1
|
Desanlis J, Gordon D, French C, Calveyrac C, Cottin F, Gernigon M. Effects of occlusion pressure on hemodynamic responses recorded by near-infrared spectroscopy across two visits. Front Physiol 2024; 15:1441239. [PMID: 39324105 PMCID: PMC11422206 DOI: 10.3389/fphys.2024.1441239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Ischemic Preconditioning (IPC) has emerged as a promising approach to mitigate the impact of hypoxia on physiological functions. However, the heterogeneity of occlusion pressures for inducing arterial occlusion has led to inconsistent hemodynamic outcomes across studies. This study aims to evaluate the peripheral hemodynamic responses to partial and total blood-flow occlusions on the left arm at rest, using absolute or individualized pressures, on two occasions. Thirty-five young males volunteered to participate in this study. IPC procedure (3 × 7-min) was performed on the left upper arm with cuff pressures at 50 mmHg (G1), 50 mmHg over the systolic blood pressure (SBP + 50 mmHg) (G2) or 250 mmHg (G3). NIRS-derived parameters were assessed for each occlusion and reperfusion phase in the brachioradialis. Results showed a significantly lower magnitude of deoxygenation (TSIAUC) for G1 compared to G2 (-1959.2 ± 1417.4 vs. -10908.1 ± 1607.5, P < 0.001) and G3 -1959.2 ± 1417.4 vs. -11079.3 ± 1828.1, P < 0.001), without differences between G2 and G3. However, G3 showed a significantly faster reoxygenation only for tissue saturation index (TSIslope) compared to G2 (1.3 ± 0.1 vs. 1.0 ± 0.2, P = 0.010), but without differences in the speed of recovery of deoxyhemoglobin [(HHb) slope], or in the magnitude of post-occlusive hyperemia (PORH). Besides TSI reoxygenation speed, G2 and G3 elicit comparable resting hemodynamic responses measured by NIRS. Thus, this study highlights the practicality and effectiveness of using relative occlusion pressures based on systolic blood pressure (SBP) rather than relying on excessively high absolute pressures.
Collapse
Affiliation(s)
- Julien Desanlis
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Dan Gordon
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Chloe French
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Camille Calveyrac
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - François Cottin
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Marie Gernigon
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| |
Collapse
|
2
|
Lima NS, Tzen Y, Clifford PS. Spectral changes in skin blood flow during pressure manipulations or sympathetic stimulation. Exp Physiol 2024; 109:892-898. [PMID: 38642069 PMCID: PMC11140173 DOI: 10.1113/ep091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/28/2024] [Indexed: 04/22/2024]
Abstract
Skin blood flow is commonly determined by laser Doppler flowmetry (LDF). It has been suggested that pathophysiological conditions can be assessed by analysis of specific frequency domains of the LDF signals. We tested whether physiological stimuli that activate myogenic and neurogenic mechanisms would affect relevant portions of the laser Doppler spectrum. LDF sensors were placed on the right forearm of 14 healthy volunteers for myogenic (six females) and 13 for neurogenic challenge (five females). Myogenic responses were tested by positioning the arm ∼50° above/below heart level. Neurogenic responses were tested by immersing the left hand into an ice slurry with and without topical application of local anaesthetic. Short-time Fourier analyses were computed over the range of 0.06 to 0.15 Hz for myogenic and 0.02 to 0.06 Hz for neurogenic. No significant differences in spectral density were observed (P = 0.40) in the myogenic range with arm above (7 ± 54 × 10-4 dB) and below heart (7 ± 14 × 10-4 dB). Neurogenic spectral density showed no significant increase from baseline to cold pressor test (0.0017 ± 0.0013 and 0.0038 ± 0.0039 dB; P = 0.087, effect size 0.47). After application of anaesthetic, neurogenic spectral density was unchanged between the baseline and cold pressor test (0.0014 ± 0.0025 and 0.0006 ± 0.0005 dB; P = 0.173). These results suggest that changes in the myogenic and neurogenic spectral density of LDF signals did not fully reflect the skin vascular function activated by pressure manipulation and sympathetic stimulation. Therefore, LDF myogenic and neurogenic spectral density data should be interpreted with caution.
Collapse
Affiliation(s)
- Natalia S. Lima
- Integrative Physiology LaboratoryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Yi‐Ting Tzen
- Integrative Physiology LaboratoryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Philip S. Clifford
- Integrative Physiology LaboratoryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Rashid A, Roatta S. Hemodynamic changes in the temporalis and masseter muscles during acute stress in healthy humans. Eur J Appl Physiol 2024; 124:1217-1226. [PMID: 37973651 PMCID: PMC10954966 DOI: 10.1007/s00421-023-05349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Autonomic control of orofacial areas is an integral part of the stress response, controlling functions such as pupil dilatation, salivation, and skin blood flow. However, the specific control of blood flow in head muscles during stress is unknown. This study aims to investigate the hemodynamic response of temporalis and masseter muscles in response to five different stressors. METHODS Sixteen healthy individuals were subjected to a randomized series of stressors, including cold pressor test, mental arithmetic test, apnea, isometric handgrip, and post-handgrip muscle ischemia, while in the sitting posture. Finger-pulse photoplethysmography was used to measure arterial blood pressure, heart rate, and cardiac output. Near-infrared spectroscopy was used to measure changes in tissue oxygenation and hemoglobin indices from the temporalis and masseter muscles. RESULTS All stressors effectively and significantly increased arterial blood pressure. Tissue oxygenation index significantly increased in both investigated head muscles during mental arithmetic test (temporalis: 4.22 ± 3.52%; masseter: 3.43 ± 3.63%) and isometric handgrip (temporalis: 3.45 ± 3.09%; masseter: 3.26 ± 3.07%), suggesting increased muscle blood flow. Neither the masseter nor the temporalis muscles evidenced a vasoconstrictive response to any of the stressors tested. CONCLUSION In the different conditions, temporalis and masseter muscles exhibited similar hemodynamic patterns of response, which do not include the marked vasoconstriction generally observed in limb muscles. The peculiar sympathetic control of head muscles is possibly related to the involvement of these muscles in aggressive/defensive reactions and/or to their unfavorable position with regard to hydrostatic blood levels.
