1
|
Shibukawa S, Yoshimaru D, Hiyama Y, Ozawa T, Usui K, Goto M, Sakamoto H, Kyogoku S, Daida H. Differential T2* changes in tibialis anterior and soleus: Influence of exercise type and perceived exertion. J Biomech 2024; 177:112437. [PMID: 39579591 DOI: 10.1016/j.jbiomech.2024.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Understanding muscle response to exercise is critical for optimizing training strategies. This study investigated the effects of dorsiflexion and plantar flexion exercises on T2* values in the tibialis anterior (TA) and soleus (SOL) muscles and explored their relationship with muscle cross-sectional area (MCA), strength, and perceived exertion. Forty participants were divided into two exercise protocols: 30 performed dorsiflexion, 16 performed plantar flexion, and 6 completed both. T2* values were measured pre-and post-exercise using a 1.5 T MRI scanner. MCA and muscle strength were assessed via MRI and a dynamometer, while perceived exertion was measured using the Borg scale. Results showed that TA T2* values significantly increased after dorsiflexion (9.04 ± 4.21 ms), peaking 600 s post-exercise, whereas SOL T2* changes during plantar flexion were minimal (1.29 ± 1.05 ms). A significant correlation (r = 0.41, p = 0.026) was observed between T2* changes and Borg scale scores during dorsiflexion, but not with muscle strength (r = 0.08) or MCA (r = 0.35). No significant correlations were found for the SOL during plantar flexion. General linear model analysis showed a significant main effect of dorsiflexion on T2* values (p < 0.0001) and perceived exertion within the dorsiflexion protocol (p = 0.044). These findings suggest that dorsiflexion induces greater metabolic disturbances in the TA compared to plantar flexion. The results emphasize the importance of exercise-specific approaches for assessing muscle function and highlight the role of perceived exertion in evaluating muscle response.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan; Department of Radiology, Tokyo Medical University, Tokyo, Japan; Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Daisuke Yoshimaru
- Department of Radiology, Tokyo Medical University, Tokyo, Japan; Jikei University School of Medicine, Division of Regenerative Medicine, Japan; National Institute of Advanced Industrial Science andTechnology (AIST), Tsukuba, Japan.
| | - Yoshinori Hiyama
- Faculty of Health Science, Department of Physical Therapy, Juntendo University, Tokyo, Japan.
| | - Takuya Ozawa
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Keisuke Usui
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan.
| | - Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan.
| | - Hajime Sakamoto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan.
| | - Shinsuke Kyogoku
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan.
| | - Hiroyuki Daida
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, Tokyo, Japan.
| |
Collapse
|
2
|
Molbo L, Hansen RK, Østergaard LR, Frøkjær JB, Larsen RG. Sex differences in microvascular function across lower leg muscles in humans. Microvasc Res 2021; 139:104278. [PMID: 34774583 DOI: 10.1016/j.mvr.2021.104278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported sex-based differences in conduit artery function, however little is known about possible sex-based differences in microvascular function, and possible influence of muscle group. Blood-oxygen-level-dependent (BOLD) MR images acquired during ischemia-reperfusion assess the reactive hyperemic response in the microvasculature of skeletal muscle. We tested the hypothesis that women have greater microvascular reactivity, reflected by faster time-to-peak (TTP) and time-to-half-peak (TTHP) of the BOLD response, across all lower leg muscles. In healthy, young men (n = 18) and women (n = 12), BOLD images of both lower legs were acquired continuously during 30 s of rest, 5 min of cuff occlusion and 2 min of reperfusion, in a 3 T MR scanner. Segmentation of tibialis anterior (TA), soleus (SO), gastrocnemius medial (GM), and the peroneal group (PG) were performed using image registration, and TTP and TTHP of the BOLD response were determined for each muscle. Overall, women had faster TTP (p = 0.001) and TTHP (p = 0.01) than men. Specifically, women had shorter TTP and TTHP in TA (27.5-28.4%), PG (33.9-41.6%), SO (14.7-19.7%) and GM (15.4-18.8%). Overall, TTP and TTHP were shorter in TA compared with PG (25.1-31.1%; p ≤ 0.007), SO (14.3-16%; p ≤ 0.03) and GM (15.6-26%; p ≤ 0.01). Intra class correlations analyses showed large variation in absolute agreement (range: 0.10-0.81) of BOLD parameters between legs (within distinct muscles). Faster TTP and TTHP across all lower leg muscles, in women, provide novel evidence of sex-based differences in microvascular function of young adults matched for age, body mass index, and physical activity level.
Collapse
Affiliation(s)
- Lars Molbo
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rasmus Kopp Hansen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ryan Godsk Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Caroca S, Villagran D, Chabert S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur J Radiol 2021; 144:109995. [PMID: 34628310 DOI: 10.1016/j.ejrad.2021.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.
Collapse
Affiliation(s)
- Sergio Caroca
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile
| | - Diego Villagran
- Servicio de Imagenología, Hospital Carlos van Buren, Valparaíso, Chile
| | - Steren Chabert
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile; CINGS, Centro de Investigación y Desarrollo en INGeniería en Salud, Universidad de Valparaiso, Valparaíso, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile.
| |
Collapse
|
4
|
Lopez C, Taivassalo T, Berru MG, Saavedra A, Rasmussen HC, Batra A, Arora H, Roetzheim AM, Walter GA, Vandenborne K, Forbes SC. Postcontractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy. J Appl Physiol (1985) 2021; 131:83-94. [PMID: 34013753 PMCID: PMC8325615 DOI: 10.1152/japplphysiol.00634.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a progressive replacement of muscle by fat and fibrous tissue, muscle weakness, and loss of functional abilities. Impaired vasodilatory and blood flow responses to muscle activation have also been observed in DMD and associated with mislocalization of neuronal nitric oxide synthase mu (nNOSμ) from the sarcolemma. The objective of this study was to determine whether the postcontractile blood oxygen level-dependent (BOLD) MRI response is impaired in DMD and correlated with established markers of disease severity in DMD, including MRI muscle fat fraction (FF) and clinical functional measures. Young boys with DMD (n = 16, 5-14 yr) and unaffected controls (n = 16, 5-14 yr) were evaluated using postcontractile BOLD, FF, and functional assessments. The BOLD response was measured following five brief (2 s) maximal voluntary dorsiflexion contractions, each separated by 1 min of rest. FFs from the anterior compartment lower leg muscles were quantified via chemical shift-encoded imaging. Functional abilities were assessed using the 10 m walk/run and the 6-min walk distance (6MWD). The peak BOLD responses in the tibialis anterior and extensor digitorum longus were reduced (P < 0.001) in DMD compared with controls. Furthermore, the anterior compartment peak BOLD response correlated with function (6MWD ρ = 0.87, P < 0.0001; 10 m walk/run time ρ = -0.78, P < 0.001) and FF (ρ = -0.52, P = 0.05). The reduced postcontractile BOLD response in DMD may reflect impaired microvascular function. The relationship observed between the postcontractile peak BOLD response and functional measures and FF suggests that the BOLD response is altered with disease severity in DMD.NEW & NOTEWORTHY This study examined the postcontractile blood oxygen level-dependent (BOLD) response in boys with Duchenne muscular dystrophy (DMD) and unaffected controls, and correlated this measure to markers of disease severity. Our findings indicate that the postcontractile BOLD response is impaired in DMD after brief muscle contractions, is correlated to disease severity, and may be valuable to implement in future studies to evaluate treatments targeting microvascular function in DMD.
Collapse
Affiliation(s)
- Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Maria G Berru
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Andres Saavedra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Hannah C Rasmussen
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Harneet Arora
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Alex M Roetzheim
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Souza-Silva E, Ascenso R, Tonussi CR, da Silva-Santos JE. Detection of blood flow perfusion and post - occlusive reactive hyperemia in the skeletal muscle of rats. Life Sci 2021; 278:119571. [PMID: 33961851 DOI: 10.1016/j.lfs.2021.119571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS Post-occlusive reactive hyperemia (PORH) remains poorly understood in the skeletal muscle system. This study was designed to validate an alternative strategy of PORH detection in rodents. Additionally, we explored the hypothesis that PORH is influenced by experimental models associated with impaired function of the skeletal muscle. MATERIALS AND METHODS Wistar rats were anesthetized, and blood flow was assessed by laser Doppler in the anterior tibialis muscle, before and immediately after 5 s, 30 s, 3 min, or 5 min of flow occlusion, obtained through a cuff inflated to 300 mmHg around the thigh of the animals. KEY FINDINGS In healthy animals, deflating the cuff resulted in a fast increment of local blood flow, characterizing the PORH after 5 s to 5 min of cuff occlusion and its dependence on flow occlusion duration. Importantly, we found different profiles of PORH in animals pretreated with reserpine (accelerated peak and reduced half recovery time), streptozotocin (increased peak), or subjected to muscle contraction in stretching (delayed peak), approaches used as experimental models to study fibromyalgia, type II diabetes mellitus, and soreness induced by unaccustomed eccentric exercise, respectively. SIGNIFICANCE We demonstrated that the profile of PORH in the anterior tibialis muscle of rats is sensitive to a variety of experimental models often associated with the skeletal muscle functionality, providing a useful strategy to explore how and whether changes in local regulation of blood flow can contribute to the development of skeletal muscle associated symptoms in clinically relevant conditions.
Collapse
Affiliation(s)
- Eduardo Souza-Silva
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil; Laboratory of Neurobiology of Nociception, Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| | - Ruy Ascenso
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - Carlos Rogério Tonussi
- Laboratory of Neurobiology of Nociception, Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Thorn CE, Adio AO, Fox RH, Gardner AM, Winlove CP, Shore AC. Intermittent compression induces transitory hypoxic stimuli, upstream vasodilation and enhanced perfusion of skin capillaries, independent of age and diabetes. J Appl Physiol (1985) 2021; 130:1072-1084. [PMID: 33571053 DOI: 10.1152/japplphysiol.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The benefit of enhanced shear stress to the vascular endothelium has been well-documented in conduit arteries but is less understood in skin microcirculation. The aim of this study was to provide physiological evidence of the vascular changes in skin microcirculation induced by intermittent pneumatic compression (IPC) of 1 s cuff inflation (130 mmHg) every 20 s to the palm of the hand for 30 min. The oxygenation and hemodynamics of dorsal mid-phalangeal finger skin microcirculation were assessed by laser Doppler fluximetry and reflectance spectroscopy before, during, and after IPC in 15 young (18-39 years old) and 39 older (40-80 years old) controls and 32 older subjects with type 2 diabetes mellitus. Each individual cuff inflation induced: 1) brief surge in flux immediately after cuff deflation followed by 2) transitory reduction in blood oxygen for ∼4 s, and 3) a second increase in perfusion and oxygenation of the microcirculation peaking ∼11 s after cuff deflation in all subject groups. With no significant change in blood volume observed by reflectance spectroscopy, despite the increased shear stress at the observed site, this second peak in flux and blood oxygen suggests a delayed vasoactive response upstream inducing increased arterial influx in the microcirculation that was higher in older controls and subjects with diabetes compared to young controls (P < 0.001, P < 0.001, respectively) and achieving maximum capillary recruitment in all subject groups. Transitory hypoxic stimuli with conducted vasodilation may be a mechanism through which IPC enhances capillary perfusion in skin microcirculation independent of age and type 2 diabetes mellitus.NEW & NOTEWORTHY This study demonstrates that hand intermittent pneumatic compression evokes transitory hypoxic stimuli in distal finger skin microcirculation inducing vasodilation of arterial inflow vessels, enhanced perfusion, and maximum capillary recruitment in young and older subjects and older subjects with type 2 diabetes mellitus. Enhanced shear stress in the microcirculation did not appear to induce local skin vasodilation.
