1
|
Javaid HMW, Rehman SSU, Kashif M, Bashir MS, Zia W. The Effects of Joint Mobilization and Myofascial Release on Muscle Thickness in Non-Specific Low Back Pain: A Randomized Clinical Trial. J Clin Med 2025; 14:2830. [PMID: 40283659 PMCID: PMC12028056 DOI: 10.3390/jcm14082830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Non-specific low back pain is a discomfort that affects individuals at any point in their lives. This study's aim was to determine the effects of myofascial release and joint mobilization on muscle thickness via ultrasonography in individuals experiencing non-specific low back pain. Methods: This double-blinded randomized clinical trial was conducted on 84 participants in three groups: joint mobilization, myofascial release, and a combination of joint mobilization and myofascial release. Data were collected during a two-week treatment regimen (days 1, 4, 8, and 12) and at a one-month follow-up. Ultrasound evaluations were used to measure the thickness of deep lumbar muscles at rest and contraction, i.e., the transverse abdominis (rTrA and cTrA) and lumbar multifidus (rLM and cLM). Repeated-measures ANOVA was utilized to analyze the follow-ups within the groups and among the groups, with post hoc tests conducted to identify specific differences. Results: Significant increases in muscle thickness were observed over time in the transverse abdominis, with improvements in both rTrA (right, p = 0.001; left, p = 0.001) and cTrA (right, p = 0.001; left, p = 0.008). The lumbar multifidus also demonstrated significant changes, with increases in the rLM (right, p = 0.001; left, p = 0.047) and cLM (right, p = 0.004; left, p = 0.037). However, the main effects showed no significant differences in muscle thickness among the groups. Conclusions: Joint mobilization demonstrated increased effectiveness in improving muscle thickness relative to myofascial release and a combination of both treatments for individuals with non-specific low back pain.
Collapse
Affiliation(s)
- Hafiz Muhammad Waseem Javaid
- Riphah College of Rehabilitation Sciences, Riphah International University, Islamabad 46000, Pakistan; (S.S.U.R.); (W.Z.)
| | - Syed Shakil Ur Rehman
- Riphah College of Rehabilitation Sciences, Riphah International University, Islamabad 46000, Pakistan; (S.S.U.R.); (W.Z.)
| | - Muhammad Kashif
- Riphah College of Rehabilitation Sciences, Riphah International University, Islamabad 46000, Pakistan; (S.S.U.R.); (W.Z.)
| | - Muhammad Salman Bashir
- School of Health Sciences, University of Management and Technology, Lahore 54000, Pakistan;
| | - Wajeeha Zia
- Riphah College of Rehabilitation Sciences, Riphah International University, Islamabad 46000, Pakistan; (S.S.U.R.); (W.Z.)
| |
Collapse
|
2
|
Zange J, Endres J, Clemen CS, Rittweger J. Leg and hip muscles show muscle-specific effects of ageing and sport on muscle volume and fat fraction in male Masters athletes. J Physiol 2025. [PMID: 40162664 DOI: 10.1113/jp285665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Age-related deterioration in muscle volume, intramuscular fat content and muscle function can be modulated by physical activity. We explored whether Masters athletes, as examples of highly physically active people into old age, could prevent these age-related muscle deteriorations. Four groups of 43 men were examined: young athletes (20-35 years, n = 10), Masters athletes (60-75 years, n = 10) and two age-matched control groups (old: n = 11, young: n = 12). Volumes and fat fractions of 17 different hip and leg muscles were determined using magnetic resonance imaging. In the soleus muscle extra- and intramyocellular lipids were measured using 1H-MR-spectroscopy. Finally volumes of glutei, quadriceps and triceps surae muscles were cumulated and compared to peak jumping power. In both age groups the sum of glutei, quadriceps and triceps surae muscles showed larger volumes in athletes (young: 5758 ± 1139 ml, old: 5285 ± 895 ml) compared to the corresponding control groups (young: 4781 ± 833 ml, old: 4379 ± 612 ml) (p < 0.001). Fat fraction varied between 1.5% and 12.5% 1H-signal across muscles and groups and was greater in Masters athletes than in young athletes (p < 0.001), but lower than that in old controls (p < 0.001) and comparable with young controls. Age and exercise-related effects on muscle fat predominantly originated from the extramyocellular lipids. Finally muscle peak power per volume was effectively halved in the combined older groups compared to the younger groups. Our findings suggest that sarcosthenia, that is, intrinsic muscle weakness, is an effective cause of age-related power declines in addition to sarcopenia and fat accumulation. KEY POINTS: Muscle volume and muscle fat fraction from 17 hip and leg muscles of Masters athletes were compared with old controls, young athletes and young controls. Muscle volume and fat fraction were determined using magnetic resonance imaging (MRI) using a six-point-DIXON sequence. Muscle volume in Masters athletes was larger than that in old controls but partially smaller than that in young athletes. Muscle fat fraction of Masters athletes was lower than that in old controls but higher than that in young athletes. Muscles of old athletes and old controls produce only 50% of jumping peak power per muscle volume compared with younger subjects. The intrinsic reduction of power loss in old muscle could not be explained by the higher fat fraction in old muscle.
