loads and may be abolished or alleviated by a local pressure-habituation regimen.
Collapse
Affiliation(s)
- Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Solna, Sweden
| | | | - Stylianos N. Kounalakis
- Human Performance-Rehabilitation Laboratory, Faculty of Physical and Cultural Education, Hellenic Military Academy, Vari, Greece
| | - Roger Kölegård
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
34
|
Nyberg M, Piil P, Egelund J, Sprague RS, Mortensen SP, Hellsten Y. Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans. Am J Physiol Heart Circ Physiol 2015; 309:H1867-75. [PMID: 26432842 DOI: 10.1152/ajpheart.00653.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022]
Abstract
Aging is associated with an altered regulation of blood flow to contracting skeletal muscle; however, the precise mechanisms remain unclear. We recently demonstrated that inhibition of cGMP-binding phosphodiesterase 5 (PDE5) increased blood flow to contracting skeletal muscle of older but not young human subjects. Here we examined whether this effect of PDE5 inhibition was related to an improved ability to blunt α-adrenergic vasoconstriction (functional sympatholysis) and/or improved efficacy of local vasodilator pathways. A group of young (23 ± 1 yr) and a group of older (72 ± 1 yr) male subjects performed knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. During both conditions, exercise was performed without and with arterial tyramine infusion to evoke endogenous norepinephrine release and consequently stimulation of α1- and α2-adrenergic receptors. The level of the sympatholytic compound ATP was measured in venous plasma by use of the microdialysis technique. Sildenafil increased (P < 0.05) vascular conductance during exercise in the older group, but tyramine infusion reduced (P < 0.05) this effect by 38 ± 9%. Similarly, tyramine reduced (P < 0.05) the vasodilation induced by arterial infusion of a nitric oxide (NO) donor by 54 ± 9% in the older group, and this effect was not altered by sildenafil. Venous plasma [ATP] did not change with PDE5 inhibition in the older subjects during exercise. Collectively, PDE5 inhibition in older humans was not associated with an improved ability for functional sympatholysis. An improved efficacy of the NO system may be one mechanism underlying the effect of PDE5 inhibition on exercise hyperemia in aging.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark;
| | - Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Randy S Sprague
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Hughes WE, Ueda K, Treichler DP, Casey DP. Rapid onset vasodilation with single muscle contractions in the leg: influence of age. Physiol Rep 2015; 3:3/8/e12516. [PMID: 26320213 PMCID: PMC4562596 DOI: 10.14814/phy2.12516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The influence of aging on contraction-induced rapid vasodilation has been well characterized in the forearm. We sought to examine the impact of aging on contraction-induced rapid vasodilation in the leg following single muscle contractions and determine whether potential age-related impairments were similar between limbs (leg vs. arm). Fourteen young (23 ± 1 years) and 16 older (66 ± 1 years) adults performed single leg knee extensions at 20%, 40%, and 60% of work rate maximum. Femoral artery diameter and blood velocity were measured using Doppler ultrasound. Limb vascular conductance (VC) was calculated using blood flow (mL·min−1) and mean arterial pressure (mmHg). Peak and total vasodilator responses in the leg (change [Δ] in VC from baseline) were blunted in older adults by 44–50% across exercise intensities (P < 0.05 for all). When normalized for muscle mass, age-related differences were still evident (P < 0.05). Comparing the rapid vasodilator responses between the arm and the leg of the same individuals at similar relative intensities (20% and 40%) reveals that aging influences peak and total vasodilation equally between the limbs (no significant age × limb interaction at either intensity, P = 0.28–0.80). Our data demonstrate that (1) older adults exhibit an attenuated rapid hyperemic and vasodilator response in the leg; and (2) the age-related reductions in rapid vasodilation are similar between the arm and the leg. The mechanisms contributing to the age-related differences in contraction-induced rapid vasodilation are perhaps similar to those seen with the forearm model, but have not been confirmed.