Collapse
Affiliation(s)
- Anas Rashid
- Lab of Integrative Physiology, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Silvestro Roatta
- Lab of Integrative Physiology, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
4
|
Chatlaong MA, Stanford DM, Miller WM, Davidson CJ, Jessee MB. Post-occlusive reactive hyperemia in habituated caffeine users: Effects of abstaining versus consuming typical doses. Clin Hemorheol Microcirc 2024; 87:101-113. [PMID: 38250766 DOI: 10.3233/ch-232036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Post-occlusive reactive hyperemia (PORH) typically requires caffeine abstinence. For habitual users, it is unknown if abstinence affects PORH. OBJECTIVE Compare PORH after habitual users consume or abstain from caffeine. METHODS On separate visits (within-subject), PORH was measured in 30 participants without abstinence from typical caffeine doses (CAFF) and with abstinence (ABS). Measurements included baseline and peak hyperemic velocity, tissue saturation index slopes during ischemia (Slope 1) and following cuff deflation (Slope 2), resting arterial occlusion pressure (AOP), heart rate (HR), systolic (SBP), and diastolic (DBP) blood pressure. All variables were compared using Bayesian paired t-tests. BF10 = likelihood of alternative vs null. Results are mean±SD. RESULTS Comparing baseline velocity (cm/s) between CAFF (9.3±4.8) and ABS (7.5±4.9) yielded anecdotal evidence (BF10 = 1.0). Peak hyperemic velocity (cm/s) was similar (CAFF = 77.3±16.7; ABS = 77.6±19.0, BF10 = 0.20). For slopes (TSI% /s), CAFF Slope 1 = -0.11±0.04 and Slope 2 = 1.9±0.46 were similar (both BF10≤0.20) to ABS Slope 1 = -0.12±0.03 and Slope 2 = 1.8±0.42. SBP and DBP (mmHg) were both similar (CAFF SBP = 116.0±9.8, DBP = 69.6±5.8; ABS SBP = 115.5±10.7, DBP = 69.5±5.4; both BF10≤0.22). Comparing AOP (mmHg) (CAFF = 146.6±15.0; ABS = 143.0±16.4) yielded anecdotal evidence (BF10 = 0.46). HR (bpm) was similar (CAFF = 66.5±12.3; ABS = 66.9±13.0; BF10 = 0.20). CONCLUSIONS In habitual users, consuming or abstaining from typical caffeine doses does not appear to affect post-occlusive reactive hyperemia.
Collapse
Affiliation(s)
- Matthew A Chatlaong
- Department of Health, Exercise Science, and Recreation Management, Applied Human Health and Physical Function Laboratory, University of Mississippi, Oxford, MS, USA
| | - Daphney M Stanford
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - William M Miller
- University of Evansville, School of Health Sciences, Evansville, IN, USA
| | - Chance J Davidson
- Department of Health, Exercise Science, and Recreation Management, Applied Human Health and Physical Function Laboratory, University of Mississippi, Oxford, MS, USA
| | - Matthew B Jessee
- Department of Health, Exercise Science, and Recreation Management, Applied Human Health and Physical Function Laboratory, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
5
|
Jackson RE, Lima NS, Sherman SR, Clifford PS. Reduction in peripheral arterial stiffness after reactive hyperemia is dependent on increases in blood flow. Physiol Rep 2023; 11:e15894. [PMID: 38110700 PMCID: PMC10727959 DOI: 10.14814/phy2.15894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
The acute reduction in peripheral arterial stiffness during reactive hyperemia is assumed to be flow-mediated; however, the mechanism remains unproven. We hypothesized that restricting the blood flow increase during reactive hyperemia would abolish the reduction in peripheral arterial stiffness. Fourteen healthy young adults (5 females, 25 ± 5 years, mean ± SD) underwent reactive hyperemia with a rapid-release cuff on the upper arm inflated to 220 mmHg for 5 min: once with unrestricted blood flow and once with restricted blood flow by manually applying pressure to the brachial artery. Brachial-radial pulse wave velocity (PWV) was measured with tonometers over brachial and radial arteries before cuff inflation and at 5, 15, and 30 min after release. Brachial blood flow was monitored with Doppler ultrasound. Baseline brachial-radial PWV was similar between conditions (10.3 ± 1.8 vs. 10.7 ± 1.7 m/s). With unrestricted flow, PWV decreased 5 min post-reactive hyperemia (8.6 ± 1.1 m/s; p < 0.05) and returned near baseline at 15 and 30 min post (p < 0.05). With restricted flow, PWV did not change (p > 0.05) post-reactive hyperemia. Reactive hyperemia acutely reduced peripheral arterial stiffness, but not when brachial artery blood flow increase was restricted. This suggests that the reduction in peripheral arterial stiffness during reactive hyperemia depends on increased blood flow.