Collapse
Affiliation(s)
- Clare E Thorn
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Aminat O Adio
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Roger H Fox
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - A Michael Gardner
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - C Peter Winlove
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Angela C Shore
- Diabetes and Vascular Medicine, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, College of Medicine and Health and NIHR Exeter Clinical Research Facility, and School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Tang IN, Jao T, Huang YA, Li CW, Yu YC, Chen JH. A new MRI subject position to explore simultaneous BOLD oscillations of the brain and the body. J Neurosci Methods 2020; 344:108829. [PMID: 32663550 DOI: 10.1016/j.jneumeth.2020.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Anatomically and physiologically, there is strong relationship between the brain and body. A new MRI platform covering both the brain and the limb would be beneficial for a more thorough understanding of the brain-body interactions. NEW METHOD A new arm-over-head (AOH) position was developed to collect MRI of the brain and one arm simultaneously. Subject's tolerability and SNR of both the brain and limb under a serial of seven different TR (250-3000 ms) were tested. Then, blocked motor imagery tasks were performed to test the possible brain-body oscillations. RESULTS The new MRI position provided structural images with good quality, and the AOH position had the best SNR under TR 3000 ms (p = 0.03 for the brain; p = 0.064 for the limb). Then, by using both hypothesis-free independent component analysis (ICA) and a priori seed-based functional connectivity (FC) analysis, it is demonstrated during motionless motor imagery tasks there existed possible brain-body BOLD oscillations connecting especially arm flexors to default mode, vision, and sensorimotor networks. The FC appeared at network density as low as 5%. COMPARISON WITH EXISTING METHODS We have developed a new MRI subject position to explore the possibilities of more extensive neuronal and physiological networks. CONCLUSIONS The results of this preliminary experiment indicate that functional brain networks might extend outside the brain. A bottom-up circulatory effect might explain this phenomenon. Nonetheless, considering the mechanism of neural top-down control and the nature of complex brain networks, the existence of a more extensive whole-body functional network is rational and possible.
Collapse
Affiliation(s)
- I-Ning Tang
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tun Jao
- Department of Neurology, National Taiwan University, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-An Huang
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Li
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Chih Yu
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Gurgitano M, Signorelli G, Rodà GM, Liguori A, Pandolfi M, Granata G, Arrichiello A, Ierardi AM, Paolucci A, Carrafiello G. Use of perfusional CBCT imaging for intraprocedural evaluation of endovascular treatment in patients with diabetic foot: a concept paper. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020008. [PMID: 33245064 PMCID: PMC8023083 DOI: 10.23750/abm.v91i10-s.10267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/23/2020] [Indexed: 12/01/2022]
Abstract
Diabetes mellitus (DM) is one of the most common metabolic diseases worldwide; its global burden has increased rapidly over the past decade, enough to be considered a public health emergency in many countries. Diabetic foot disease and, particularly diabetic foot ulceration, is the major complication of DM: through a skin damage of the foot, with a loss of epithelial tissue, it can deepen to muscles and bones and lead to the amputation of the lower limbs. Peripheral arterial disease (PAD) in patients with diabetes, manifests like a diffuse macroangiopathic multi-segmental involvement of the lower limb vessels, also connected to a damage of collateral circulation; it may also display characteristic microaneurysms and tortuosity in distal arteries. As validation method, Bold-MRI is used. The diabetic foot should be handled with a multidisciplinary team approach, as its management requires systemic and localized treatments, pain control, monitoring of cardiovascular risk factors and other comorbidities. CBCT is an emerging medical imaging technique with the original feature of divergent radiation, forming a cone, in contrast with the spiral slicing of conventional CT, and has become increasingly important in treatment planning and diagnosis: from small anatomical areas, such as implantology, to the world of interventional radiology, with a wide range of applications: as guidance for biopsies or ablation treatments. The aim of this project is to evaluate the usefulness of perfusion CBCT imaging, obtained during endovascular revascularization, for intraprocedural evaluation of endovascular treatment in patients with diabetic foot. (www.actabiomedica.it).
Collapse
Affiliation(s)
- Martina Gurgitano
- Division of Radiology, IEO European institute of oncology IRCCS, Milan, Italy.
| | - Giulia Signorelli
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Giovanni Maria Rodà
- Postgraduation School in Radiodiagnostics, Università degli studi di Milano, via Festa del Perdono, 20122, Milan, Italy.
| | - Alessandro Liguori
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy. Via Francesco Sforza 35, 20122, Milano, Italy.
| | - Marco Pandolfi
- Radiology Unit, Istituto Clinico Città Studi Milano, via Niccolò Jommelli, 17, 20131 Milano, Italy.
| | - Giuseppe Granata
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Antonio Arrichiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy Via Festa del Perdono 7, 20122, Milan, Italy.
| | - Anna Maria Ierardi
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy. Via Francesco Sforza 35, 20122, Milano, Italy.
| | - Aldo Paolucci
- Operative Unit of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.
| | - Gianpaolo Carrafiello
- Operative Unit of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy. Via Francesco Sforza 35, 20122, Milano, Italy; Department of Health Sciences, Università degli studi di Milano, Milan, Italy.
| |
Collapse
|
9
|
Larsen RG, Thomsen JM, Hirata RP, Steffensen R, Poulsen ER, Frøkjaer JB, Graven-Nielsen T. Impaired microvascular reactivity after eccentric muscle contractions is not restored by acute ingestion of antioxidants or dietary nitrate. Physiol Rep 2020; 7:e14162. [PMID: 31293100 PMCID: PMC6640596 DOI: 10.14814/phy2.14162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Unaccustomed eccentric exercise leads to impaired microvascular function but the underlying mechanism is unknown. In this study, we evaluated the role of oxidative stress and of nitric oxide (NO) bioavailability. Thirty young men and women performed eccentric contractions of the tibialis anterior (TA) muscle (ECC), with the contralateral leg serving as nonexercising control (CON). Participants were randomized into three groups ingesting an antioxidant cocktail (AO), beetroot juice (BR) or placebo 46 h postexercise. At baseline and 48 h postexercise, hyperemic responses to brief muscle contractions and 5 min of cuff occlusion were assessed bilaterally in the TA muscles using blood oxygen level dependent (BOLD) magnetic resonance imaging. Eccentric contractions resulted in delayed time-to-peak (~22%; P < 0.001), blunted peak (~21%; P < 0.001) and prolonged time-to-half relaxation (~12%, P < 0.001) in the BOLD response to brief contractions, with no effects of AO or BR, and no changes in CON. Postocclusive time-to-peak was also delayed (~54%; P < 0.001) in ECC, with no effects of AO or BR, and no changes in CON. Impaired microvascular reactivity after eccentric contractions is confined to the exercised tissue, and is not restored with acute ingestion of AO or BR. Impairments in microvascular reactivity after unaccustomed eccentric contractions may result from structural changes within the microvasculature that can diminish muscle blood flow regulation during intermittent activities requiring prompt adjustments in oxygen delivery.
Collapse
Affiliation(s)
- Ryan G Larsen
- Sports Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jens M Thomsen
- Sports Sciences, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Rogerio P Hirata
- Department of Health Science and Technology, SMI, Aalborg University, Aalborg, Denmark
| | - Rudi Steffensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Eva R Poulsen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens B Frøkjaer
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, SMI, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, Jeneson JA, Kan HE, Kent J, Layec G, Prompers JJ, Reyngoudt H, Sleigh A, Valkovič L, Kemp GJ. 31 P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4246. [PMID: 32037688 PMCID: PMC8243949 DOI: 10.1002/nbm.4246] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- High Field MR CenterMedical University of ViennaViennaAustria
| | - Chris Boesch
- DBMR and DIPRUniversity and InselspitalBernSwitzerland
| | - Donnie Cameron
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
| | - Monika Dezortová
- MR‐Unit, Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Sean C. Forbes
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of RadiologyAmsterdam University Medical Center|site AMCAmsterdamthe Netherlands
- Cognitive Neuroscience CenterUniversity Medical Center GroningenGroningenthe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
- Duchenne CenterThe Netherlands
| | - Jane Kent
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
| | - Gwenaël Layec
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMAUSA
| | | | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of Myology AIM‐CEAParisFrance
| | - Alison Sleigh
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- NIHR/Wellcome Trust Clinical Research FacilityCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular Medicine, BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Department of Imaging MethodsInstitute of Measurement Science, Slovak Academy of SciencesBratislavaSlovakia
| | - Graham J. Kemp
- Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC)University of LiverpoolLiverpoolUK
| | | |
Collapse
|
11
|
Hurley DM, Williams ER, Cross JM, Riedinger BR, Meyer RA, Abela GS, Slade JM. Aerobic Exercise Improves Microvascular Function in Older Adults. Med Sci Sports Exerc 2019; 51:773-781. [PMID: 30489496 DOI: 10.1249/mss.0000000000001854] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microvascular function is reduced with age, disease, and inactivity. Exercise is well known to improve vascular health and has the potential to improve microvascular function in aging and disease. PURPOSE The study aimed to assess changes in peripheral microvascular function in sedentary older adults after aerobic exercise training. METHODS Twenty-three sedentary older adults (67 ± 5 yr, body mass index = 29 ± 5, mean ± SD) successfully completed a randomized 12-wk graded treadmill walking intervention. The exercise group (EX) performed 40 min of uphill walking 4 d·wk at 70% heart rate reserve. The control group (CON) maintained a sedentary lifestyle for 12 wk. Blood oxygen level-dependent (BOLD) responses of the soleus measured by magnetic resonance imaging were used to evaluate microvascular function; brief (1 s) maximal plantarflexion contractions were performed. Separately, blood flow in the popliteal artery was measured by ultrasound after brief contraction. Phosphorus magnetic resonance spectroscopy of the calf was used to examine muscle oxidative capacity, and whole-body peak oxygen consumption (V˙O2peak) was used to confirm training-induced cardiorespiratory adaptations. RESULTS Peak postcontraction BOLD response increased by 33% in EX (PRE, 3.3% ± 1.0%; POST, 4.4% ± 1.4%) compared with CON (PRE, 3.0% ± 1.3%; POST, 3.2% ± 1.5%), P < 0.05. EX with hypertension tended to show a blunted peak BOLD increase (n = 6, 15%) compared with EX normotensive (n = 7, 50%), P = 0.056. Peak postcontraction blood flow increased by 39% in EX (PRE, 217 ± 88 mL·min; POST, 302 ± 167 mL·min) compared with CON (PRE, 188 ± 54 mL·min; POST, 184 ± 44 mL·min), P < 0.05. EX muscle oxidative capacity (kPCr) improved by 40% (PRE, 1.60 ± 0.57 min; POST, 2.25 ± 0.80 min) compared with CON (PRE, 1.69 ± 0.28 min; POST, 1.76 ± 0.52 min), P < 0.05. V˙O2peak increased by 9% for EX (PRE, 19.0 ± 3.1 mL·kg·min; POST, 20.8 ± 2.9 mL·kg·min) compared with a 7% loss in CON (PRE, 21.9 ± 3.6 mL·kg·min; POST, 20.4 ± 3.5 mL·kg·min), P < 0.05. CONCLUSION Moderate aerobic exercise significantly improved microvascular function of the leg in older adults.