Collapse
Affiliation(s)
- Jochen Zange
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Joachim Endres
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Christoph S Clemen
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Muscle and Bone Metabolism, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörn Rittweger
- Department of Muscle and Bone Metabolism, German Aerospace Centre (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Department of Paediatrics and Adolescent Medicine, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Wesselink EO, Hides J, Elliott JM, Hoggarth M, Weber KA, Salomoni SE, Tran V, Lindsay K, Hughes L, Weber T, Scott J, Hodges PW, Caplan N, De Martino E. New insights into the impact of bed rest on lumbopelvic muscles: a computer-vision model approach to measure fat fraction changes. J Appl Physiol (1985) 2025; 138:157-168. [PMID: 39611883 DOI: 10.1152/japplphysiol.00502.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Space agencies plan crewed missions to the Moon and Mars. However, microgravity-induced lumbopelvic deconditioning, characterized by an increased fat fraction (FF) due to reduced physical activity, poses a significant challenge to spine health. This study investigates the spatial distribution of FF in the lumbopelvic muscles to identify the most affected regions by deconditioning, utilizing a computer-vision model and a tile-based approach to assess FF changes. Twenty-four healthy individuals (8 F) were recruited, and automatic segmentation of the lumbopelvic muscles was applied before and after 59 days of head-down tilt bed rest (HDTBR + 59) and 13 days of reconditioning (R + 13). Axial Dixon sequence images were acquired from 3 T magnetic resonance imaging. FF in the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum, psoas major, gluteus maximus (GMax), gluteus medius (GMed), and gluteus minimus (GMin) muscles from the upper margin of L1 vertebra to the inferior border of GMax muscle were automatically derived using a computer-vision model. Lumbar muscles were segmented into eight tiles (superficial and deep, lateral to medial), and gluteal muscles into regions (anterior/superior for GMed and GMin, superior/inferior for GMax). At HDTBR + 59, the deep centrolateral region at L5/S1 for LM (18.7 ± 15.7%, P < 0.001; d = 0.97) and the deep medial region at Upper L4 for LES (5.4 ± 5.9%, P < 0.001; d = 0.34) showed the largest increase in FF compared with baseline data collection. These regions did not recover at R + 13 (P < 0.05; d ≥ 0.25). These findings highlight the need to target deep fascicles of LM and LES in countermeasure strategies to mitigate microgravity-induced lumbopelvic deconditioning, optimizing spine health, and performance.NEW & NOTEWORTHY This study reveals novel insights into fat fraction changes in lumbopelvic muscles after 60 days of head-down bed rest and 13 days of reconditioning. Lipids increased in the deep regions of the lumbar multifidus (LM) and lumbar erector spinae (LES), particularly at lower vertebral levels, and persisted after reconditioning. These findings highlight the need to target deep fascicles of LM and LES in future countermeasures to mitigate microgravity-induced deconditioning and optimize spine health.
