1
|
Domínguez R, López-León I, Moreno-Lara J, Rico E, Sánchez-Oliver AJ, Sánchez-Gómez Á, Pecci J. Sport supplementation in competitive swimmers: a systematic review with meta-analysis. J Int Soc Sports Nutr 2025; 22:2486988. [PMID: 40205676 PMCID: PMC11986859 DOI: 10.1080/15502783.2025.2486988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Competitive swimmers have a high prevalence of sports supplement (SS) consumption. However, only a few SS are scientifically proven to be safe, effective, and legal. Therefore, before incorporating supplements to enhance performance and health in competitive swimming, it is crucial to conduct an analysis and review to assess their effects. The objective of this study was to analyze the demonstrated effects of SS, as reported in published studies, on the swimming performance of competitive swimmers. METHODS Following PRISMA guidelines, a systematic search was conducted across six databases for the selection of studies included in this review. Studies that analyzed the effects of sports supplementation compared to placebo were included and subjected to meta-analysis. RESULTS This revision included 23 studies, 16 of them (69.6%) qualified as excellent and 7 (30.4%) as good at the methodological level based on the punctuation in the PEDro scale. The systematic review included 422 swimmers (61.8% male, 38.2% female), with distances assessed ranging from 50 m to 800 m, including studies employing interval procedures. Creatine showed a significant effect (ES = -0.46; 95% CIs = -0.75 to -0.17, p = 0.002; I2 = 11%) on swimming performance, while the rest of the analyzed supplements did not show significant effects (all p > 0.05). CONCLUSIONS Creatine supplementation demonstrated ergogenic benefits for competitive swimmers, although the evidence supporting the use of this supplement is still limited. Sodium bicarbonate and β-alanine may enhance performance in distances with higher glycolytic demands, while caffeine is effective at dosages of 3-6 mg/kg administered 60 min before exercise. Further research is needed to confirm the potential ergogenic effects of other supplements, such as beetroot juice.
Collapse
Affiliation(s)
- Raúl Domínguez
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
- University of Lavras, Studies Research Group in Neuromuscular Responses (GEPREN), Lavras, Brazil
| | - Inmaculada López-León
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
| | - Javier Moreno-Lara
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
| | - Esteban Rico
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
| | - Antonio J. Sánchez-Oliver
- Universidad de Sevilla, Departamento de Motricidad Humana Rendimiento Deportivo, Sevilla, Spain
- University of Lavras, Studies Research Group in Neuromuscular Responses (GEPREN), Lavras, Brazil
| | - Ángela Sánchez-Gómez
- Universidad de Córdoba, Departamento de Enfermería Farmacología y Fisioterapia, Facultad de Medicina y Enfermería, Córdoba, España
| | - Javier Pecci
- University of Seville, Department of Physical Education and Sport, Seville, Spain
| |
Collapse
|
2
|
Farra SD, Jacobs I. Arterial desaturation rate does not influence self-selected knee extension force but alters ventilatory response to progressive hypoxia: A pilot study. Physiol Rep 2024; 12:e15892. [PMID: 38172088 PMCID: PMC10764295 DOI: 10.14814/phy2.15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The absolute magnitude and rate of arterial desaturation each independently impair whole-body aerobic exercise. This study examined potential mechanisms underlying the rate-dependent relationship. Utilizing an exercise protocol involving unilateral, intermittent, isometric knee extensions (UIIKE), we provided sufficient reperfusion time between contractions to reduce the accumulation of intramuscular metabolic by-products that typically stimulate muscle afferents. The objective was to create a milieu conducive to accentuating any influence of arterial desaturation rate on muscular fatigue. Eight participants completed four UIIKE sessions, performing one 3 s contraction every 30s at a perceived intensity of 50% MVC for 25 min. Participants voluntarily adjusted their force generation to maintain perceptual effort at 50% MVC without feedback. Reductions in inspired oxygen fraction (FI O2 ) decreased arterial saturation from >98% to 70% with varying rates in three trials: FAST (5.3 ± 1.3 min), MED (11.8 ± 2.7 min), and SLOW (19.9 ± 3.7 min). FI O2 remained at 0.21 during the control trial. Force generation and muscle activation remained at baseline levels throughout UIIKE trials, unaffected by the magnitude or rate of desaturation. Minute ventilation increased with hypoxia (p < 0.05), and faster desaturation rates magnified this response. These findings demonstrate that arterial desaturation magnitude and rate independently affect ventilation, but do not influence fatigue development during UIIKE.