Collapse
Affiliation(s)
- David M Hurley
- Department of Radiology, Michigan State University, East Lansing, MI
| | - Ewan R Williams
- Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Jeff M Cross
- Department of Radiology, Michigan State University, East Lansing, MI
| | | | - Ronald A Meyer
- Department of Physiology, Michigan State University, East Lansing, MI
| | - George S Abela
- Department of Medicine, Michigan State University, East Lansing, MI
| | - Jill M Slade
- Department of Radiology, Michigan State University, East Lansing, MI
| |
Collapse
|
12
|
Batra A, Vohra RS, Chrzanowski SM, Hammers DW, Lott DJ, Vandenborne K, Walter GA, Forbes SC. Effects of PDE5 inhibition on dystrophic muscle following an acute bout of downhill running and endurance training. J Appl Physiol (1985) 2019; 126:1737-1745. [PMID: 30946638 DOI: 10.1152/japplphysiol.00664.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSμ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSμ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSμ.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Ravneet S Vohra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Steve M Chrzanowski
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - David W Hammers
- Department of Pharmacology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
13
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
14
|
Messere A, Tschakovsky M, Seddone S, Lulli G, Franco W, Maffiodo D, Ferraresi C, Roatta S. Hyper-Oxygenation Attenuates the Rapid Vasodilatory Response to Muscle Contraction and Compression. Front Physiol 2018; 9:1078. [PMID: 30158874 PMCID: PMC6104350 DOI: 10.3389/fphys.2018.01078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
A single muscle compression (MC) with accompanying hyperemia and hyper-oxygenation results in attenuation of a subsequent MC hyperemia, as long as the subsequent MC takes place when muscle oxygenation is still elevated. Whether this is due to the hyper-oxygenation, or compression-induced de-activation of mechano-sensitive structures is unclear. We hypothesized that increased oxygenation and not de-activation of mechano-sensitive structures was responsible for this attenuation and that both compression and contraction-induced hyperemia attenuate the hyperemic response to a subsequent muscle contraction, and vice-versa. Protocol-1) In eight subjects two MCs separated by a 25 s interval were delivered to the forearm without or with partial occlusion of the axillary artery, aimed at preventing hyperemia and increased oxygenation in response to the first MC. Tissue oxygenation [oxygenated (hemoglobin + myoglobin)/total (hemoglobin + myoglobin)] from forearm muscles and brachial artery blood flow were continuously monitored by means of spatially-resolved near-infrared spectroscopy (NIRS) and Doppler ultrasound, respectively. With unrestrained blood flow, the hyperemic response to the second MC was attenuated, compared to the first (5.7 ± 3.3 vs. 14.8 ± 3.9 ml, P < 0.05). This attenuation was abolished with partial occlusion of the auxillary artery (14.4 ± 3.9 ml). Protocol-2) In 10 healthy subjects, hemodynamic changes were assessed in response to MC and electrically stimulated contraction (ESC, 0.5 s duration, 20 Hz) of calf muscles, as single stimuli or delivered in sequences of two separated by a 25 s interval. When MC or ESC were delivered 25 s following MC or ESC the response to the second stimulus was always attenuated (range: 60–90%). These findings support a role for excess tissue oxygenation in the attenuation of mechanically-stimulated rapid dilation and rule out inactivation of mechano-sensitive structures. Furthermore, both MC and ESC rapid vasodilatation are attenuated by prior transient hyperemia, regardless of whether the hyperemia is due to MC or ESC. Previously, mechanisms responsible for this dilation have not been considered to be oxygen sensitive. This study identifies muscle oxygenation state as relevant blunting factor, and reveals the need to investigate how these feedforward mechanisms might actually be affected by oxygenation.
Collapse
Affiliation(s)
| | - Michael Tschakovsky
- Human Vascular Control Lab, School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Stefano Seddone
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Gabriella Lulli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Walter Franco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Daniela Maffiodo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | |
Collapse
|
15
|
Tonson A, Noble KE, Meyer RA, Rozman MR, Foley KT, Slade JM. Age Reduces Microvascular Function in the Leg Independent of Physical Activity. Med Sci Sports Exerc 2018; 49:1623-1630. [PMID: 28709153 DOI: 10.1249/mss.0000000000001281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The microvasculature is critical in the control of blood flow. Aging and reduced physical activity (PA) may both decrease microvascular function. PURPOSE The primary aim was to evaluate the influence of age on microvascular function in adults with similar PA levels. Secondary aims were to assess the reliability of muscle functional magnetic resonance imaging in older adults (OA) and the relationship between PA and microvascular function in OA. METHODS Microvascular blood-oxygen-level dependent (BOLD) responses were measured in young adults (YA, n = 12, mean ± SD age = 21 ± 1 yr old, PA = 239 ± 73 × 10 counts per day) and OA (n = 13, 64 ± 4 yr old, PA = 203 ± 48 × 10 counts per day). Functional magnetic resonance images (3T, echo planar BOLD) of the leg were acquired after brief (1 s) maximal voluntary isometric contractions. The test-retest reliability of BOLD responses and the Pearson correlation between peak BOLD and PA were assessed in a group of OA (OA-r) with a broad range of PA (66 ± 5 yr old, n = 9, PA range = 54 × 10 to 674 × 10 counts per day). RESULTS Peak BOLD microvascular responses were reduced for OA compared with YA. OA peak BOLD was 27% lower in the soleus (3.3% ± 0.8% OA vs 4.5% ± 1.4% YA; P = 0.017) and 40% lower in the anterior compartment (1.6% ± 0.6% OA vs 2.7% ± 1.1% YA; P = 0.006). Coefficients of variation were 8.6% and 11.8% for peak BOLD in the soleus and anterior compartment, respectively, with an intraclass correlation of 0.950 for both muscle regions. The correlation between peak BOLD and PA was r ≥ 0.715, P ≤ 0.030. CONCLUSIONS Aging was associated with reduced microvascular function in leg muscles, independent of PA. The findings also revealed good reliability for BOLD magnetic resonance imaging in OA for the soleus and anterior compartment muscles.
Collapse
Affiliation(s)
- Anne Tonson
- 1Department of Physiology, Michigan State University, East Lansing, MI; 2Department of Radiology, Michigan State University, East Lansing, MI; and 3Department of Family Medicine, Michigan State University, East Lansing, MI
| | | | | | | | | | | |
Collapse
|
16
|
Wakasugi T, Morishita S, Kaida K, Itani Y, Kodama N, Ikegame K, Ogawa H, Domen K. Impaired skeletal muscle oxygenation following allogeneic hematopoietic stem cell transplantation is associated with exercise capacity. Support Care Cancer 2018; 26:2149-2160. [PMID: 29372395 DOI: 10.1007/s00520-017-4036-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Impaired skeletal muscle oxygenation potentially contributes to reduced exercise capacity in allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients during early recovery and may explain altered hemoglobin responses to exercise following allo-HSCT. We investigated whether skeletal muscle oxygenation parameters and hemoglobin parameters in the tibialis anterior decreased following allo-HSCT, and whether these results were associated with declines in exercise capacity. METHODS We used near-infrared spectroscopy during and following a repeated isometric contraction task at 50% of maximal voluntary contraction in 18 patients before and after allo-HSCT. RESULTS The rate of decrease in the muscle oxy-hemoglobin saturation (SmO2; an index of skeletal muscle oxygenation) was significantly lower after allo-HSCT (P < 0.01). In contrast, total hemoglobin (an index of hemoglobin) was not different after allo-HSCT. Furthermore, SmO2 during and following exercise was associated with exercise capacity (r = 0.648; P = 0.004 vs. r = 0.632; P = 0.005). CONCLUSION The results of this study reveal that although the peripheral hemoglobin response was not altered by allo-HSCT, skeletal muscle oxygenation was decreased following allo-HSCT. Furthermore, the decrease in skeletal muscle oxygenation was associated with a reduction in exercise capacity.
Collapse
Affiliation(s)
- Tatsushi Wakasugi
- Department of Rehabilitation, Hyogo College of Medicine Hospital, Nishinomiya, Japan.
| | - Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Katsuji Kaida
- Division of Haematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yusuke Itani
- Department of Rehabilitation, Hyogo College of Medicine Hospital, Nishinomiya, Japan
| | - Norihiko Kodama
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiro Ikegame
- Division of Haematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroyasu Ogawa
- Division of Haematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
17
|
Zimeo Morais GA, Scholkmann F, Balardin JB, Furucho RA, de Paula RCV, Biazoli CE, Sato JR. Non-neuronal evoked and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of functional near-infrared spectroscopy signals. NEUROPHOTONICS 2018; 5:011002. [PMID: 28840166 PMCID: PMC5566266 DOI: 10.1117/1.nph.5.1.011002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 05/18/2023]
Abstract
Several functional near-infrared spectroscopy (fNIRS) studies report their findings based on changes of a single chromophore, usually concentration changes of oxygenated hemoglobin ([[Formula: see text]]) or deoxygenated hemoglobin (HHb). However, influence of physiological actions may differ depending on which element is considered and the assumption that the chosen measure correlates with the neural response of interest might not hold. By assessing the correlation between [[Formula: see text]] and [HHb] in task-evoked activity as well as resting-state data, we identified a spatial dependency of non-neuronal hemodynamic changes in the anterior temporal region of the human head. Our findings support the importance of reporting and discussing fNIRS outcomes obtained with both chromophores ([[Formula: see text]] and [HHb]), in particular, for studies concerning the anterior temporal region of the human head. This practice should help to achieve a physiologically correct interpretation of the results when no measurements with short-distance channels are available while employing continuous-wave fNIRS systems.