Collapse
Affiliation(s)
- Evert O Wesselink
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, Queensland, Australia
| | - James M Elliott
- Northern Sydney Local Health District and The University of Sydney, Faculty of Medicine and Health, The Kolling Institute Sydney, Sydney, New South Wales, Australia
| | - Mark Hoggarth
- Department of Physical Therapy, North Central College, Naperville, Illinois, United States
| | - Kenneth A Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California, United States
| | - Sauro E Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Vienna Tran
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luke Hughes
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Tobias Weber
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team, European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Marcos-Lorenzo D, Lysandrou C, Sudres L, Gil-Martinez A, Swanenburg J, Clark JE, Green DA. 50% body weight loading reduces stature increases and lumbar disc expansion from 4 h hyper-buoyancy floatation versus 15 min sitting upright. Exp Physiol 2024. [PMID: 39632504 DOI: 10.1113/ep091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Microgravity is associated with stature increases, back pain and post-flight intervertebral disc (IVD) herniation. This study aims to determine whether 30 s seated 50% body weight (BW) axial loading is comparable to 15 min sitting upright in 1 g upon changes in stature, anterior lumbar IVD height (via ultrasound), passive vertebral stiffness (VS), and back pain induced by 4 h hyper-buoyancy floatation (HBF) unloading. Sixteen (seven male) healthy volunteers had stature, lumbar IVD height (L2-S1), passive VS (C1-L5) and back pain assessed before and following 4 h HBF, and immediately after participants performed a 30 s seated squat with 50% of their BW or 15 min sitting upright. Four hours of HBF unloading induced significant increments in stature (+1.6 ± 0.5 cm; P < 0.001), IVD height (L2-L3: P = 0.002; L3-L4: P < 0.001; L4-L5: P = 0.013; L5-S1: P < 0.001) and back pain (2.90 ± 1.26; P < 0.001) with no differences between 1 and 1.5 BW. Stature, IVD height increments and back pain were similarly attenuated in both reloading groups. Passive VS was unchanged by 4 h HBF or reloading. HBF-induced back pain positively correlated with stature (P = 0.01) and lumbar IVD height changes (L2-L3: P = 0.03; L3-L4: P = 0.01; L5-S1: P = 0.02). Four hours of HBF increased stature, lumbar IVD height and induced moderate back pain that were similarly (albeit not entirely) ameliorated by both 15 min upright sitting and 30 s of 50% BW axial loading, with no changes in passive VS observed. IVD geometric changes appear key to space adaptation back pain and stature increments that can be rapidly modulated by brief periods of axial loading.
Collapse
Affiliation(s)
| | - Christina Lysandrou
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
| | - Laura Sudres
- Department of Physiotherapy, Centro de Estudios Superiores La Salle, Madrid, Spain
| | - Alfonso Gil-Martinez
- Department of Physiotherapy, Centro de Estudios Superiores La Salle, Madrid, Spain
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Unit of Physiotherapy, Hospital Universitario La Paz, Carlos III Institute for Health Research, Madrid, Spain
| | - Jaap Swanenburg
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - James Edward Clark
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
| | - David Andrew Green
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
- KBRwyle GmbH, Cologne, Germany
- Institute for Risk and Disaster Reduction, University College London (UCL), London, UK
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
| |
Collapse
|
5
|
Tays GD, Hupfeld KE, McGregor HR, Beltran NE, De Dios YE, Mulder E, Bloomberg JJ, Mulavara AP, Wood SJ, Seidler RD. Daily artificial gravity partially mitigates vestibular processing changes associated with head-down tilt bedrest. NPJ Microgravity 2024; 10:27. [PMID: 38472244 PMCID: PMC10933323 DOI: 10.1038/s41526-024-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Microgravity alters vestibular signaling and reduces body loading, driving sensory reweighting. The unloading effects can be modelled using head-down tilt bedrest (HDT). Artificial gravity (AG) has been hypothesized to serve as an integrated countermeasure for the declines associated with HDT and spaceflight. Here, we examined the efficacy of 30 min of daily AG to counteract brain and behavior changes from 60 days of HDT. Two groups received 30 min of AG delivered via short-arm centrifuge daily (n = 8 per condition), either in one continuous bout, or in 6 bouts of 5 min. To improve statistical power, we combined these groups (AG; n = 16). Another group served as controls in HDT with no AG (CTRL; n = 8). We examined how HDT and AG affect vestibular processing by collecting fMRI scans during vestibular stimulation. We collected these data prior to, during, and post-HDT. We assessed brain activation initially in 12 regions of interest (ROIs) and then conducted an exploratory whole brain analysis. The AG group showed no changes in activation during vestibular stimulation in a cerebellar ROI, whereas the CTRL group showed decreased activation specific to HDT. Those that received AG and showed little pre- to post-HDT changes in left vestibular cortex activation had better post-HDT balance performance. Whole brain analyses identified increased pre- to during-HDT activation in CTRLs in the right precentral gyrus and right inferior frontal gyrus, whereas AG maintained pre-HDT activation levels. These results indicate that AG could mitigate activation changes in vestibular processing that is associated with better balance performance.