Collapse
Affiliation(s)
- Ronald E. Jackson
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Natalia S. Lima
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Sara R. Sherman
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Philip S. Clifford
- Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
6
|
López-Galán E, Montoya-Pedrón A, Barrio-Deler R, Sánchez-Hechavarría ME, Muñoz-Bustos ME, Muñoz-Bustos GA. Reactive Hyperemia and Cardiovascular Autonomic Neuropathy in Type 2 Diabetic Patients: A Systematic Review of Randomized and Nonrandomized Clinical Trials. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040770. [PMID: 37109728 PMCID: PMC10141598 DOI: 10.3390/medicina59040770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Objective: This work aimed to determine the relationship between the autonomic nervous system and reactive hyperemia (RH) in type 2 diabetes patients with and without cardiovascular autonomic neuropathy (CAN). Methodology: A systematic review of randomized and nonrandomized clinical studies characterizing reactive hyperemia and autonomic activity in type 2 diabetes patients with and without CAN was performed. Results: Five articles showed differences in RH between healthy subjects and diabetic patients with and/or without neuropathy, while one study did not show such differences between healthy subjects and diabetic patients, but patients with diabetic ulcers had lower RH index values compared to healthy controls. Another study found no significant difference in blood flow after a muscle strain that induced reactive hyperemia between normal subjects and non-smoking diabetic patients. Four studies measured reactive hyperemia using peripheral arterial tonometry (PAT); only two found a significantly lower endothelial-function-derived measure of PAT in diabetic patients than in those without CAN. Four studies measured reactive hyperemia using flow-mediated dilation (FMD), but no significant differences were reported between diabetic patients with and without CAN. Two studies measured RH using laser Doppler techniques; one of them found significant differences in the blood flow of calf skin after stretching between diabetic non-smokers and smokers. The diabetic smokers had neurogenic activity at baseline that was significantly lower than that of the normal subjects. The greatest evidence revealed that the differences in RH between diabetic patients with and without CAN may depend on both the method used to measure hyperemia and that applied for the ANS examination as well as the type of autonomic deficit present in the patients. Conclusions: In diabetic patients, there is a deterioration in the vasodilator response to the reactive hyperemia maneuver compared to healthy subjects, which depends in part on endothelial and autonomic dysfunction. Blood flow alterations in diabetic patients during RH are mainly mediated by sympathetic dysfunction. The greatest evidence suggests a relationship between ANS and RH; however, there are no significant differences in RH between diabetic patients with and without CAN, as measured using FMD. When the flow of the microvascular territory is measured, the differences between diabetics with and without CAN become evident. Therefore, RH measured using PAT may reflect diabetic neuropathic changes with greater sensitivity compared to FMD.
Collapse
Affiliation(s)
- Erislandis López-Galán
- Facultad de Medicina 2, Universidad de Ciencias Médicas de Santiago de Cuba, Santiago de Cuba 90100, Cuba
| | - Arquímedes Montoya-Pedrón
- Departamento de Neurofisiología Clínica, Hospital Clínico Quirúrgico Juan Brunos Zayas Alfonso, Universidad de Ciencias Médicas de Santiago de Cuba, Santiago de Cuba 90100, Cuba
| | - Rafael Barrio-Deler
- Hospital Infantil Norte Juan de la Cruz Martínez Maceira, Universidad de Ciencias Médicas de Santiago de Cuba, Santiago de Cuba 90100, Cuba
| | - Miguel Enrique Sánchez-Hechavarría
- Departamento de Ciencias Clínicas y Preclínicas, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
- Núcleo Científico de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Adventista de Chile, Chillán 3780000, Chile
| | - Mario Eugenio Muñoz-Bustos
- Departamento de Kinesiología, Facultad de Medicina, Universidad de Concepción, Concepción 4030000, Chile
| | - Gustavo Alejandro Muñoz-Bustos
- Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Campus El Boldal, Sede Concepción, Universidad de las Américas, Concepcion 4030000, Chile
| |
Collapse
|
7
|
Ustabaşıoğlu FE, Ağırdemir FE, Ustabaşıoğlu F, Sunal BS. Acute effect of resistance exercise at different velocities on stiffness and vascularity of the biceps brachii muscle: a preliminary study. Acta Radiol 2022; 64:1500-1507. [PMID: 36112819 DOI: 10.1177/02841851221125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Resistance exercise can be defined as the percentage of maximal strength (%1 repetition maximum) used for a particular exercise. Shear wave elastography (SWE) is a robust and novelty imaging technique that provides information regarding tissue stiffness. Superb microvascular imaging (SMI) is a non-irradiating technique that can provide quantitative measurement of muscle blood flow non-invasively. Purpose To compare the acute effects of low- and high-velocity resistance exercise on stiffness and blood flow in the biceps brachii muscle (BBM) using SWE and SMI. Material and Methods This prospective study included 60 healthy men (mean age=28.9 years; age range=26–34 years). BBM stiffness was measured by using SWE at rest, after low- and high-velocity resistance exercise, and muscle blood flow was also evaluated by SMI. Resistance exercise was performed using a dumbbell with a mass adjusted to 70%–80% of one-repetition maximum. Results The stiffness values increased significantly from resting to high- and low-velocity resistance exercises. There was no significant difference between the elastography values of the BBM after the high- and low-velocity resistance exercise. The blood flow increased significantly from resting to high- and low-velocity resistance exercises. Blood flow increase after low-velocity exercise was significantly higher compared to high-velocity exercise. Conclusion While muscle stiffness parameters and blood flow significantly increased from resting after both high- and low-velocity resistance exercises, blood flow significantly increased after low-velocity exercise compared to high-velocity exercise. This can mean that metabolic stress, an important trigger for muscle development, is more likely to occur in low-velocity exercise.