Collapse
Affiliation(s)
- William E Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine University of Iowa, Iowa City, Iowa
| | - David P Treichler
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine University of Iowa, Iowa City, Iowa
| |
Collapse
|
36
|
l-Arginine supplementation does not enhance blood flow and muscle performance in healthy and physically active older women. Eur J Nutr 2015; 55:2053-62. [DOI: 10.1007/s00394-015-1019-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
|
37
|
The contribution of sensory nerves to cutaneous vasodilatation of the forearm and leg to local skin heating. Eur J Appl Physiol 2015; 115:2091-8. [PMID: 25998144 DOI: 10.1007/s00421-015-3188-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/09/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The initial cutaneous vasodilatory response to local skin heating is larger in the forearm than the leg. While the initial vasodilatation of the forearm to local heating is primarily dependent on sensory nerves, their role in the leg is unknown. We compared the contribution of sensory nerves in driving the cutaneous vasodilatory response of the forearm and leg to local heating using local anaesthetic (EMLA) cream. METHOD In seven participants, two skin sites were selected on both the dorsal forearm and anterolateral calf; one site on each region received EMLA, with the other an untreated control. All sites were controlled at 33 °C and then locally heated to 42 °C with integrated laser-Doppler local heating probes. RESULTS Cutaneous vascular conductance (CVC) during the initial vasodilatation to local heating was smaller in the leg (47 ± 9% max) compared to the forearm (62 ± 7 % max) (P = 0.012). EMLA reduced the initial vasodilatation at both the leg (27 ± 13 % max) (P = 0.02) and forearm (33 ± 14% max) (P < 0.001). The times to onset of vasodilatation, initial vasodilatory peak, and plateau phase were longer in the leg compared to the forearm (all P < 0.05), and EMLA increased these times in both regions (both P < 0.05). CVC during the plateau phase to sustained local skin heating was higher in the leg compared to the forearm at both the untreated (93 ± 6 vs. 85 ± 4% max) (P = 0.33) and EMLA-treated (94 ± 5 vs. 86 ± 6% max) (P = 0.001) sites; EMLA did not affect CVC (P > 0.05). CONCLUSION The differences in the initial vasodilatory peak to local skin heating between the forearm and the leg are due to the contribution of sensory nerves.
Collapse
|
38
|
Del Pozzi AT, Hodges GJ. Comparison of the noradrenergic sympathetic nerve contribution during local skin heating at forearm and leg sites in humans. Eur J Appl Physiol 2015; 115:1155-64. [DOI: 10.1007/s00421-014-3097-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/24/2014] [Indexed: 01/08/2023]
|
39
|
Del Pozzi AT, Hodges GJ. To reheat, or to not reheat: that is the question: The efficacy of a local reheating protocol on mechanisms of cutaneous vasodilatation. Microvasc Res 2015; 97:47-54. [DOI: 10.1016/j.mvr.2014.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
|
40
|
Credeur DP, Holwerda SW, Restaino RM, King PM, Crutcher KL, Laughlin MH, Padilla J, Fadel PJ. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg. J Appl Physiol (1985) 2014; 118:455-64. [PMID: 25539935 DOI: 10.1152/japplphysiol.00785.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P < 0.05). Thigh cuff compressions also produced a significant hyperemic response, but these were brief and smaller in magnitude compared with single isometric contractions in the leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans.