Collapse
Affiliation(s)
| | - Felix Scholkmann
- University of Zurich, University Hospital Zurich, Biomedical Optics Research Laboratory, Department of Neonatology, Zurich, Switzerland
| | - Joana Bisol Balardin
- Universidade Federal do ABC, Center for Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
- Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Rogério Akira Furucho
- Universidade Federal do ABC, Center for Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
| | | | - Claudinei Eduardo Biazoli
- Universidade Federal do ABC, Center for Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
| | - João Ricardo Sato
- Universidade Federal do ABC, Center for Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
| |
Collapse
|
18
|
Messere A, Ceravolo G, Franco W, Maffiodo D, Ferraresi C, Roatta S. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg. J Appl Physiol (1985) 2017; 123:1451-1460. [DOI: 10.1152/japplphysiol.00511.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022] Open
Abstract
The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3–6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4) the extent of attenuation negatively correlates with tissue oxygenation ( r = −0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3) the extent of attenuation of the compression-induced hyperemia is proportional to the level of oxygenation achieved in the tissue. The results support the concept that tissue oxygenation is a key variable in blood flow regulation.
Collapse
Affiliation(s)
| | - Gianluca Ceravolo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Walter Franco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Daniela Maffiodo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | |
Collapse
|
19
|
Stacy MR, Caracciolo CM, Qiu M, Pal P, Varga T, Constable RT, Sinusas AJ. Comparison of regional skeletal muscle tissue oxygenation in college athletes and sedentary control subjects using quantitative BOLD MR imaging. Physiol Rep 2017; 4:4/16/e12903. [PMID: 27535483 PMCID: PMC5002911 DOI: 10.14814/phy2.12903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Blood oxygen level‐dependent (BOLD) magnetic resonance (MR) imaging permits noninvasive assessment of tissue oxygenation. We hypothesized that BOLD imaging would allow for regional evaluation of differences in skeletal muscle oxygenation between athletes and sedentary control subjects, and dynamic BOLD responses to ischemia (i.e., proximal cuff occlusion) and reactive hyperemia (i.e., rapid cuff deflation) would relate to lower extremity function, as assessed by jumping ability. College football athletes (linemen, defensive backs/wide receivers) were compared to sedentary healthy controls. BOLD signal of the gastrocnemius, soleus, anterior tibialis, and peroneus longus was assessed for peak hyperemic value (PHV), time to peak (TTP), minimum ischemic value (MIV), and time to recovery (TTR). Significantly higher PHVs were identified in athletes versus controls for the gastrocnemius (linemen, 15.8 ± 9.1%; defensive backs/wide receivers, 17.9 ± 5.1%; controls, 7.4 ± 3.5%), soleus (linemen, 25.9 ± 11.5%; backs/receivers, 22.0 ± 9.4%; controls, 12.9 ± 5.8%), and anterior tibialis (linemen, 12.8 ± 5.3%; backs/receivers, 12.6 ± 3.9%; controls, 7.7 ± 4.0%), whereas no differences in PHV were found for the peroneus longus (linemen, 14.1 ± 6.9%; backs/receivers, 11.7 ± 4.6%; controls, 9.0 ± 4.9%). In all subject groups, the gastrocnemius and soleus muscles exhibited the lowest MIVs during cuff occlusion. No differences in TTR were found between muscles for any subject group. PHV of the gastrocnemius muscle was significantly and positively related to maximal vertical (r = 0.56, P = 0.002) and broad jump (r = 0.47, P = 0.01). These results suggest that BOLD MR imaging is a useful noninvasive tool for evaluating differences in tissue oxygenation of specific muscles between active and sedentary individuals, and peak BOLD responses may relate to functional capacity.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Maolin Qiu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Prasanta Pal
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Tyler Varga
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Robert Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Albert J Sinusas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Schecklmann M, Mann A, Langguth B, Ehlis AC, Fallgatter AJ, Haeussinger FB. The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy. Front Hum Neurosci 2017; 11:456. [PMID: 28966580 PMCID: PMC5605559 DOI: 10.3389/fnhum.2017.00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background: Extracranial signals are the main source of noise in functional near-infrared spectroscopy (fNIRS) as light is penetrating the cortex but also skin and muscles of the head. Aim: Here we performed three experiments to investigate the contamination of fNIRS measurements by temporal muscle activity. Material and methods: For experiment 1, we provoked temporal muscle activity by instructing 31 healthy subjects to clench their teeth three times. We measured fNIRS signals over left temporal and frontal channels with an interoptode distance of 3 cm, in one short optode distance (SOD) channel (1 cm) and electromyography (EMG) over the edge of the temporal muscle. In experiment 2, we screened resting state fNIRS-fMRI (functional magnetic resonance imaging) data of one healthy subject for temporal muscle artifacts. In experiment 3, we screened a dataset of sound-evoked activity (n = 33) using bi-temporal probe-sets and systematically contrasted subjects presenting vs. not presenting artifacts and blocks/events contaminated or not contaminated with artifacts. Results: In experiment 1, we could demonstrate a hemodynamic-response-like increase in oxygenated (O2Hb) and decrease in deoxygenated (HHb) hemoglobin with a large amplitude and large spatial extent highly exceeding normal cortical activity. Correlations between EMG, SOD, and fNIRS artifact activity showed only limited evidence for associations on a group level with rather clear associations in a sub-group of subjects. The fNIRS-fMRI experiment showed that during the temporal muscle artifact, fNIRS is completely saturated by muscle oxygenation. Experiment 3 showed hints for contamination of sound-evoked oxygenation by the temporal muscle artifact. This was of low relevance in analyzing the whole sample. Discussion: Temporal muscle activity e.g., by clenching the teeth induces a large hemodynamic-like artifact in fNIRS measurements which should be avoided by specific subject instructions. Data should be screened for this artifact might be corrected by exclusion of contaminated blocks/events. The usefulness of established artifact correction methods should be evaluated in future studies. Conclusion: Temporal muscle activity, e.g., by clenching the teeth is one major source of noise in fNIRS measurements.
Collapse
Affiliation(s)
- Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of RegensburgRegensburg, Germany
| | - Alexander Mann
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of RegensburgRegensburg, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| | - Florian B. Haeussinger
- Department of Psychiatry and Psychotherapy, Psychophysiology and Optical Imaging, University Hospital of TübingenTübingen, Germany
| |
Collapse
|
21
|
Tierney J, Coolbaugh C, Towse T, Byram B. Adaptive Clutter Demodulation for Non-Contrast Ultrasound Perfusion Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1979-1991. [PMID: 28622670 PMCID: PMC5605932 DOI: 10.1109/tmi.2017.2714901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conventional Doppler ultrasound is useful for visualizing fast blood flow in large resolvable vessels. However, frame rate and tissue clutter caused by movement of the patient or sonographer make visualizing slow flow with ultrasound difficult. Patient and sonographer motion causes spectral broadening of the clutter signal, which limits ultrasound's sensitivity to velocities greater than 5-10 mm/s for typical clinical imaging frequencies. To address this, we propose a clutter filtering technique that may increase the sensitivity of Doppler measurements to at least as low as 0.52 mm/s. The proposed technique uses plane wave imaging and an adaptive frequency and amplitude demodulation scheme to decrease the bandwidth of tissue clutter. To test the performance of the adaptive demodulation method at suppressing tissue clutter bandwidths due to sonographer hand motion alone, six volunteer subjects acquired data from a stationary phantom. Additionally, to test in vivo feasibility, arterial occlusion and muscle contraction studies were performed to assess the efficiency of the proposed filter at preserving signals from blood velocities 2 mm/s or greater at a 7.8 MHz center frequency. The hand motion study resulted in initial average bandwidths of 175 Hz (8.60mm/s), which were decreased to 10.5 Hz (0.52 mm/s) at -60 dB using our approach. The in vivo power Doppler studies resulted in 4.73 dB and 4.80 dB dynamic ranges of the blood flow with the proposed filter and 0.15 dB and 0.16 dB dynamic ranges of the blood flow with a conventional 50 Hz high-pass filter for the occlusion and contraction studies, respectively.
Collapse
|
22
|
Thompson SJ, Riazi S, Kraeva N, Noseworthy MD, Rayner TE, Schneiderman JE, Cifra B, Wells GD. Skeletal Muscle Metabolic Dysfunction in Patients With Malignant Hyperthermia Susceptibility. Anesth Analg 2017; 125:434-441. [PMID: 28682948 PMCID: PMC9940015 DOI: 10.1213/ane.0000000000002232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Malignant hyperthermia (MH), a pharmacogenetic disorder of skeletal muscle, presents with a potentially lethal hypermetabolic reaction to certain anesthetics. However, some MH-susceptible patients experience muscle weakness, fatigue, and exercise intolerance in the absence of anesthetic triggers. The objective of this exploratory study was to elucidate the pathophysiology of exercise intolerance in patients tested positive for MH with the caffeine-halothane contracture test. To this end, we used phosphorus magnetic resonance spectroscopy, blood oxygen level-dependent functional magnetic resonance imaging (MRI), and traditional exercise testing to compare skeletal muscle metabolism in MH-positive patients and healthy controls. METHODS Skeletal muscle metabolism was assessed using phosphorus magnetic resonance spectroscopy and blood oxygen level-dependent functional MRI in 29 MH-positive patients and 20 healthy controls. Traditional measures of physical capacity were employed to measure aerobic capacity, anaerobic capacity, and muscle strength. RESULTS During 30- and 60-second exercise, MH-positive patients had significantly lower ATP production via the oxidative pathway compared to healthy controls. MH-positive patients also had a longer recovery time with blood oxygen level-dependent functional MRI compared to healthy controls. Exercise testing revealed lower aerobic and anaerobic capacity in MH-positive patients compared to healthy controls. CONCLUSIONS Results of this exploratory study suggest that MH-positive patients have impaired aerobic metabolism compared to healthy individuals. This could explain the exercise intolerance exhibited in MH-susceptible patient population.