Collapse
Affiliation(s)
| | - Fatma Ebru Ağırdemir
- Department of Sports Medicine, Edirne Sultan 1st Murat State Hospital, Edirne, Turkey
| | - Fatma Ustabaşıoğlu
- Department of Physical Medicine and Rehabilitation, Edirne Sultan 1st Murat State Hospital, Edirne, Turkey
| | - Baran Serdar Sunal
- Department of Radiology, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
8
|
Jamison JP, Campbell A, Devlin C, Johnson CD. Brachial artery blood flow by vascular ultrasound in education. ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:498-506. [PMID: 35796466 DOI: 10.1152/advan.00157.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
There is extensive and increasing use of ultrasound in medical care and scientific research, so it is important that the technique, indication, and interpretation of ultrasound investigations are included in medical and biological education. Applications of ultrasound in medical care and education employ not only noninvasive imaging of structure but also the evaluation of organ function. Vascular ultrasound is one such application that has been hitherto relatively neglected in physiology education. The techniques of vascular ultrasound and the physiological regulation of human limb blood flow are reviewed to inform students and curriculum designers. Emphasis is placed on the value of converting velocity measurement by ultrasound to volumetric flow and on the mechanisms involved in rapidly changing flows with interventions. Live collection of real data by ultrasound can show macrovascular and microvascular features of vascular physiology. Macrovascular features include imaging and flow velocity profiles. Microvascular perfusion studies show conductance changes with interventions such as exercise and ischemia. Vascular ultrasound offers exciting opportunities for undergraduate research projects using human subjects. The literature is interesting and, though complex, offers excellent educational experience, with scope for the development of critical thinking and meaningful original research.NEW & NOTEWORTHY Ultrasound imaging has emergent prominence in clinical investigation and education. Vascular ultrasound also evaluates function. Simple methods are described that enable the application of basic ultrasound principles to the measurement of velocity and, importantly, to calculate absolute volumetric blood flow. These methods should be useful in undergraduate and graduate education, with application in clinical practice and research.
Collapse
Affiliation(s)
- James P Jamison
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Amy Campbell
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Celine Devlin
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Christopher D Johnson
- Centre for Biomedical Sciences Education, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Rashid A, Roatta S. Differential control of blood flow in masseter and biceps brachii muscles during stress. Arch Oral Biol 2022; 141:105490. [PMID: 35759826 DOI: 10.1016/j.archoralbio.2022.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The present study aimed to compare sympathetic hemodynamic effects in masticatory and limb muscles in response to different stressors. DESIGN Twelve healthy participants were subjected to a randomized series of stressors, including cold pressor test (CPT), mental arithmetic test, apnea, isometric handgrip (IHG) and post-handgrip muscle ischemia (PHGMI), while in the supine position. Spatially-resolved near-infrared spectroscopy was used to measure relative changes in blood volume and oxygenation (TOI) of the resting masseter and biceps muscles. Cardiac output, heart rate, and arterial blood pressure (ABP) were also monitored. RESULTS Except apnea, all tests increased ABP. Different response patterns were observed in the 2 muscles: TOI significantly increased during contralateral IHG (1.24 ± 1.17%) but markedly decreased during CPT (-4.84 ± 4.09%) and PHGMI (-6.65 ± 5.31%) in the biceps muscle, while exhibiting consistent increases in the masseter (1.88 ± 1.85%; 1.60 ± 1.75%; 1.06 ± 3.29%, respectively) (p < 0.05). CONCLUSIONS The results allow us to infer differential control of blood flow in head and limb muscles. In general, the masseter appears more prone to dilatation than the biceps, exhibiting opposite changes in response to painful stimuli (CPT and PHGMI). Several mechanisms may mediate this effect, including reduced sympathetic outflow to the extracranial vasculature of the head, generally exposed to lower hydrostatic loads than the rest of the body.
Collapse
Affiliation(s)
- Anas Rashid
- Lab of Integrative Physiology, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Silvestro Roatta
- Lab of Integrative Physiology, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy.
| |
Collapse
|
10
|
Souza-Silva E, Ascenso R, Tonussi CR, da Silva-Santos JE. Detection of blood flow perfusion and post - occlusive reactive hyperemia in the skeletal muscle of rats. Life Sci 2021; 278:119571. [PMID: 33961851 DOI: 10.1016/j.lfs.2021.119571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
AIMS Post-occlusive reactive hyperemia (PORH) remains poorly understood in the skeletal muscle system. This study was designed to validate an alternative strategy of PORH detection in rodents. Additionally, we explored the hypothesis that PORH is influenced by experimental models associated with impaired function of the skeletal muscle. MATERIALS AND METHODS Wistar rats were anesthetized, and blood flow was assessed by laser Doppler in the anterior tibialis muscle, before and immediately after 5 s, 30 s, 3 min, or 5 min of flow occlusion, obtained through a cuff inflated to 300 mmHg around the thigh of the animals. KEY FINDINGS In healthy animals, deflating the cuff resulted in a fast increment of local blood flow, characterizing the PORH after 5 s to 5 min of cuff occlusion and its dependence on flow occlusion duration. Importantly, we found different profiles of PORH in animals pretreated with reserpine (accelerated peak and reduced half recovery time), streptozotocin (increased peak), or subjected to muscle contraction in stretching (delayed peak), approaches used as experimental models to study fibromyalgia, type II diabetes mellitus, and soreness induced by unaccustomed eccentric exercise, respectively. SIGNIFICANCE We demonstrated that the profile of PORH in the anterior tibialis muscle of rats is sensitive to a variety of experimental models often associated with the skeletal muscle functionality, providing a useful strategy to explore how and whether changes in local regulation of blood flow can contribute to the development of skeletal muscle associated symptoms in clinically relevant conditions.