Collapse
Affiliation(s)
- Daniel P Credeur
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Seth W Holwerda
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Robert M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Phillip M King
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Kiera L Crutcher
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and Department of Child Health, University of Missouri, Columbia, Missouri
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri;
| |
Collapse
|
41
|
Greaney JL, Stanhewicz AE, Kenney WL, Alexander LM. Lack of limb or sex differences in the cutaneous vascular responses to exogenous norepinephrine. J Appl Physiol (1985) 2014; 117:1417-23. [PMID: 25342706 DOI: 10.1152/japplphysiol.00575.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cutaneous circulation is used to examine vascular adrenergic function in clinical populations; however, limited studies have examined whether there are regional limb and sex differences in microvascular adrenergic responsiveness. We hypothesized that cutaneous adrenergic responsiveness would be greater in the leg compared with the arm and that these regional limb differences would be blunted in young women (protocol 1). We further hypothesized that cutaneous vasoconstriction to exogenous norepinephrine (NE) during β-adrenergic receptor antagonism would be augmented in young women (protocol 2). In protocol 1, one microdialysis fiber was placed in the skin of the calf and the ventral forearm in 20 healthy young adults (11 men and 9 women). Laser-Doppler flowmetry was used to measure red blood cell flux in response to graded intradermal microdialysis infusions of NE (10(-12) to 10(-2) M). In protocol 2, three microdialysis fibers were placed in the forearm (6 men and 8 women) for the local perfusion of lactated Ringer (control), 5 mM yohimbine (α-adrenergic receptor antagonist), or 2 mM propranolol (β-adrenergic receptor antagonist) during concurrent infusions of NE (10(-12) to 10(-2) M). There were no limb or sex differences in cutaneous adrenergic responsiveness (logEC50) to exogenous NE. During α-adrenergic receptor blockade, women had greater exogenous NE-induced cutaneous vasodilation at the lowest doses of NE (10(-12) to 10(-10) M). Collectively, these data indicate that there are no limb or sex differences in cutaneous adrenergic responsiveness to exogenous NE; however, young women have a greater β-adrenergic receptor-mediated component of the vascular responsiveness to exogenous NE.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Anna E Stanhewicz
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
42
|
G tolerance and the vasoconstrictor reserve. Eur J Appl Physiol 2014; 114:2521-8. [PMID: 25115505 DOI: 10.1007/s00421-014-2957-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Because leg arterial stiffness is higher in subjects with high G tolerance, we hypothesized that subjects with high G tolerance would have larger capacity for vasoconstriction. METHODS Sixteen subjects, eight with high and eight with low G tolerance (H and L group, respectively), were exposed to a cold pressor test (CPT) in supine and upright posture. Heart rate (HR), mean arterial pressure (MAP) and cardiac output (CO) were measured, and total peripheral resistance (TPR) and stroke volume (SV) were calculated. RESULTS In the supine position, CPT increased TPR more in the H group; 31 ± 18% than in the L group; 11 ± 7% (p < 0.05). The L group had larger increases in CO than the H group; 17 ± 16 vs. 3.4 ± 7% (p = 0.06). In the upright position, the H group had a larger MAP response to CPT than the L group; 26 ± 14 vs. 14 ± 7% (p = 0.06). The H group, but not the L group, had significant increases in TPR whereas the L group had significant increases in CO and SV. CONCLUSIONS In response to CPT, the high G tolerance group elevated MAP by increasing TPR, whereas the low G tolerance group showed a dependency on increased CO. The H group seemed to have a larger vasoconstrictor reserve. The results further suggest that vasoconstrictor reserve capacity could constitute the link between the recent finding that indicates a relationship between G tolerance and arterial distensibility in the legs.
Collapse
|
43
|
Mortensen SP, Nyberg M, Gliemann L, Thaning P, Saltin B, Hellsten Y. Exercise training modulates functional sympatholysis and α-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals. J Physiol 2014; 592:3063-73. [PMID: 24860173 DOI: 10.1113/jphysiol.2014.273722] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics were measured before and after 8 weeks of aerobic training (3-4 times per week) in eight hypertensive (47 ± 2 years) and eight normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise hyperaemia and leg vascular conductance (LVC) were lower in the hypertensive individuals (P < 0.05) and tyramine lowered exercise hyperaemia and LVC in both groups (P < 0.05). Training lowered blood pressure in the hypertensive individuals (P < 0.05) and exercise hyperaemia was similar to the normotensive individuals in the trained state. After training, tyramine did not reduce exercise hyperaemia or LVC in either group. When tyramine was infused at rest, the reduction in blood flow and LVC was similar between groups, but exercise training lowered the magnitude of the reduction in blood flow and LVC (P < 0.05). There was no difference in the vasodilatory response to infused ATP or in muscle P2Y2 receptor content between the groups before and after training. However, training lowered the vasodilatory response to ATP and increased skeletal muscle P2Y2 receptor content in both groups (P < 0.05). These results demonstrate that exercise training improves functional sympatholysis and reduces postjunctional α-adrenergic responsiveness in both normo- and hypertensive individuals. The ability for functional sympatholysis and the vasodilator and sympatholytic effect of intravascular ATP appear not to be altered in essential hypertension.