Collapse
Affiliation(s)
- G D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | - E Mulder
- German Aerospace Center (DLR), Cologne, Germany
| | | | | | - S J Wood
- NASA Johnson Space Center, Houston, TX, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Muellner M, Haffer H, Chiapparelli E, Dodo Y, Shue J, Tan ET, Zhu J, Pumberger M, Sama AA, Cammisa FP, Girardi FP, Hughes AP. Fat infiltration of the posterior paraspinal muscles is inversely associated with the fat infiltration of the psoas muscle: a potential compensatory mechanism in the lumbar spine. BMC Musculoskelet Disord 2023; 24:846. [PMID: 37891498 PMCID: PMC10604445 DOI: 10.1186/s12891-023-06967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The function of the paraspinal muscles and especially the psoas muscle in maintaining an upright posture is not fully understood. While usually considered solely as a hip flexor, the psoas muscle and its complex anatomy suggest that the muscle has other functions involved in stabilizing the lumbar spine. The aim of this study is to determine how the psoas muscle and the posterior paraspinal muscles (PPM; erector spinae and multifidus) interact with each other. METHODS A retrospective review including patients undergoing posterior lumbar fusion surgery between 2014 and 2021 at a tertiary care center was conducted. Patients with a preoperative lumbar magnetic resonance imaging (MRI) scan performed within 12 months prior to surgery were considered eligible. Exclusion criteria included previous spinal surgery at any level, lumbar scoliosis with a Cobb Angle > 20° and patients with incompatible MRIs. MRI-based quantitative assessments of the cross-sectional area (CSA), the functional cross-sectional area (fCSA) and the fat area (FAT) at L4 was conducted. The degree of fat infiltration (FI) was further calculated. FI thresholds for FIPPM were defined according to literature and patients were divided into two groups (< or ≥ 50% FIPPM). RESULTS One hundred ninetypatients (57.9% female) with a median age of 64.7 years and median BMI of 28.3 kg/m2 met the inclusion criteria and were analyzed. Patients with a FIPPM ≥ 50% had a significantly lower FI in the psoas muscle in both sexes. Furthermore, a significant inverse correlation was evident between FIPPM and FIPsoas for both sexes. A significant positive correlation between FATPPM and fCSAPsoas was also found for both sexes. No significant differences were found for both sexes in both FIPPM groups. CONCLUSION As the FIPPM increases, the FIPsoas decreases. Increased FI is a surrogate marker for a decrease in muscular strength. Since the psoas and the PPM both segmentally stabilize the lumbar spine, these results may be indicative of a potential compensatory mechanism. Due to the weakened PPM, the psoas may compensate for a loss in strength in order to stabilize the spine segmentally.
Collapse
Affiliation(s)
- Maximilian Muellner
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA.
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany.
| | - Henryk Haffer
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Erika Chiapparelli
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Yusuke Dodo
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Jennifer Shue
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, Weill Cornell Medicine, New York City, NY, USA
| | - Jiaqi Zhu
- Biostatistics Core, Hospital for Special Surgery, New York City, NY, USA
| | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Andrew A Sama
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Frank P Cammisa
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Federico P Girardi
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Alexander P Hughes
- Spine Care Institute, Hospital for Special Surgery, New York City, NY, USA
| |
Collapse
|
7
|
Salsali M, Sheikhhoseini R, Sayyadi P, Hides JA, Dadfar M, Piri H. Association between physical activity and body posture: a systematic review and meta-analysis. BMC Public Health 2023; 23:1670. [PMID: 37649076 PMCID: PMC10470156 DOI: 10.1186/s12889-023-16617-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE To estimate the possible associations between posture and physical activity (PA). DESIGN A systematic review and meta-analysis. DATA SOURCES The search was conducted in seven databases (PubMed, Web of Science, SportDiscus, EMBASE, Scopus, Cochrane Library, and CINAHL) for studies published from inception to January 2023. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies were required to meet following criteria: (1) study design: cross-sectional, case control and cohort studies. (2) Participants: people of all ages without any diagnosed diseases. (3) Exposure and outcome: studies that examined the possible effect or correlations between PA, physical inactivity, physical exertion and human body posture. RESULTS Sixteen cross-sectional studies, two cohort studies and one case control study involving a total of 16772 participants aged from 6 to 79 years were included. Correlational studies showed that there was a significant relationship between PA and posture (C = 0.100, CI 95% = 0.012-0.186). However, regression studies demonstrated that there was not a significant association between PA and posture (C = 1.00, CI 95% = 0.998-1.002). Three studies investigated the association between PA and the lumbar lordosis and showed that there was not a significant association between the lordosis and PA (CI 95%: -0.253-0.048, P = 0.180). In addition, four studies showed that there were not any associations between scoliosis and PA (CI 95%: 0.819, 1.123, P = 0.607). The evidence of heterogeneity and publication bias was found among all analyzed data (P < 0.05). Also, meta regression was used for age and BMI and the results were not significant. CONCLUSION Although a weak correlation was shown to exist between PA and human posture, the odds ratio indicated that there was not a significant association between PA and human posture. The lack of a significant relationship may indicate that multiple biopsychosocial factors may be involved in human posture. In summary, our study highlights the need for caution when interpreting the results of meta-analyses, particularly when there is significant heterogeneity and publication bias in the included studies.