Collapse
Affiliation(s)
- Eduardo Souza-Silva
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil; Laboratory of Neurobiology of Nociception, Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| | - Ruy Ascenso
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - Carlos Rogério Tonussi
- Laboratory of Neurobiology of Nociception, Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil
| | - José Eduardo da Silva-Santos
- Laboratory of Cardiovascular Biology and Department of Pharmacology, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-970 Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
11
|
Bartlett MF, Oneglia A, Jaffery M, Manitowabi-Huebner S, Hueber DM, Nelson MD. Kinetic differences between macro- and microvascular measures of reactive hyperemia. J Appl Physiol (1985) 2020; 129:1183-1192. [PMID: 32940560 DOI: 10.1152/japplphysiol.00481.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postischemia reperfusion kinetics are markedly dissociated when comparing the macro- versus microvasculature. We used Doppler ultrasound and near-infrared diffuse correlation spectroscopy (NIR-DCS), an emerging technique for continuously and noninvasively quantifying relative changes in skeletal muscle microvascular perfusion (i.e., blood flow index or BFI), to measure macro- and microvascular reactive hyperemia (RH) in the nondominant arm of 16 healthy young adults. First, we manipulated the duration of limb ischemia (3 vs. 6 min) with the limb at heart level (neutral, -N). Then, we reduced/increased forearm perfusion pressure (PP) by positioning the arm above (3 min-A, 60°) or below (3 min-B, 30°) the heart. The major novel findings were twofold: first, changes in the ischemic stimulus similarly affected peak macrovascular (i.e., conduit, mL/min) and microvascular (i.e., peak NIR-DCS-derived BFI) reperfusion during reactive hyperemia (6 min-N > 3 min-N, P < 0.05, both) but did not affect the rate at which microvascular reperfusion occurs (i.e., BFI slope). Second, changing forearm PP predictably affected both peak macro- and microvascular reperfusion during RH (3 min-B > N > A, P < 0.05, all), as well as the rate at which microvascular reperfusion occurred (BFI slope; 3 min-B >N > A, P < 0.05). Together, the data suggest that kinetic differences between macro- and microvascular reperfusion are largely determined by differences in fluid mechanical energy (i.e., pressure, gravitational, and kinetic energies) between the two compartments that work in tandem to restore pressure across the arterial tree following a period of tissue ischemia.NEW & NOTEWORTHY We extend our understanding of macro- versus microvascular hemodynamics in humans, by using near-infrared diffuse correlation spectroscopy (micro-) and Doppler ultrasound (macro-) to characterize reperfusion hemodynamics following experimental manipulation of the ischemic stimulus and tissue perfusion pressure. Our results suggest kinetic differences between macro- and microvascular reperfusion are largely determined by differences in fluid mechanical energy (i.e., pressure, gravitational, and kinetic energies) between the two compartments, rather than inherent differences between the macro- and microvasculature.
Collapse
Affiliation(s)
- Miles F Bartlett
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | - Andrew Oneglia
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | - Manall Jaffery
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | - Shayla Manitowabi-Huebner
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| | | | - Michael D Nelson
- Applied Physiology and Advanced Imaging Laboratory, The University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
12
|
Ichinose M, Nakabayashi M, Ono Y. Difference in the integrated effects of sympathetic vasoconstriction and local vasodilation in human skeletal muscle and skin microvasculature. Physiol Rep 2020; 7:e14070. [PMID: 30980512 PMCID: PMC6461711 DOI: 10.14814/phy2.14070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022] Open
Abstract
We investigated the integration of sympathetic vasoconstriction and local vasodilation in the skeletal muscle and skin microvasculature of humans. In 39 healthy volunteers, we simultaneously measured the blood flow index in the flexor carpi radialis muscle using diffuse correlation spectroscopy and the skin using laser‐Doppler flowmetry. We examined the effects of acute sympathoexcitation induced by forehead cooling on relatively weak and robust vasodilatory responses during postocclusive reactive hyperemia (PORH) induced by 70‐sec and 10‐min arterial occlusion in the upper arm. To increase sympathetic tone during PORH, forehead cooling was begun 60 sec before the occlusion release and ended 60 sec after the release. In the 70‐sec occlusion trials, acute sympathoexcitation reduced the peak and duration of vasodilation in both skeletal muscle and skin. The inhibition of vasodilation by sympathoexcitation was blunted in both tissues by the robust vasodilatory stimulation produced by the 10‐min occlusion, and the degree of blunting was greater in skeletal muscle than in skin, especially the initial and peak responses. Sympathoexcitation reduced the peak vasodilation only in skin, while it accelerated the initial vasodilation only in skeletal muscle. However, the decline in vasodilation after the peak was significantly hastened in skeletal muscle, shortening the duration of the vasodilation. We conclude that, in humans, the integration of sympathetic vasoconstriction and local vasodilation has different effects in skeletal muscle and skin and is likely an important contributor to the selective control of perfusion in the microcirculations of different tissues.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Mikie Nakabayashi
- Graduate School of Science and Technology, Meiji University, Kanagawa, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kanagawa, Japan
| |
Collapse
|
13
|