Collapse
Affiliation(s)
- Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Pia Thaning
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | - Bengt Saltin
- Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
44
|
Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation. Microvasc Res 2014; 93:87-91. [DOI: 10.1016/j.mvr.2014.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/25/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
|
45
|
Ives SJ, Fadel PJ, Brothers RM, Sander M, Wray DW. Exploring the vascular smooth muscle receptor landscape in vivo: ultrasound Doppler versus near-infrared spectroscopy assessments. Am J Physiol Heart Circ Physiol 2014; 306:H771-6. [PMID: 24414068 DOI: 10.1152/ajpheart.00782.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultrasound Doppler and near-infrared spectroscopy (NIRS) are routinely used for noninvasive monitoring of peripheral hemodynamics in both clinical and experimental settings. However, the comparative ability of these methodologies to detect changes in microvascular and whole limb hemodynamics during pharmacological manipulation of vascular smooth muscle receptors located at varied locations within the arterial tree is unknown. Thus, in 10 healthy subjects (25 ± 2 yr), changes in resting leg blood flow (ultrasound Doppler; femoral artery) and muscle oxygenation (oxyhemoglobin + oxymyoglobin; vastus lateralis) were simultaneously evaluated in response to intra-arterial infusions of phenylephrine (PE, 0.025-0.8 μg·kg(-1)·min(-1)), BHT-933 (2.5-40 μg·kg(-1)·min(-1)), and angiotensin II (ANG II, 0.5-8 ng·kg(-1)·min(-1)). All drugs elicited significant dose-dependent reductions in leg blood flow and oxyhemoglobin + oxymyoglobin. Significant relationships were found between ultrasound Doppler and NIRS changes across doses of PE (r(2) = 0.37 ± 0.08), BHT-933 (r(2) = 0.74 ± 0.06), and ANG II (r(2) = 0.68 ± 0.13), with the strongest relationships evident with agonists for receptors located preferentially "downstream" in the leg microcirculation (BHT-933 and ANG II). Analyses of drug potency revealed similar EC50 between ultrasound Doppler and NIRS measurements for PE (0.06 ± 0.02 vs. 0.10 ± 0.01), BHT-933 (5.0 ± 0.9 vs. 4.5 ± 1.3), and ANG II (1.4 ± 0.8 vs. 1.3 ± 0.3). These data provide evidence that both ultrasound Doppler and NIRS track pharmacologically induced changes in peripheral hemodynamics and are equally capable of determining drug potency. However, considerable disparity was observed between agonist infusions targeting different levels of the arterial tree, suggesting that receptor landscape is an important consideration for proper interpretation of hemodynamic monitoring with these methodologies.
Collapse
Affiliation(s)
- Stephen J Ives
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | | | | | | | | |
Collapse
|
46
|
Eiken O, Mekjavic IB, Kölegård R. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading. Eur J Appl Physiol 2013; 114:499-509. [PMID: 24318655 PMCID: PMC3929772 DOI: 10.1007/s00421-013-2758-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50 %. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.
Collapse
Affiliation(s)
- Ola Eiken
- Department of Environmental Physiology and Swedish Aerospace Physiology Centre, KTH, Royal Institute of Technology, Berzelius v 13, Solna, 17165, Stockholm, Sweden,
| | | | | |
Collapse
|
47
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
48
|
Del Pozzi AT, Carter SJ, Collins AB, Hodges GJ. The regional differences in the contribution of nitric oxide synthase to skin blood flow at forearm and lower leg sites in response to local skin warming. Microvasc Res 2013. [DOI: 10.1016/j.mvr.2013.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Abstract
These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.
Collapse
Affiliation(s)
- Billy L Luu
- B. L. Luu: Neuroscience Research Australia, Barker St, Randwick, NSW 2031, Australia.
| | | |
Collapse
|
50
|
Millar PJ, O’Donnell E. Alpha males: muscle sympathetic discharge on beat-to-beat forearm vascular conductance. J Physiol 2013; 591:4375-6. [DOI: 10.1113/jphysiol.2013.261743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|