Collapse
Affiliation(s)
- Mohammad Salsali
- Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Rahman Sheikhhoseini
- Department of Corrective Exercise & Sport Injury, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Western Azadi Sport Complex Boulevard, Hakim Highway, Tehran, Iran
| | - Parisa Sayyadi
- Department of Health and Sport Medicine, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Julie A. Hides
- School of Health Sciences and Social Work, Griffith University, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Mahdis Dadfar
- Department of Human Health and Performance, Faculty of Kinesiology, University of Houston, Houston, TX USA
| | - Hashem Piri
- Department of Corrective Exercise & Sport Injury, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Western Azadi Sport Complex Boulevard, Hakim Highway, Tehran, Iran
| |
Collapse
|
8
|
Seidler R, Tays G, Hupfeld K, McGregor H, Beltran N, de Dios Y, Mulder E, Bloomberg J, Mulavara A, Wood S. Daily Artificial Gravity Partially Mitigates Vestibular Processing Changes Associated with Head-down Tilt Bedrest. RESEARCH SQUARE 2023:rs.3.rs-3157785. [PMID: 37502989 PMCID: PMC10371135 DOI: 10.21203/rs.3.rs-3157785/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Microgravity alters vestibular signaling and reduces body loading, driving sensory reweighting and adaptation. The unloading effects can be modelled using head down tilt bedrest (HDT). Artificial gravity (AG) has been hypothesized to serve as an integrated countermeasure for the physiological declines associated with HDT and spaceflight. Here, we examined the efficacy of 30 minutes of daily AG to counteract brain and behavior changes that arise from 60 days of HDT. One group of participants received 30 minutes of AG daily (AG; n = 16) while in HDT, and another group served as controls, spending 60 days in HDT bedrest with no AG (CTRL; n = 8). We examined how HDT and AG affect vestibular processing by collecting fMRI scans from participants as they received vestibular stimulation. We collected these data prior to, during (2x), and post HDT. We assessed brain activation initially in 10 regions of interest (ROIs) and then conducted an exploratory whole brain analysis. The AG group showed no changes in brain activation during vestibular stimulation in a cerebellar ROI, whereas the CTRL group showed decreased cerebellar activation specific to the HDT phase. Additionally, those that received AG and showed little pre- to post-bed rest changes in left OP2 activation during HDT had better post-HDT balance performance. Exploratory whole brain analyses identified increased pre- to during-HDT activation in the CTRL group in the right precentral gyrus and the right inferior frontal gyrus specific to HDT, where the AG group maintained pre-HDT activation levels. Together, these results indicate that AG could mitigate brain activation changes in vestibular processing in a manner that is associated with better balance performance after HDT.