Seddone S, Messere A, Roatta S. Vascular reactivity of cutaneous circulation to brief compressive stimuli, in the human forearm. Eur J Appl Physiol 2020; 120:1041-1050. [PMID: 32212024 DOI: 10.1007/s00421-020-04343-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE A brief compressive stimulus is known to induce a rapid hyperemia in skeletal muscles, considered to contribute to the initial phase of functional hyperemia. Whether the same mechano-sensitivity characterizes the cutaneous circulation is debated. This study aims to investigate whether a rapid hyperemic response to compressive stimuli is also expressed by skin blood flow in humans. METHODS In 12 subjects, brief compressive stimuli were delivered to the forearm at varying pressures/durations (50/2, 100/2, 200/2, 200/1, 200/5 mmHg/s); the sequence was randomized and repeated with the arm above and below heart level. Laser Doppler flowmetry technique was used to monitor skin blood flow. The response was described in terms of peak skin blood flow normalized to baseline (nSBFpeak), time-to-peak from the release of compression, and excess blood volume (EBV, expressed in terms of seconds of basal flow, s-bf) received during the response. RESULTS The results consistently evidenced the occurrence of a compression-induced hyperemic response, with nSBFpeak = 2.9 ± 1.1, EBV = 17.0 ± 6.6 s-bf, time-to-peak = 7.0 ± 0.7 s (200 mmHg, 2 s, below heart level). Both nSBFpeak and EBV were significantly reduced (by about 50%) above compared to below heart level (p < 0.01). In addition, EBV slightly increased with increasing pressure (p < 0.05) and duration (p < 0.01) of the stimulus. CONCLUSIONS For the first time, the rapid dilatator response to compressive stimuli was demonstrated in human cutaneous circulation. The functional meaning of this response remains to be elucidated.
Collapse
Affiliation(s)
- Stefano Seddone
- Department of Neuroscience, University of Torino, C.so Raffaello 30, 10125, Torino, Italy
| | - Alessandro Messere
- Department of Neuroscience, University of Torino, C.so Raffaello 30, 10125, Torino, Italy
| | - Silvestro Roatta
- Department of Neuroscience, University of Torino, C.so Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
14
|
Abstract
We introduce an ergonomic positioning for sonographic scanning of elbow joint where the patient is lying semisupine on the examination bed. This is in contrast with the conventional positioning where the patient is sitting on the edge of the bed or across the table on a chair. Our proposed positioning is more comfortable for both the patient and ultrasound practitioner. It also allows immediate ultrasound-guided injections with lesser risk regarding a vasovagal syncope of the patient.
Collapse
|
15
|
Lynn MJT, Mew OK, Drouin PJ, Liberman NL, Tschakovsky ME. Greater post-contraction hyperaemia below vs. above heart level: the role of active vasodilatation vs. passive mechanical distension of arterioles. J Physiol 2019; 598:85-99. [PMID: 31654419 DOI: 10.1113/jp278476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/24/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The immediate increase in skeletal muscle blood flow following contraction is greater when the contracting muscle is below vs. above heart level. This has been attributed to muscle pump-mediated venous emptying and subsequent widening of the arterial to venous pressure gradient, which can occur below but not above heart level. However, alternative explanations could include greater rapid onset vasodilatation and/or transmural pressure-mediated mechanical distension of resistance vessels, but these remain unexplored. We demonstrate that active vasodilatation is not responsible for greater post-contraction hyperaemia below the heart. Instead, an increased transmural pressure-mediated mechanical distension of resistance vessels is a key mechanism responsible for this phenomenon. Our findings establish the importance of considering/accounting for local mechanical arteriolar distension effects when investigating exercise hyperaemia. They also inform the application of exercise for rehabilitative purposes and prompt investigation into whether arteriolar distension accompanying vasodilatation is reduced with diseases or ageing, thereby compromising exercising muscle perfusion. ABSTRACT We tested the hypotheses that increased post-contraction hyperaemia in higher (H; below heart) vs. lower (L; above heart) transmural pressure conditions is due to (1) greater active vasodilatation or (2) greater transmural pressure-mediated arteriolar distension. Participants (n = 20, 12 male, 8 female; combined mean age 24.5 ± 2 years) performed a 2 s isometric handgrip contraction, where arm position was maintained within or changed between H and L during contraction, resulting in four starting-finishing arm position conditions (LL, HL, LH, HH). Post-contraction forearm blood flow (echo and Doppler ultrasound) was higher with contraction release in H vs. L environments (P < 0.05). However, contraction initiated in H did not result in greater vasodilatation (forearm vascular conductance; FVC) than contraction initiated in L, regardless of contraction release condition (peak FVC: LL 217 ± 104 vs. HL 204 ± 92 ml min-1 (100 mmHg)-1 , P = 0.313, LH 229 ± 8 vs. HH 225 ± 85 ml min-1 (100 mmHg)-1 , P = 0.391; first post-contraction cardiac cycle FVC: same comparisons, both P = 0.317). However, FVC of the first post-contraction cardiac cycle was greater for contractions released in H vs. L regardless of pre-contraction condition (LL 106 ± 67 vs. LH 152 ± 76 ml min-1 (100 mmHg)-1 , P < 0.05; HL 80 ± 51 vs. HH 119 ± 58 ml min-1 (100 mmHg)-1 , P < 0.05). These findings refute the hypothesis that greater hyperaemia following a single contraction in higher transmural pressure conditions is due to greater active vasodilatation. Instead, our findings reveal a key role for increased transmural pressure-mediated mechanical distension of arterioles in creating a greater increase in vascular conductance for a given active vasodilatation following skeletal muscle contraction.