Collapse
Affiliation(s)
- Sara J. Thompson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Natalia Kraeva
- Malignant Hyperthermia Investigation Unit, Toronto General Hospital, Toronto, Ontario, Canada
| | - Michael D. Noseworthy
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Tammy E. Rayner
- Department of Diagnostic Imaging, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane E. Schneiderman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada,Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Barbara Cifra
- Division of Cardiology, the Labatt Family Heart Centre, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Greg D. Wells
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada,Physiology and Experimental Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Souza-Silva E, Christensen SW, Hirata RP, Larsen RG, Graven-Nielsen T. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise. Scand J Med Sci Sports 2017; 28:29-39. [PMID: 28453899 DOI: 10.1111/sms.12905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 11/28/2022]
Abstract
Delayed onset muscle soreness (DOMS) occurs within 1-2 days after eccentric exercise, but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result in accumulated algesic substances being a part of the sensitization in DOMS. Twelve healthy subjects (five women) performed dorsiflexion exercise (five sets of 10 repeated eccentric contractions) in one leg, while the contralateral leg was the control. The maximal voluntary contraction (MVC) of the tibialis anterior muscle was recorded. Blood flow was assessed by ultrasound Doppler on the anterior tibialis artery (ATA) and within the anterior tibialis muscle tissue before and immediately after 1-second MVC, 5-seconds MVC, and 5-minutes thigh cuff occlusion. Pressure pain thresholds (PPTs) were recorded on the tibialis anterior muscle. All measures were done bilaterally at day 0 (pre-exercise), day 2, and day 6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Eccentric exercise increased Likert scores at day 1 and day 2 compared with day 0 (P<.001). Compared with pre-exercise (day 0), reduced PPT (~25%, P<.002), MVC (~22%, P<.002), ATA diameter (~8%, P<.002), ATA post-contraction/occlusion blood flow (~16%, P<.04), and intramuscular peak blood flow (~23%, P<.03) were found in the DOMS leg on day 2 but not in the control leg. These results showed that eccentric contractions decreased vessel diameter, impaired the blood flow response, and promoted hyperalgesia. Thus, the results suggest that the blood flow reduction may be involved in the increased pain response after eccentric exercise.
Collapse
Affiliation(s)
- E Souza-Silva
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| | - S W Christensen
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark.,Department of Physiotherapy, University College North Denmark, Aalborg, Denmark
| | - R P Hirata
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| | - R G Larsen
- Department of Health Science and Technology, Physical Activity and Human Performance Group, SMI, Aalborg University, Aalborg, Denmark
| | - T Graven-Nielsen
- Department of Health Science and Technology, Faculty of Medicine, Center for Neuroplasticity and Pain (CNAP), SMI, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Balardin JB, Zimeo Morais GA, Furucho RA, Trambaiolli LR, Sato JR. Impact of communicative head movements on the quality of functional near-infrared spectroscopy signals: negligible effects for affirmative and negative gestures and consistent artifacts related to raising eyebrows. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:46010. [PMID: 28451693 DOI: 10.1117/1.jbo.22.4.046010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is currently one of the most promising tools in the neuroscientific research to study brain hemodynamics during naturalistic social communication. The application of fNIRS by studies in this field of knowledge has been widely justified by its strong resilience to motion artifacts, including those that might be generated by communicative head and facial movements. Previous studies have focused on the identification and correction of these artifacts, but a quantification of the differential contribution of common communicative movements on the quality of fNIRS signals is still missing. We assessed the impact of four movements (nodding head up and down, reading aloud, nodding head sideways, and raising eyebrows) performed during rest and task conditions on two metrics of signal quality control: an estimative of signal-to-noise performance and the negative correlation between oxygenated and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb). Channel-wise group analysis confirmed the robustness of the fNIRS technique to head nodding movements but showed a large effect of raising eyebrows in both signal quality control metrics, both during task and rest conditions. Reading aloud did not disrupt the expected anticorrelation between oxy-Hb and deoxy-Hb but had a relatively large effect on signal-to-noise performance. These findings may have implications to the interpretation of fNIRS studies examining communicative processes.
Collapse
Affiliation(s)
- Joana Bisol Balardin
- Universidade Federal do ABC, Center of Mathematics Computing and Cognition, São Bernardo do Campo, BrazilbInstituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Rogério Akira Furucho
- Universidade Federal do ABC, Center of Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
| | - Lucas Romualdo Trambaiolli
- Universidade Federal do ABC, Center of Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
| | - João Ricardo Sato
- Universidade Federal do ABC, Center of Mathematics Computing and Cognition, São Bernardo do Campo, Brazil
| |
Collapse
|
25
|
Towse TF, Elder CP, Bush EC, Klockenkemper SW, Bullock JT, Dortch RD, Damon BM. Post-contractile BOLD contrast in skeletal muscle at 7 T reveals inter-individual heterogeneity in the physiological responses to muscle contraction. NMR IN BIOMEDICINE 2016; 29:1720-1728. [PMID: 27753155 PMCID: PMC6594689 DOI: 10.1002/nbm.3593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 05/13/2023]
Abstract
Muscle blood oxygenation-level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre-contraction signal intensity were observed in the soleus muscle. We observed considerable inter-subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects (n = 7) repeated the contraction protocol at two different repetition times (TR : 1000 and 2500 ms) to determine the potential of T1 -related inflow effects on the magnitude of the post-contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two TR values (3.8 ± 0.9 versus 4.0 ± 0.6% for TR = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post-contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction.
Collapse
Affiliation(s)
- Theodore F. Towse
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher P. Elder
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily C. Bush
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel W. Klockenkemper
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jared T. Bullock
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard D. Dortch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce M. Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
26
|
Muller MD, Li Z, Sica CT, Luck JC, Gao Z, Blaha CA, Cauffman AE, Ross AJ, Winkler NJR, Herr MD, Brandt K, Wang J, Gallagher DC, Karunanayaka P, Vesek J, Leuenberger UA, Yang QX, Sinoway LI. Muscle oxygenation during dynamic plantar flexion exercise: combining BOLD MRI with traditional physiological measurements. Physiol Rep 2016; 4:4/20/e13004. [PMID: 27798357 PMCID: PMC5099966 DOI: 10.14814/phy2.13004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/24/2022] Open
Abstract
Blood-oxygen-level-dependent magnetic resonance imaging (BOLD MRI) has the potential to quantify skeletal muscle oxygenation with high temporal and high spatial resolution. The purpose of this study was to characterize skeletal muscle BOLD responses during steady-state plantar flexion exercise (i.e., during the brief rest periods between muscle contraction). We used three different imaging modalities (ultrasound of the popliteal artery, BOLD MRI, and near-infrared spectroscopy [NIRS]) and two different exercise intensities (2 and 6 kg). Six healthy men underwent three separate protocols of dynamic plantar flexion exercise on separate days and acute physiological responses were measured. Ultrasound studies showed the percent change in popliteal velocity from baseline to the end of exercise was 151 ± 24% during 2 kg and 589 ± 145% during 6 kg. MRI studies showed an abrupt decrease in BOLD signal intensity at the onset of 2 kg exercise, indicating deoxygenation. The BOLD signal was further reduced during 6 kg exercise (compared to 2 kg) at 1 min (-4.3 ± 0.7 vs. -1.2 ± 0.4%, P < 0.001). Similarly, the change in the NIRS muscle oxygen saturation in the medial gastrocnemius was -11 ± 4% at 2 kg and -38 ± 11% with 6 kg (P = 0.041). In conclusion, we demonstrate that BOLD signal intensity decreases during plantar flexion and this effect is augmented at higher exercise workloads.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhijun Li
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher T Sica
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Aimee E Cauffman
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Amanda J Ross
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nathan J R Winkler
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael D Herr
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Kristen Brandt
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianli Wang
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - David C Gallagher
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Prasanna Karunanayaka
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeffrey Vesek
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Center for NMR Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
27
|
Coolbaugh CL, Bush EC, Caskey CF, Damon BM, Towse TF. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis. J Appl Physiol (1985) 2016; 121:849-857. [PMID: 27516540 DOI: 10.1152/japplphysiol.00819.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/10/2016] [Indexed: 11/22/2022] Open
Abstract
Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications.
Collapse
Affiliation(s)
- Crystal L Coolbaugh
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee;
| | - Emily C Bush
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; and
| | - Theodore F Towse
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
28
|
West SL, O'Gorman CS, Elzibak AH, Caterini J, Noseworthy MD, Rayner T, Hamilton J, Wells GD. Skeletal muscle microvascular function in girls with Turner syndrome. BBA CLINICAL 2015; 3:25-30. [PMID: 26676172 PMCID: PMC4661506 DOI: 10.1016/j.bbacli.2014.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Exercise intolerance is prevalent in individuals with Turner Syndrome (TS). We recently demonstrated that girls with TS have normal aerobic but altered skeletal muscle anaerobic metabolism compared to healthy controls (HC). The purpose of this study was to compare peripheral skeletal muscle microvascular function in girls with TS to HC after exercise. We hypothesized that girls with TS would have similar muscle blood-oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal responses during recovery from exercise compared to HC. METHODS Thirteen TS participants and 8 HC completed testing. BOLD MRI was used to measure skeletal muscle microvascular response during 60 second recovery, following 60 s of exercise at 65% of maximal workload. Exercise and recovery were repeated four times, and the BOLD signal time course was fit to a four-parameter sigmoid function. RESULTS Participants were 13.7 ± 3.1 years old and weighed 47.9 ± 14.6 kg. The mean change in BOLD signal intensity following exercise at the end of recovery, the mean response time of the function/the washout of deoxyhemoglobin, and the mean half-time of recovery were similar between the TS and HC groups. CONCLUSIONS Our results demonstrate that compared to HC, peripheral skeletal muscle microvascular function following exercise in girls with TS is not impaired. GENERAL SIGNIFICANCE This study supports the idea that the aerobic energy pathway is not impaired in children with TS in response to submaximal exercise. Other mechanisms are likely responsible for exercise intolerance in TS; this needs to be further investigated.