Collapse
|
9
|
Homo sapiens—A Species Not Designed for Space Flight: Health Risks in Low Earth Orbit and Beyond, Including Potential Risks When Traveling beyond the Geomagnetic Field of Earth. Life (Basel) 2023; 13:life13030757. [PMID: 36983912 PMCID: PMC10051707 DOI: 10.3390/life13030757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Homo sapiens and their predecessors evolved in the context of the boundary conditions of Earth, including a 1 g gravity and a geomagnetic field (GMF). These variables, plus others, led to complex organisms that evolved under a defined set of conditions and define how humans will respond to space flight, a circumstance that could not have been anticipated by evolution. Over the past ~60 years, space flight and living in low Earth orbit (LEO) have revealed that astronauts are impacted to varying degrees by such new environments. In addition, it has been noted that astronauts are quite heterogeneous in their response patterns, indicating that such variation is either silent if one remained on Earth, or the heterogeneity unknowingly contributes to disease development during aging or in response to insults. With the planned mission to deep space, humans will now be exposed to further risks from radiation when traveling beyond the influence of the GMF, as well as other potential risks that are associated with the actual loss of the GMF on the astronauts, their microbiomes, and growing food sources. Experimental studies with model systems have revealed that hypogravity conditions can influence a variety biological and physiological systems, and thus the loss of the GMF may have unanticipated consequences to astronauts’ systems, such as those that are electrical in nature (i.e., the cardiovascular system and central neural systems). As astronauts have been shown to be heterogeneous in their responses to LEO, they may require personalized countermeasures, while others may not be good candidates for deep-space missions if effective countermeasures cannot be developed for long-duration missions. This review will discuss several of the physiological and neural systems that are affected and how the emerging variables may influence astronaut health and functioning.
Collapse
|
10
|
De Martino E, Hides J, Elliott JM, Hoggarth MA, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. The Effects of Reconditioning Exercises Following Prolonged Bed Rest on Lumbopelvic Muscle Volume and Accumulation of Paraspinal Muscle Fat. Front Physiol 2022; 13:862793. [PMID: 35774286 PMCID: PMC9237402 DOI: 10.3389/fphys.2022.862793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced muscle size and accumulation of paraspinal muscle fat content (PFC) have been reported in lumbopelvic muscles after spaceflights and head-down tilt (HDT) bed rest. While some information is available regarding reconditioning programs on muscle atrophy recovery, the effects on the accumulation of PFC are unknown. Recently, a device (the Functional Re-adaptive Exercise Device—FRED) has been developed which aims to specifically recruit lumbopelvic muscles. This study aimed to investigate the effects of a standard reconditioning (SR) program and SR program supplemented by FRED (SR + FRED) on the recovery of the lumbopelvic muscles following 60-day HDT bed rest. Twenty-four healthy participants arrived at the facility for baseline data collection (BDC) before the bed rest period. They remained in the facility for 13-day post-HDT bed rest and were randomly allocated to one of two reconditioning programs: SR or SR + FRED. Muscle volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles were measured from axial T1-weighted magnetic resonance imaging (MRI) at all lumbar intervertebral disc levels. PFC was determined using a chemical shift-based lipid/water Dixon sequence. Each lumbopelvic muscle was segmented into four equal quartiles (from medial to lateral). MRI of the lumbopelvic region was conducted at BDC, Day-59 of bed rest (HDT59), and Day-13 after reconditioning (R13). Comparing R13 with BDC, the volumes of the LM muscle at L4/L5 and L5/S1, LES at L1/L2, and QL at L3/L4 had not recovered (all—p < 0.05), and the PM muscle remained larger at L1/L2 (p = 0.001). Accumulation of PFC in the LM muscle at the L4/L5 and L5/S1 levels remained higher in the centro-medial regions at R13 than BDC (all—p < 0.05). There was no difference between the two reconditioning programs. A 2-week reconditioning program was insufficient to fully restore all volumes of lumbopelvic muscles and reverse the accumulation of PFC in the muscles measured to BDC values, particularly in the LM muscle at the lower lumbar levels. These findings suggest that more extended reconditioning programs or alternative exercises may be necessary to fully restore the size and properties of the lumbopelvic muscles after prolonged bed rest.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Enrico De Martino,
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Northern Sydney Local Health District, Faculty of Medicine and Health, The Kolling Institute Sydney, The University of Sydney, Sydney, NSW, Australia
| | - Mark A. Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jochen Zange