Collapse
Affiliation(s)
- Mytchel J T Lynn
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Olivia K Mew
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Noah L Liberman
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada, K7L 3N6
| |
Collapse
|
16
|
Tucker WJ, Rosenberry R, Trojacek D, Chamseddine HH, Arena-Marshall CA, Zhu Y, Wang J, Kellawan JM, Haykowsky MJ, Tian F, Nelson MD. Studies into the determinants of skeletal muscle oxygen consumption: novel insight from near-infrared diffuse correlation spectroscopy. J Physiol 2019; 597:2887-2901. [PMID: 30982990 DOI: 10.1113/jp277580] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Diffuse correlation spectroscopy (DCS) is emerging as a powerful tool to assess skeletal muscle perfusion. Near-infrared spectroscopy (NIRS) is an established technique for characterizing the transport and utilization of oxygen through the microcirculation. Here we compared a combined NIRS-DCS system with conventional measures of oxygen delivery and utilization during handgrip exercise. The data show good concurrent validity between convective oxygen delivery and DCS-derived blood flow index, as well as between oxygen extraction at the conduit and microvascular level. We then manipulated forearm arterial perfusion pressure by adjusting the position of the exercising arm relative to the position of the heart. The data show that microvascular perfusion can be uncoupled from convective oxygen delivery, and that tissue saturation seemingly compensates to maintain skeletal muscle oxygen consumption. Taken together, these data support a novel role for NIRS-DCS in understanding the determinants of muscle oxygen consumption at the microvascular level. ABSTRACT Diffuse correlation spectroscopy (DCS) is emerging as a powerful tool to assess skeletal muscle perfusion. Combining DCS with near-infrared spectroscopy (NIRS) introduces exciting possibilities for understanding the determinants of muscle oxygen consumption; however, no investigation has directly compared NIRS-DCS to conventional measures of oxygen delivery and utilization in an exercising limb. To address this knowledge gap, nine healthy males performed rhythmic handgrip exercise with simultaneous measurements by NIRS-DCS, Doppler blood flow and venous oxygen content. The two approaches showed good concurrent validity, with directionally similar responses between: (a) Doppler-derived forearm blood flow and DCS-derived blood flow index (BFI), and (b) venous oxygen saturation and NIRS-derived tissue saturation. To explore the utility of combined NIRS-DCS across the physiological spectrum, we manipulated forearm arterial perfusion pressure by altering the arm position above or below the level of the heart. As expected, Doppler-derived skeletal muscle blood flow increased with exercise in both arm positions, but with markedly different magnitudes (below: +424.3 ± 41.4 ml/min, above: +306 ± 12.0 ml/min, P = 0.002). In contrast, DCS-derived microvascular BFI increased to a similar extent with exercise, regardless of arm position (P = 0.65). Importantly, however, the time to reach BFI steady state was markedly slower with the arm above the heart, supporting the experimental design. Notably, we observed faster tissue desaturation at the onset of exercise with the arm above the heart, resulting in similar muscle oxygen consumption profiles throughout exercise. Taken together, these data support a novel role for NIRS-DCS in understanding the determinants of skeletal muscle oxygen utilization non-invasively and throughout exercise.