Collapse
Affiliation(s)
- Sarah L West
- Faculty of Kinesiology and Physical Education, The University of Toronto, Canada ; Physiology and Experimental Medicine, The Hospital for Sick Children, Canada
| | - Clodagh S O'Gorman
- Physiology and Experimental Medicine, The Hospital for Sick Children, Canada ; Division of Endocrinology, The Hospital for Sick Children, The University of Toronto, Canada
| | - Alyaa H Elzibak
- Physiology and Experimental Medicine, The Hospital for Sick Children, Canada
| | - Jessica Caterini
- Faculty of Kinesiology and Physical Education, The University of Toronto, Canada
| | - Michael D Noseworthy
- School of Biomedical Engineering, McMaster University, Canada ; Department of Electrical and Computer Engineering, McMaster University, Canada
| | - Tammy Rayner
- Department of Diagnostic Imaging, The Hospital for Sick Children, Canada
| | - Jill Hamilton
- Division of Endocrinology, The Hospital for Sick Children, The University of Toronto, Canada
| | - Greg D Wells
- Faculty of Kinesiology and Physical Education, The University of Toronto, Canada ; Physiology and Experimental Medicine, The Hospital for Sick Children, Canada
| |
Collapse
|
29
|
Larsen RG, Hirata RP, Madzak A, Frøkjær JB, Graven-Nielsen T. Eccentric exercise slows in vivo microvascular reactivity during brief contractions in human skeletal muscle. J Appl Physiol (1985) 2015; 119:1272-81. [DOI: 10.1152/japplphysiol.00563.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022] Open
Abstract
Unaccustomed exercise involving eccentric contractions results in muscle soreness and an overall decline in muscle function, however, little is known about the effects of eccentric exercise on microvascular reactivity in human skeletal muscle. Fourteen healthy men and women performed eccentric contractions of the dorsiflexor muscles in one leg, while the contralateral leg served as a control. At baseline, and 24 and 48 h after eccentric exercise, the following were acquired bilaterally in the tibialis anterior muscle: 1) transverse relaxation time (T2)-weighted magnetic resonance images to determine muscle cross-sectional area (mCSA) and T2; 2) blood oxygen level-dependent (BOLD) images during and following brief, maximal voluntary contractions (MVC) to monitor the hyperemic responses with participants positioned supine in a 3T magnet; 3) muscle strength; and 4) pain pressure threshold. Compared with the control leg, eccentric exercise resulted in soreness, decline in strength (∼20%), increased mCSA (∼7%), and prolonged T2 (∼7%) at 24 and 48 h ( P < 0.05). The BOLD response to a brief MVC was altered 24 and 48 h after eccentric exercise, such that time-to-peak (∼35%, P < 0.05) and time-to-half-recovery (∼23%, P < 0.05) were prolonged. The altered contraction-induced hyperemic response suggests slowed microvascular reactivity and altered matching of O2 delivery to O2 utilization within muscle tissue showing signs of muscle damage. These changes in microvascular regulation after eccentric exercise may impede rapid adjustments in muscle blood flow at exercise onset and during activities involving brief bursts of muscle activation, which may impair O2 delivery and contribute to reduced muscle function after eccentric exercise.
Collapse
Affiliation(s)
- Ryan G. Larsen
- Physical Activity and Human Performance Group, SMI, Department of Health Science and Technology, Aalborg University, Alborg, Denmark
| | - Rogerio P. Hirata
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Alborg, Denmark
| | - Adnan Madzak
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; and
| | - Jens B. Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; and
- Department of Clinical Medicine, Aalborg University, Alborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, Aalborg University, Alborg, Denmark
| |
Collapse
|
30
|
Csapo R, Malis V, Sinha U, Sinha S. Mapping of spatial and temporal heterogeneity of plantar flexor muscle activity during isometric contraction: correlation of velocity-encoded MRI with EMG. J Appl Physiol (1985) 2015; 119:558-68. [PMID: 26112239 PMCID: PMC4556836 DOI: 10.1152/japplphysiol.00275.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to assess the correlation between contraction-associated muscle kinematics as measured by velocity-encoded phase-contrast (VE-PC) magnetic resonance imaging (MRI) and activity recorded via electromyography (EMG), and to construct a detailed three-dimensional (3-D) map of the contractile behavior of the triceps surae complex from the MRI data. Ten axial-plane VE-PC MRI slices of the triceps surae and EMG data were acquired during submaximal isometric contractions in 10 subjects. MRI images were analyzed to yield the degree of contraction-associated muscle displacement on a voxel-by-voxel basis and determine the heterogeneity of muscle movement within and between slices. Correlational analyses were performed to determine the agreement between EMG data and displacements. Pearson's coefficients demonstrated good agreement (0.84 < r < 0.88) between EMG data and displacements. Comparison between different slices in the gastrocnemius muscle revealed significant heterogeneity in displacement values both in-plane and along the cranio-caudal axis, with highest values in the mid-muscle regions. By contrast, no significant differences between muscle regions were found in the soleus muscle. Substantial differences among displacements were also observed within slices, with those in static areas being only 17-39% (maximum) of those in the most mobile muscle regions. The good agreement between EMG data and displacements suggests that VE-PC MRI may be used as a noninvasive, high-resolution technique for quantifying and modeling muscle activity over the entire 3-D volume of muscle groups. Application to the triceps surae complex revealed substantial heterogeneity of contraction-associated muscle motion both within slices and between different cranio-caudal positions.
Collapse
Affiliation(s)
- Robert Csapo
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California-San Diego, San Diego, California; Institute of Sport Science, University of Innsbruck, Innsbruck, Austria; and
| | - Vadim Malis
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California-San Diego, San Diego, California
| | - Usha Sinha
- Department of Physics, San Diego State University, San Diego, California
| | - Shantanu Sinha
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California-San Diego, San Diego, California;
| |
Collapse
|
31
|
Buck AKW, Elder CP, Donahue MJ, Damon BM. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans. J Appl Physiol (1985) 2015; 119:280-9. [PMID: 26066829 DOI: 10.1152/japplphysiol.01027.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/08/2015] [Indexed: 12/23/2022] Open
Abstract
Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities.
Collapse
Affiliation(s)
- Amanda K W Buck
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Christopher P Elder
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Manus J Donahue
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Psychiatry, Vanderbilt University, Nashville, Tennessee; Department of Neurology, Vanderbilt University, Nashville, Tennessee; Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee; and
| | - Bruce M Damon
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
32
|
Nishii T, Kono AK, Nishio M, Kyotani K, Nishiyama K, Sugimura K. Evaluation of blood volume by use of blood oxygen level-dependent magnetic resonance imaging in a cuff-compression model: usefulness of calculated echo time image. Jpn J Radiol 2015; 33:441-7. [PMID: 26006707 DOI: 10.1007/s11604-015-0435-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Separate assessment of changes in blood oxygenation and blood volume is required in blood oxygen level-dependent (BOLD) imaging. We developed a calculated echo time (TE) imaging technique designed to minimize effects of blood oxygenation and to evaluate blood volume specifically. MATERIALS AND METHODS Dynamic 3T multi-echo BOLD images of calf muscle were acquired from six healthy volunteers by use of a cuff-compression model. Calculated TE images at TE = 0 ms (cTE0) and T2* map (T2*) were calculated from acquired multi-echo images. The time courses of the mean value for the entire calf muscles in cTE0, in acquired BOLD images at TE = 45.2 ms (aTE45), and in T2* were obtained. The Euclidean distances between the two pairs of time courses were calculated: distance between aTE45 and T2* (D at), and that between cTE0 and T2* (D ct). The difference between D at and D ct was tested by use of the Wilcoxon signed rank test. RESULTS D at was significantly different from D ct (P = 0.031), indicating that the time course of cTE0 was significantly different from that of blood oxygenation-weighted images (T2* and aTE45). CONCLUSION The effect of blood oxygenation could be minimized using cTE0. Thus, signal intensity changes of cTE0 reflected changes in blood volume more specifically.
Collapse
Affiliation(s)
- Tatsuya Nishii
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Nishii T, Kono AK, Nishio M, Kyotani K, Nishiyama K, Sugimura K. Dynamic Blood Oxygen Level-dependent MR Imaging of Muscle: Comparison of Postocclusive Reactive Hyperemia in Young Smokers and Nonsmokers. Magn Reson Med Sci 2015; 14:275-83. [PMID: 25994035 DOI: 10.2463/mrms.2014-0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The role of early stage functional assessment of muscle blood flow response (MFR) by dynamic muscle blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging is unknown. We investigated the effect of smoking on vascular function according to MFR derived from dynamic muscle BOLD MR imaging during postocclusive reactive hyperemia in young smokers and nonsmokers. METHODS Sixteen healthy male volunteers (8 smokers, 8 nonsmokers; mean age, 30.4 ± 4.6 years) underwent BOLD MR imaging of the left calf muscle. During reactive hyperemia provoked by a cuff-compression technique, we measured muscle BOLD (mB) using a 3-tesla single-shot multi-echo gradient-echo echo-planar imaging sequence. The 2 key mB variables in the reactive hyperemic phase that we studied were times to half hyperemic peak (T(1/2peak)) and peak (TTP), each measured from cuff deflation. We used the Welch test to assess differences in these between smokers and nonsmokers. RESULTS T(1/2peak) and TTP were significantly longer in smokers (P < 0.05) in reactive hyperemia. T(1/2peak) was 13.8 ± 5.4 s in smokers and 7.6 ± 1.5 s in nonsmokers, and TTP was 67.5 ± 18.8 s in smokers and 45.4 ± 7.1 s in nonsmokers. CONCLUSION Dynamic BOLD MR imaging of calf muscle during postocclusive reactive hyperemia demonstrated statistically significant differences in T(1/2peak) and TTP between young smokers and nonsmokers, indicating the presence of early stage smoking-related deterioration in MFR.
Collapse
Affiliation(s)
- Tatsuya Nishii
- Department of Radiology, Kobe University Graduate School of Medicine
| | | | | | | | | | | |
Collapse
|
34
|
Towse TF, Childs BT, Sabin SA, Bush EC, Elder CP, Damon BM. Comparison of muscle BOLD responses to arterial occlusion at 3 and 7 Tesla. Magn Reson Med 2015; 75:1333-40. [PMID: 25884888 DOI: 10.1002/mrm.25562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE The purpose of this study was to determine the feasibility of muscle BOLD (mBOLD) imaging at 7 Tesla (T) by comparing the changes in R2* of muscle at 3 and 7T in response to a brief period of tourniquet-induced ischemia. METHODS Eight subjects (three male), aged 29.5 ± 6.1 years (mean ± standard deviation, SD), 167.0 ± 10.6 cm tall with a body mass of 62.0 ± 18.0 kg, participated in the study. Subjects reported to the lab on four separate occasions including a habituation session, two MRI scans, and in a subset of subjects, a session during which changes in blood flow and blood oxygenation were quantified using Doppler ultrasound (U/S) and near-infrared spectroscopy (NIRS) respectively. For statistical comparisons between 3 and 7T, R2* rate constants were calculated as R2* = 1/T2*. RESULTS The mean preocclusion R2* value was greater at 7T than at 3T (60.16 ± 2.95 vs. 35.17 ± 0.35 s(-1), respectively, P < 0.001). Also, the mean ΔR2 *END and ΔR2*POST values were greater for 7T than for 3T (-2.36 ± 0.25 vs. -1.24 ± 0.39 s(-1), respectively, Table 1). CONCLUSION Muscle BOLD contrast at 7T is as much as six-fold greater than at 3T. In addition to providing greater SNR and CNR, 7T mBOLD studies may offer further advantages in the form of greater sensitivity to pathological changes in the muscle microcirculation.