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Sauro E. Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team, European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W. Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Seyedhoseinpoor T, Taghipour M, Dadgoo M, Ebrahimi Takamjani I, Sanjari MA, Kazemnejad A, Elliott JM, Hides J. Relationship between the morphology and composition of the lumbar paraspinal and psoas muscles and lumbar intervertebral motion in people with chronic low back pain. Clin Anat 2022; 35:762-772. [PMID: 35445452 DOI: 10.1002/ca.23893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Muscles of the lumbar spine play an important role in controlling segmental intervertebral motion. This study aimed to evaluate the association between lumbar intervertebral motion and changes in lumbar morphology/composition in people with chronic low back pain (CLBP). A sample of 183 patients with CLBP participated in this cross-sectional study. Participants underwent lumbar flexion-extension X-Rays to determine vertebral motion (translational and/or rotational motion) of lumbar levels (L1-L2 to L5-S1) and lumbar spine Magnetic Resonance Imaging (MRI) to quantify total and functional cross-sectional areas (CSAs) and asymmetry of the multifidus, lumbar erector spinae and psoas muscles. The relationship between morphology/composition of the muscles and lumbar intervertebral motion was investigated. Smaller total and functional CSAs of the multifidus and greater CSAs of the lumbar erector spinae muscle were observed in participants with greater intervertebral motion. Muscle asymmetry was observed at different lumbar vertebral levels. The greatest amount of translational intervertebral motion was observed at the L3-L4 level, while the greatest amount of rotational translation occurred at the L4-5 level. Associations were observed between the morphology of the paraspinal muscles at the vertebral levels adjacent to the L3-L4 level and the increased intervertebral motion at this level. Relationships between measures of muscle morphology/composition and increased segmental vertebral motion were observed. The results may provide a plausible biological reason for the effectiveness of rehabilitating deficient paraspinal muscles in a subset of people with CLBP. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tahere Seyedhoseinpoor
- Department of Physical Therapy, School of Rehabilitation, Babol University of Medical Sciences, Babol, Iran.,Mobility impairment research center, Health institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Taghipour
- Department of Physical Therapy, School of Rehabilitation, Babol University of Medical Sciences, Babol, Iran.,Mobility impairment research center, Health institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Dadgoo
- Department of Physical Therapy, School of Rehabilitation, Babol University of Medical Sciences, Babol, Iran
| | - Ismail Ebrahimi Takamjani
- Department of Physical Therapy, School of Rehabilitation, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Sanjari
- Biomechanics Lab, Rehabilitation Research Center and Department of Basic Rehabilitation Sciences, Faculty of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - James M Elliott
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA.,Faculty of Medicine and Health, The Kolling Research Institute, The University of Sydney, the Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Nathan Campus, Queensland, Australia
| |
Collapse
|
12
|
Alteration of lumbar muscle morphology and composition in relation to low back pain: a systematic review and meta-analysis. Spine J 2022; 22:660-676. [PMID: 34718177 DOI: 10.1016/j.spinee.2021.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Previous studies have proposed that there is a relationship between low back pain (LBP) and morphology and composition of paraspinal muscles. However, results have been conflicting, especially regarding fatty infiltration of muscles. PURPOSE The primary goal of this study was to review and analyze results from imaging studies which investigated morphological and composition changes in the multifidus, erector spinae and psoas major muscles in people with LBP. STUDY DESIGN/SETTING Systematic review with meta-analysis. PATIENT SAMPLE A patient sample was not required OUTCOME MEASURES: This review did not have outcome measures. METHODS PubMed, Scopus, Web of Sciences, EMBASE and ProQuest were searched for eligible studies up to 31st July 2020 (all languages). A systematic search of electronic databases was conducted to identify studies investigating the association between the morphology and fat content of lumbar muscles in people with LBP compared with a (no LBP) control group. 13,795 articles were identified. Based on the screening for inclusion/ exclusion, 25 were included. The quality of the studies was evaluated using the Newcastle-Ottawa Scale. From the 25 articles, 20 were included in the meta-analysis. RESULTS Results showed that the total cross-sectional area of the multifidus was smaller in people with LBP (Standardized mean difference, SMD = -0.24, 95% CI = -0.5 to 0.03). Combined SMDs showed a medium effect of LBP on increasing multifidus muscle fat infiltration (SMD = 0.61, 95% CI = 0.30 to 0.91). There were no LBP related differences identified in the morphology or composition of the lumbar erector spine and psoas major muscles. CONCLUSIONS People with LBP were found to have somewhat smaller multifidus muscles with a significant amount of intramuscular fat infiltration. Varying sample size, age and BMI of participants, quality of studies and the procedures used to measure fat infiltration are possible reasons for inconsistencies in results of previous studies.