Collapse
Affiliation(s)
- Wesley J Tucker
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA.,College of Nursing, University of Texas at Arlington, Arlington, TX, USA
| | - Ryan Rosenberry
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Darian Trojacek
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Houda H Chamseddine
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | | | - Ye Zhu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jing Wang
- College of Nursing, University of Texas at Arlington, Arlington, TX, USA
| | - J Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Mark J Haykowsky
- College of Nursing, University of Texas at Arlington, Arlington, TX, USA
| | - Fenghua Tian
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Michael D Nelson
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
17
|
Messere A, Pertusio R, Macrì C, Maffiodo D, Franco W, De Benedictis C, Ferraresi C, Roatta S. Delivery of customizable compressive patterns to human limbs to investigate vascular reactivity. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae5c0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Messere A, Tschakovsky M, Seddone S, Lulli G, Franco W, Maffiodo D, Ferraresi C, Roatta S. Hyper-Oxygenation Attenuates the Rapid Vasodilatory Response to Muscle Contraction and Compression. Front Physiol 2018; 9:1078. [PMID: 30158874 PMCID: PMC6104350 DOI: 10.3389/fphys.2018.01078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
A single muscle compression (MC) with accompanying hyperemia and hyper-oxygenation results in attenuation of a subsequent MC hyperemia, as long as the subsequent MC takes place when muscle oxygenation is still elevated. Whether this is due to the hyper-oxygenation, or compression-induced de-activation of mechano-sensitive structures is unclear. We hypothesized that increased oxygenation and not de-activation of mechano-sensitive structures was responsible for this attenuation and that both compression and contraction-induced hyperemia attenuate the hyperemic response to a subsequent muscle contraction, and vice-versa. Protocol-1) In eight subjects two MCs separated by a 25 s interval were delivered to the forearm without or with partial occlusion of the axillary artery, aimed at preventing hyperemia and increased oxygenation in response to the first MC. Tissue oxygenation [oxygenated (hemoglobin + myoglobin)/total (hemoglobin + myoglobin)] from forearm muscles and brachial artery blood flow were continuously monitored by means of spatially-resolved near-infrared spectroscopy (NIRS) and Doppler ultrasound, respectively. With unrestrained blood flow, the hyperemic response to the second MC was attenuated, compared to the first (5.7 ± 3.3 vs. 14.8 ± 3.9 ml, P < 0.05). This attenuation was abolished with partial occlusion of the auxillary artery (14.4 ± 3.9 ml). Protocol-2) In 10 healthy subjects, hemodynamic changes were assessed in response to MC and electrically stimulated contraction (ESC, 0.5 s duration, 20 Hz) of calf muscles, as single stimuli or delivered in sequences of two separated by a 25 s interval. When MC or ESC were delivered 25 s following MC or ESC the response to the second stimulus was always attenuated (range: 60–90%). These findings support a role for excess tissue oxygenation in the attenuation of mechanically-stimulated rapid dilation and rule out inactivation of mechano-sensitive structures. Furthermore, both MC and ESC rapid vasodilatation are attenuated by prior transient hyperemia, regardless of whether the hyperemia is due to MC or ESC. Previously, mechanisms responsible for this dilation have not been considered to be oxygen sensitive. This study identifies muscle oxygenation state as relevant blunting factor, and reveals the need to investigate how these feedforward mechanisms might actually be affected by oxygenation.
Collapse
Affiliation(s)
| | - Michael Tschakovsky
- Human Vascular Control Lab, School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Stefano Seddone
- Department of Neuroscience, University of Turin, Turin, Italy
| | - Gabriella Lulli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Walter Franco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Daniela Maffiodo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | |
Collapse
|
19
|
Hughes WE, Kruse NT, Casey DP. Age-associated impairments in contraction-induced rapid-onset vasodilatation within the forearm are independent of mechanical factors. Exp Physiol 2018. [PMID: 29528524 DOI: 10.1113/ep086908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? We examined whether the mechanical contribution to contraction-induced rapid-onset vasodilatation (ROV) differed with age and whether ROV is associated with peripheral artery stiffness. Furthermore, we examined how manipulation of perfusion pressure modulates ROV in young and older adults. What is the main finding and its importance? The mechanical contribution to ROV is similar in young and older adults. Conversely, peripheral arterial stiffness is not associated with ROV. Enhancing perfusion pressure augments ROV to a similar extent in young and older adults. These results suggest that age-related attenuations in ROV are not attributable to a mechanical component and that ROV responses are independent of peripheral artery stiffness. ABSTRACT Contraction-induced rapid-onset vasodilatation (ROV) is modulated by perfusion and transmural pressure in young adults; however, this effect remains unknown in older adults. The present study examined the mechanical contribution to ROV in young versus older adults, the influence of perfusion pressure and whether these responses are associated with arterial stiffness. Forearm vascular conductance (in millilitres per minute per 100 mmHg) was measured in 12 healthy young (24 ± 4 years old) and 12 older (67 ± 3 years old) adults during: (i) single dynamic contractions at 20% of maximal voluntary contraction; and (ii) single external mechanical compression of the forearm (200 mmHg) positioned above, at and below heart level. Carotid-radial pulse-wave velocity characterized upper limb arterial stiffness. Total ROV responses to single muscle contractions and single external mechanical compressions were attenuated in older adults at heart level (P < 0.05); however, the relative mechanical contribution to contraction-induced peak (46 ± 14 versus 40 ± 18%; P = 0.21) and total (37 ± 21 versus 32 ± 18%; P = 0.27) responses were not different between young and older adults. Reducing or enhancing perfusion pressure altered ROV responses to a similar extent between young and older adults (P < 0.05). Upper limb arterial stiffness was not associated with peak (r = 0.02; P = 0.93) or total vascular conductance (r = -0.01; P = 0.96) in the group as a whole. Our data suggest that: (i) age-associated attenuations in ROV are not attributable to a mechanical component; (ii) enhancing perfusion pressure augments ROV to a similar extent between young and older adults; and (iii) basal upper limb arterial stiffness is not associated with the vasodilator responses after a single skeletal muscle contraction in young and older adults.
Collapse
Affiliation(s)
- William E Hughes
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA
| | - Nicholas T Kruse
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
20
|
Messere A, Ceravolo G, Franco W, Maffiodo D, Ferraresi C, Roatta S. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg. J Appl Physiol (1985) 2017; 123:1451-1460. [DOI: 10.1152/japplphysiol.00511.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022] Open
Abstract
The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3–6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4) the extent of attenuation negatively correlates with tissue oxygenation ( r = −0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3) the extent of attenuation of the compression-induced hyperemia is proportional to the level of oxygenation achieved in the tissue. The results support the concept that tissue oxygenation is a key variable in blood flow regulation.
Collapse
Affiliation(s)
| | - Gianluca Ceravolo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Walter Franco
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Daniela Maffiodo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Carlo Ferraresi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | |
Collapse
|