Collapse
Affiliation(s)
- Theodore F Towse
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin T Childs
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Shea A Sabin
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily C Bush
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher P Elder
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Bruce M Damon
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Vanhatalo A, Jones AM, Blackwell JR, Winyard PG, Fulford J. Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia. J Appl Physiol (1985) 2014; 117:1460-70. [PMID: 25301896 DOI: 10.1152/japplphysiol.00096.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We tested the hypothesis that the time constants (τ) of postexercise T2* MRI signal intensity (an index of O2 delivery) and muscle [PCr] (an index of metabolic perturbation, measured by (31)P-MRS) in hypoxia would be accelerated after dietary nitrate (NO3 (-)) supplementation. In a double-blind crossover design, eight moderately trained subjects underwent 5 days of NO3 (-) (beetroot juice, BR; 8.2 mmol/day NO3 (-)) and placebo (PL; 0.003 mmol/day NO3 (-)) supplementation in four conditions: normoxic PL (N-PL), hypoxic PL (H-PL; 13% O2), normoxic NO3 (-) (N-BR), and hypoxic NO3 (-) (H-BR). The single-leg knee-extension protocol consisted of 10 min of steady-state exercise and 24 s of high-intensity exercise. The [PCr] recovery τ was greater in H-PL (30 ± 4 s) than H-BR (22 ± 4 s), N-PL (24 ± 4 s) and N-BR (22 ± 4 s) (P < 0.05) and the maximal rate of mitochondrial ATP resynthesis (Qmax) was lower in the H-PL (1.12 ± 0.16 mM/s) compared with H-BR (1.35 ± 0.26 mM/s), N-PL (1.47 ± 0.28 mM/s), and N-BR (1.40 ± 0.21 mM/s) (P < 0.05). The τ of postexercise T2* signal intensity was greater in H-PL (47 ± 14 s) than H-BR (32 ± 10 s), N-PL (38 ± 9 s), and N-BR (27 ± 6 s) (P < 0.05). The postexercise [PCr] and T2* recovery τ were correlated in hypoxia (r = 0.60; P < 0.05), but not in normoxia (r = 0.28; P > 0.05). These findings suggest that the NO3 (-)-NO2 (-)-NO pathway is a significant modulator of muscle energetics and O2 delivery during hypoxic exercise and subsequent recovery.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom;
| | - Andrew M Jones
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - James R Blackwell
- College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, Exeter, United Kingdom, University of Exeter, Exeter, United Kingdom; and
| | - Jonathan Fulford
- NIHR Exeter Clinical Research Facility, University of Exeter Medical School, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
36
|
Caterini JE, Elzibak AH, St Michel EJ, McCrindle BW, Redington AN, Thompson S, Noseworthy MD, Wells GD. Characterizing blood oxygen level-dependent (BOLD) response following in-magnet quadriceps exercise. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:271-8. [PMID: 25248947 DOI: 10.1007/s10334-014-0461-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022]
|
37
|
Aschwanden M, Partovi S, Jacobi B, Fergus N, Schulte AC, Robbin MR, Bilecen D, Staub D. Assessing the end-organ in peripheral arterial occlusive disease-from contrast-enhanced ultrasound to blood-oxygen-level-dependent MR imaging. Cardiovasc Diagn Ther 2014; 4:165-72. [PMID: 24834413 DOI: 10.3978/j.issn.2223-3652.2014.03.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/26/2014] [Indexed: 11/14/2022]
Abstract
Peripheral arterial occlusive disease (PAOD) is a result of atherosclerotic disease which is currently the leading cause of morbidity and mortality in the western world. Patients with PAOD may present with intermittent claudication or symptoms related to critical limb ischemia. PAOD is associated with increased mortality rates. Stenoses and occlusions are usually detected by macrovascular imaging, including ultrasound and cross-sectional methods. From a pathophysiological view these stenoses and occlusions are affecting the microperfusion in the functional end-organs, such as the skin and skeletal muscle. In the clinical arena new imaging technologies enable the evaluation of the microvasculature. Two technologies currently under investigation for this purpose on the end-organ level in PAOD patients are contrast-enhanced ultrasound (CEUS) and blood-oxygen-level-dependent (BOLD) MR imaging (MRI). The following article is providing an overview about these evolving techniques with a specific focus on skeletal muscle microvasculature imaging in PAOD patients.
Collapse
Affiliation(s)
- Markus Aschwanden
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Sasan Partovi
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Bjoern Jacobi
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Nathan Fergus
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Anja-Carina Schulte
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Mark R Robbin
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Deniz Bilecen
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| | - Daniel Staub
- 1 University Hospital Basel, Department of Angiology, Basel, Switzerland ; 2 University Hospitals Case Medical Center, Case Western Reserve University, Department of Radiology, Cleveland, Ohio, USA ; 3 University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany ; 4 University Hospital Bruderholz, Department of Radiology, Bruderholz, Switzerland
| |
Collapse
|
38
|
Ma HT, Griffith JF, Ye C, Yeung DK, Xing X, Leung PC, Yuan J. BOLD effect on calf muscle groups in elderly females with different bone mineral density. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2014:5607-5610. [PMID: 25571266 DOI: 10.1109/embc.2014.6944898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study examined the BOLD effect on calf muscles in elderly subjects with different bone mineral density. The purpose was to investigate the oxygenation characteristics in different calf muscle groups for the elderly females and compare the muscle oxygenation among groups with different bone mineral density. Temporary vascular occlusion was induced with air-cuff compression of the thigh and BOLD-MRI data curve was fitted to derive quantitative parameters. Three muscle groups, gastrocnemius muscle (lateral head), soleus muscle, and tibialis anterior muscle, were investigated individually. Quantitative CT measurement was conducted on each subject, based on which subjects were classified into normal, osteopenia, and osteoporosis groups. The BOLD signal in soleus muscle showed the lowest minimum ischemic value during ischemia and the steepest slope during hyperemia. As soleus muscle is mainly composed by slow-twitch oxidative muscle fibers, current results may be due to a higher vascular bed density and better endothelial function in such muscle. By t-test, the half-life of the BOLD signal decay during ischemia in both gastrocnemius and soleus muscles was significantly prolonged in osteoporosis group, indicating a degenerated muscular oxygen metabolic capacity in osteoporotic patients.
Collapse
|
39
|
Cuenod C, Balvay D. Perfusion and vascular permeability: Basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 2013; 94:1187-204. [DOI: 10.1016/j.diii.2013.10.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Englund EK, Langham MC, Li C, Rodgers ZB, Floyd TF, Mohler ER, Wehrli FW. Combined measurement of perfusion, venous oxygen saturation, and skeletal muscle T2* during reactive hyperemia in the leg. J Cardiovasc Magn Reson 2013; 15:70. [PMID: 23958293 PMCID: PMC3765712 DOI: 10.1186/1532-429x-15-70] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/30/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The function of the peripheral microvascular may be interrogated by measuring perfusion, tissue oxygen concentration, or venous oxygen saturation (SvO2) recovery dynamics following induced ischemia. The purpose of this work is to develop and evaluate a magnetic resonance (MR) technique for simultaneous measurement of perfusion, SvO2, and skeletal muscle T2*. METHODS Perfusion, Intravascular Venous Oxygen saturation, and T2* (PIVOT) is comprised of interleaved pulsed arterial spin labeling (PASL) and multi-echo gradient-recalled echo (GRE) sequences. During the PASL post-labeling delay, images are acquired with a multi-echo GRE to quantify SvO2 and T2* at a downstream slice location. Thus time-courses of perfusion, SvO2, and T2* are quantified simultaneously within a single scan. The new sequence was compared to separately measured PASL or multi-echo GRE data during reactive hyperemia in five young healthy subjects. To explore the impairment present in peripheral artery disease patients, five patients were evaluated with PIVOT. RESULTS Comparison of PIVOT-derived data to the standard techniques shows that there was no significant bias in any of the time-course-derived metrics. Preliminary data show that PAD patients exhibited alterations in perfusion, SvO2, and T2* time-courses compared to young healthy subjects. CONCLUSION Simultaneous quantification of perfusion, SvO2, and T2* is possible with PIVOT. Kinetics of perfusion, SvO2, and T2* during reactive hyperemia may help to provide insight into the function of the peripheral microvasculature in patients with PAD.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Michael C Langham
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Cheng Li
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Zachary B Rodgers
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Thomas F Floyd
- Department of Anesthesiology, Stony Brook University Medical Center, Stony Brook, NY 11794, USA
| | - Emile R Mohler
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Felix W Wehrli
- Department of Radiology, Laboratory of Structural NMR Imaging, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Partovi S, Aschwanden M, Jacobi B, Schulte AC, Walker UA, Staub D, Imfeld S, Broz P, Benz D, Zipp L, Jaeger KA, Takes M, Robbin MR, Huegli RW, Bilecen D. Correlation of muscle BOLD MRI with transcutaneous oxygen pressure for assessing microcirculation in patients with systemic sclerosis. J Magn Reson Imaging 2013; 38:845-51. [PMID: 23441019 DOI: 10.1002/jmri.24046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/17/2012] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To prospectively compare calf muscle BOLD MRI with transcutaneous oxygen pressure (TcPO2 ) measurement in patients with systemic sclerosis (SSc) and healthy volunteers and thereby get insight into the pathogenesis of vasculopathy in this connective tissue disorder. MATERIALS AND METHODS Twelve patients with SSc (6 women and 6 men, mean age 53.5 ± 10.0 years) and 12 healthy volunteers (4 men and 8 women, mean age 47 ± 12.1 years) were examined using muscle BOLD MRI and TcPO2. A cuff compression at mid-thigh level was performed to provoke ischemia and reactive hyperemia. BOLD measurements were acquired on a 3 Tesla whole body-scanner in the upper calf region using a multi-echo EPI-sequence with four echo-times (TE: 9/20/31/42 ms) and a repetition time of 2 s. Empirical cross-correlation analysis depending on time lags between BOLD- and TcPO2-measurements was performed. RESULTS Maximal cross-correlation of BOLD T2*- and TcPO2-measurements was calculated as 0.93 (healthy volunteers) and 0.90 (SSc patients) for a time lag of approximately 40 s. Both modalities showed substantial differences regarding time course parameters between the SSc patients and healthy volunteers. CONCLUSION Skeletal muscle BOLD MRI correlated very well with TcPO2 . T2* changes seem to reflect reoxygenation deficits in deeper muscle tissue of SSc patients.