Collapse
|
13
|
De Martino E, Hides J, Elliott JM, Hoggarth MA, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Intramuscular lipid concentration increased in localized regions of the lumbar muscles following 60 day bedrest. Spine J 2022; 22:616-628. [PMID: 34813960 DOI: 10.1016/j.spinee.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Prolonged bedrest induces accumulation of intramuscular lipid concentration (ILC) in the lumbar musculature; however, spatial distribution of ILC has not been determined. Artificial gravity (AG) mitigates some adaptations induced by 60 day bedrest by creating a head-to-feet force while participants are in a supine position. PURPOSE To quantify the spatial distribution of accumulation of ILC in the lumbar musculature after 60 day bedrest, and whether this can be mitigated by AG exposure. STUDY DESIGN Prospective longitudinal study. PATIENT SAMPLE Twenty-four healthy individuals (8 females) participated in the study: Eight received 30 min continuous AG (cAG); Eight received 6 × 5 min AG (iAG), interspersed with rests; Eight were not exposed to AG (CRTL). OUTCOME MEASURES From 3T magnetic resonance imaging (MRI), axial images were selected to assess lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 intervertebral disc levels. Chemical shift-based 2-echo lipid and/or water Dixon sequence was used to measure tissue composition. Each lumbar muscle was segmented into four equal quartiles (from medial to lateral). METHODS Participants arrived at the facility for the baseline data collection before undergoing a 60 day strict 6° head-down tilt (HDT) bedrest period. MRI of the lumbopelvic region was conducted at baseline and Day-59 of bedrest. Participants performed all activities, including hygiene, in 6° HDT and were discouraged from moving excessively or unnecessarily. RESULTS At the L4/L5 and L5/S1 intervertebral disc levels, 60-day bedrest induced a greater increase in ILC in medial and lateral regions (∼+4%) of the LM than central regions (∼+2%; p<.05). A smaller increase in ILC was induced in the lateral region of LES (∼+1%) at L1/L2 and L2/L3 than at the centro-medial region (∼+2%; p<.05). There was no difference between CRTL and intervention groups. CONCLUSIONS Inhomogeneous spatial distribution of accumulation of ILC was found in the lumbar musculature after 60 day bedrest. These findings might reflect pathophysiological mechanisms related to muscle disuse and contribute to localized lumbar spine dysfunction. Altered spatial distribution of ILC may impair lumbar spine function after prolonged body unloading, which could increase injury risk to vulnerable soft tissues, such as the lumbar intervertebral discs. These novel results may represent a new biomarker of lumbar deconditioning for astronauts, bedridden, sedentary individuals, or those with chronic back pain. Changes are potentially modifiable but not by the AG protocols tested here.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Nathan Campus, Brisbane, Australia
| | - James M Elliott
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA; Northern Sydney Local Health District and The University of Sydney, Faculty of Medicine and Health, The Kolling Institute Sydney, Australia
| | - Mark A Hoggarth
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA; Northwestern University, McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- NIHR Oxford Biomedical Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan A Cook
- NIHR Oxford Biomedical Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Center for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Center for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Center, Cologne, Germany; KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Center, Cologne, Germany; KBR GmbH, Cologne, Germany
| | - Paul W Hodges
- The University of Queensland, NHMRC Center for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Tran V, De Martino E, Hides J, Cable G, Elliott JM, Hoggarth M, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Gluteal Muscle Atrophy and Increased Intramuscular Lipid Concentration Are Not Mitigated by Daily Artificial Gravity Following 60-Day Head-Down Tilt Bed Rest. Front Physiol 2021; 12:745811. [PMID: 34867450 PMCID: PMC8634875 DOI: 10.3389/fphys.2021.745811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 min of continuous AG; eight received 6 × 5 min of AG, interspersed with rest periods; eight belonged to a control group. T1-weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2% for gluteus maximus (GMAX), 8.0% for gluteus medius (GMED), and 10.5% for gluteus minimus after 59-day HDT bed rest (all p < 0.005). The ILC increased by 1.3% for GMAX and 0.5% for GMED (both p < 0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity.
Collapse
Affiliation(s)
- Vienna Tran
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - Gordon Cable
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Faculty of Medicine and Health, The Kolling Research Institute Sydney, Northern Sydney Local Health District, The University of Sydney, Sydney, NSW, Australia
| | - Mark Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Sauro E. Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W. Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|