Collapse
Affiliation(s)
- Sasan Partovi
- University Hospital Bruderholz, Department of Radiology and Nuclear Medicine, Basel, Switzerland; University Hospitals Case Medical Center/Case Western Reserve University, Department of Radiology, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schewzow K, Andreas M, Moser E, Wolzt M, Schmid AI. Automatic model-based analysis of skeletal muscle BOLD-MRI in reactive hyperemia. J Magn Reson Imaging 2012; 38:963-9. [DOI: 10.1002/jmri.23919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Kiril Schewzow
- MR Center of Excellence; Medical University of Vienna; Austria
- Department of Clinical Pharmacology; Medical University of Vienna; Austria
- Center of Medical Physics and Biomedical Engineering; Medical University of Vienna; Austria
| | - Martin Andreas
- Department of Clinical Pharmacology; Medical University of Vienna; Austria
- Department of Cardiac Surgery; Medical University of Vienna; Austria
| | - Ewald Moser
- MR Center of Excellence; Medical University of Vienna; Austria
- Center of Medical Physics and Biomedical Engineering; Medical University of Vienna; Austria
| | - Michael Wolzt
- Department of Clinical Pharmacology; Medical University of Vienna; Austria
| | - Albrecht I. Schmid
- MR Center of Excellence; Medical University of Vienna; Austria
- Center of Medical Physics and Biomedical Engineering; Medical University of Vienna; Austria
| |
Collapse
|
43
|
Jacobi B, Bongartz G, Partovi S, Schulte AC, Aschwanden M, Lumsden AB, Davies MG, Loebe M, Noon GP, Karimi S, Lyo JK, Staub D, Huegli RW, Bilecen D. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging 2012; 35:1253-65. [PMID: 22588992 DOI: 10.1002/jmri.23536] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Blood oxygenation-level dependent (BOLD) MRI has gained particular attention in functional brain imaging studies, where it can be used to localize areas of brain activation with high temporal resolution. To a higher degree than in the brain, skeletal muscles show extensive but transient alterations of blood flow between resting and activation state. Thus, there has been interest in the application of the BOLD effect in studying the physiology of skeletal muscles (healthy and diseased) and its possible application to clinical practice. This review outlines the potential of skeletal muscle BOLD MRI as a diagnostic tool for the evaluation of physiological and pathological alterations in the peripheral limb perfusion, such as in peripheral arterial occlusive disease. Moreover, current knowledge is summarized regarding the complex mechanisms eliciting BOLD effect in skeletal muscle. We describe technical fundaments of the procedure that should be taken into account when performing skeletal muscle BOLD MRI, including the most often applied paradigms to provoke BOLD signal changes and key parameters of the resulting time courses. Possible confounding effects in muscle BOLD imaging studies, like age, muscle fiber type, training state, and drug effects are also reviewed in detail.
Collapse
Affiliation(s)
- Bjoern Jacobi
- Department of Radiology, University Hospital Bruderholz, Bruderholz, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Partovi S, Karimi S, Jacobi B, Schulte AC, Aschwanden M, Zipp L, Lyo JK, Karmonik C, Müller-Eschner M, Huegli RW, Bongartz G, Bilecen D. Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:251-61. [PMID: 22374263 DOI: 10.1007/s10334-012-0306-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/24/2023]
Abstract
Blood-oxygenation-level-dependent (BOLD) contrast in magnetic resonance (MR) imaging of skeletal muscle mainly depends on changes of oxygen saturation in the microcirculation. In recent years, an increasing number of studies have evaluated the clinical relevance of skeletal muscle BOLD MR imaging in vascular diseases, such as peripheral arterial occlusive disease, diabetes mellitus, and chronic compartment syndrome. BOLD imaging combines the advantages of MR imaging, i.e., high spatial resolution, no exposure to ionizing radiation, with functional information of local microvascular perfusion. Due to intrinsic contrast provoked via changes in hemoglobin oxygen saturation, it is a safe and easy applicable procedure on standard whole-body MR devices. Therefore, BOLD MR imaging of skeletal muscle is a potential new diagnostic tool in the clinical evaluation of vascular, inflammatory, and muscular pathologies. Our review focuses on the current evidence concerning the use of BOLD MR imaging of skeletal muscle under pathological conditions and highlights ways for future clinical and scientific applications.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospital Bruderholz, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Partovi S, Schulte AC, Jacobi B, Klarhöfer M, Lumsden AB, Loebe M, Davies MG, Noon GP, Karmonik C, Zipp L, Bongartz G, Bilecen D. Blood oxygenation level-dependent (BOLD) MRI of human skeletal muscle at 1.5 and 3 T. J Magn Reson Imaging 2012; 35:1227-32. [PMID: 22246901 DOI: 10.1002/jmri.23583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/15/2011] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the dependence of skeletal muscle blood oxygenation level-dependent (BOLD) effect and time course characteristics on magnetic field strength in healthy volunteers using an ischemia/reactive hyperemia paradigm. MATERIALS AND METHODS Two consecutive skeletal muscle BOLD magnetic resonance imaging (MRI) measurements in eight healthy volunteers were performed on 1.5 T and 3.0 T whole-body MRI scanners. For both measurements a fat-saturated multi-shot multiecho gradient-echo EPI sequence was applied. Temporary vascular occlusion was induced by suprasystolic cuff compression of the thigh. T2 time courses were obtained from two different calf muscles and characterized by typical curve parameters. Ischemia- and hyperemia-induced changes in R2 (ΔR2) were calculated for both muscles in each volunteer at the two field strengths. RESULTS Skeletal muscle BOLD changes are dependent on magnetic field strength as the ratio ΔR2(3.0 T)/ΔR2(1.5 T) was found to range between 1.6 and 2.2. Regarding time course characteristics, significantly higher relative T2 changes were found in both muscles at 3.0 T. CONCLUSION The present study shows an approximately linear field strength dependence of ΔR2 in the skeletal muscle in response to ischemia and reactive hyperemia. Using higher magnetic fields is advisable for future BOLD imaging studies of peripheral limb pathologies.
Collapse
Affiliation(s)
- Sasan Partovi
- Department of Radiology, University Hospital Bruderholz, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Slade JM, Towse TF, Gossain VV, Meyer RA. Peripheral microvascular response to muscle contraction is unaltered by early diabetes but decreases with age. J Appl Physiol (1985) 2011; 111:1361-71. [PMID: 21799123 DOI: 10.1152/japplphysiol.00009.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term or untreated diabetes leads to micro- and macrovascular complications. However, there are few tests to evaluate microvascular function. A postcontraction blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) technique was exploited to measure peripheral microvascular function in diabetics and healthy controls matched with respect to age, body mass index, and physical activity. Postcontraction BOLD microvascular response was measured following 1-s maximal isometric ankle dorsiflexion in individuals with diabetes mellitus type I [DMI, n = 15, age 33 ± 3 yr (means ± SE), median diabetes duration = 5.5 yr] and type II (DMII, n = 16, age 45 ± 2 yr, median duration = 2.4 yr); responses were compared with controls (CONI and CONII). Peripheral macrovascular function of the popliteal and tibial arteries was assessed during exercise hyperemia with phase contrast magnetic resonance angiography following repetitive exercise. There were no group differences as a result of diabetes in peripheral microvascular function (peak BOLD response: DMI = 2.04 ± 0.38% vs. CONI = 2.08 ± 0.48%; DMII = 0.93 ± 0.24% vs. CONII = 1.13 ± 0.24%; mean ± SE), but the BOLD response was significantly influenced by age (partial r = -0.384, P = 0.003), supporting its sensitivity as a measure of microvascular function. Eleven individuals had no microvascular BOLD response, including three diabetics with neuropathy and four controls with a family history of diabetes. There were no differences in peripheral macrovascular function between groups when assessing exercise hyperemia or the pulsitility and resistive indexes. Although the BOLD microvascular response was not impaired in early diabetes, these results encourage further investigation of muscle BOLD as it relates to peripheral microvascular health.
Collapse
Affiliation(s)
- Jill M Slade
- Dept. of Radiology, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
47
|
Sanchez OA, Copenhaver EA, Chance MA, Fowler MJ, Towse TF, Kent-Braun JA, Damon BM. Postmaximal contraction blood volume responses are blunted in obese and type 2 diabetic subjects in a muscle-specific manner. Am J Physiol Heart Circ Physiol 2011; 301:H418-27. [PMID: 21572006 DOI: 10.1152/ajpheart.00060.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to determine whether there are differences in postisometric contraction blood volume and oxygenation responses among groups of type 2 diabetes mellitus (T2DM), obese, and lean individuals detectable using MRI. Eight T2DM patients were individually matched by age, sex, and race to non-T2DM individuals with similar body mass index (obese) and lean subjects. Functional MRI was performed using a dual-gradient-recalled echo, echo-planar imaging sequence with a repetition time of 1 s and at two echo times (TE = 6 and 46 ms). Data were acquired before, during, and after 10-s isometric dorsiflexion contractions performed at 50 and 100% of maximal voluntary contraction (MVC) force. MRI signal intensity (SI) changes from the tibialis anterior and extensor digitorum longus muscles were plotted as functions of time for each TE. From each time course, the difference between the minimum and the maximum postcontraction SI (ΔSI) were determined for TE = 6 ms (ΔSI(6)) and TE = 46 ms (ΔSI(46)), reflecting variations in blood volume and oxyhemoglobin saturation, respectively. Following 50% MVC contractions, the mean postcontraction ΔSI(6) values were similar in the three groups. Following MVC only, and in the EDL muscle only, T2DM and obese participants had ∼56% lower ΔSI(6) than the lean individuals. Also following MVC only, the ΔSI(46) response in the EDL was lower in T2DM subjects than in lean individuals. These data suggest that skeletal muscle small vessel impairment occurs in T2DM and body mass index-matched subjects, in muscle-specific and contraction intensity-dependent manners.
Collapse
Affiliation(s)
- Otto A Sanchez
- Institute of Imaging Science, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
McCully KK, Erickson ML, Brizendine J. Postcontractile blood flow as a window to cardiovascular disease? J Appl Physiol (1985) 2011; 111:8-9. [PMID: 21454748 DOI: 10.1152/japplphysiol.00351.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|