Collapse
Affiliation(s)
- Saro D. Farra
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
| | - Ira Jacobs
- Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoOntarioCanada
- Tanenbaum Institute for Science in Sport, University of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Hucteau E, Mallard J, Pivot X, Schott R, Pflumio C, Trensz P, Favret F, Pagano AF, Hureau TJ. Exacerbated central fatigue and reduced exercise capacity in early-stage breast cancer patients treated with chemotherapy. Eur J Appl Physiol 2023:10.1007/s00421-023-05177-5. [PMID: 36939876 DOI: 10.1007/s00421-023-05177-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE The present study aimed to characterize the etiology of exercise-induced neuromuscular fatigue and its consequences on the force-duration relationship to provide mechanistic insights into the reduced exercise capacity characterizing early-stage breast cancer patients. METHODS Fifteen early-stage breast cancer patients and fifteen healthy women performed 60 maximal voluntary isometric quadriceps contractions (MVCs, 3 s of contraction, 2 s of relaxation). The critical force was determined as the mean force of the last six contractions, while W' was calculated as the force impulse generated above the critical force. Quadriceps muscle activation during exercise was estimated from vastus lateralis, vastus medialis and rectus femoris EMG. Central and peripheral fatigue were quantified via changes in pre- to postexercise quadriceps voluntary activation (ΔVA) and quadriceps twitch force (ΔQTw) evoked by supramaximal electrical stimulation, respectively. RESULTS Early-stage breast cancer patients demonstrated lower MVC than controls preexercise (- 15%, P = 0.022), and this reduction persisted throughout the 60-MVC exercise (- 21%, P = 0.002). The absolute critical force was lower in patients than in controls (144 ± 29N vs. 201 ± 47N, respectively, P < 0.001), while W' was similar (P = 0.546), resulting in lower total work done (- 23%, P = 0.001). This was associated with lower muscle activation in the vastus lateralis (P < 0.001), vastus medialis (P = 0.003) and rectus femoris (P = 0.003) in patients. Immediately following exercise, ΔVA showed a greater reduction in patients compared to controls (- 21.6 ± 13.3% vs. - 12.6 ± 7.7%, P = 0.040), while ΔQTw was similar (- 60.2 ± 13.2% vs. - 52.8 ± 19.4%, P = 0.196). CONCLUSION These findings support central fatigue as a primary cause of the reduction in exercise capacity characterizing early-stage breast cancer patients treated with chemotherapy. CLINICAL TRIALS REGISTRATION No. NCT04639609-November 20, 2020.
Collapse
Affiliation(s)
- Elyse Hucteau
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Joris Mallard
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Xavier Pivot
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Roland Schott
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Carole Pflumio
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Philippe Trensz
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, France
| | - Fabrice Favret
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Allan F Pagano
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France
| | - Thomas J Hureau
- Biomedicine Research Centre of Strasbourg (CRBS), Mitochondria, Oxidative Stress, and Muscular Protection Laboratory (UR 3072), Strasbourg, France.
- Faculty of Sport Sciences, European Centre for Education, Research and Innovation in Exercise Physiology (CEERIPE), University of Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg Cedex, France.
| |
Collapse
|
4
|
Lima-Silva AE, Cristina-Souza G, Silva-Cavalcante MD, Bertuzzi R, Bishop DJ. Caffeine during High-Intensity Whole-Body Exercise: An Integrative Approach beyond the Central Nervous System. Nutrients 2021; 13:2503. [PMID: 34444663 PMCID: PMC8400708 DOI: 10.3390/nu13082503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Caffeine is one of the most consumed ergogenic aids around the world. Many studies support the ergogenic effect of caffeine over a large spectrum of exercise types. While the stimulatory effect of caffeine on the central nervous system is the well-accepted mechanism explaining improvements in exercise performance during high-intensity whole-body exercise, in which other physiological systems such as pulmonary, cardiovascular, and muscular systems are maximally activated, a direct effect of caffeine on such systems cannot be ignored. A better understanding of the effects of caffeine on multiple physiological systems during high-intensity whole-body exercise might help to expand its use in different sporting contexts (e.g., competitions in different environments, such as altitude) or even assist the treatment of some diseases (e.g., chronic obstructive pulmonary disease). In the present narrative review, we explore the potential effects of caffeine on the pulmonary, cardiovascular, and muscular systems, and describe how such alterations may interact and thus contribute to the ergogenic effects of caffeine during high-intensity whole-body exercise. This integrative approach provides insights regarding how caffeine influences endurance performance and may drive further studies exploring its mechanisms of action in a broader perspective.
Collapse
Affiliation(s)
- Adriano E. Lima-Silva
- Human Performance Research Group, Federal University of Technology Parana (UTFPR), Curitiba 81310900, PR, Brazil; (A.E.L.-S.); (G.C.-S.)
| | - Gislaine Cristina-Souza
- Human Performance Research Group, Federal University of Technology Parana (UTFPR), Curitiba 81310900, PR, Brazil; (A.E.L.-S.); (G.C.-S.)
- Nutrition and Exercise Research Group, State University of Minas Gerais (UEMG), Passos 37902092, MG, Brazil
| | - Marcos D. Silva-Cavalcante
- Postgraduate Program in Nutrition (PPGNUT), Faculty of Nutrition (FANUT), Federal University of Alagoas (UFAL), Maceio 57072900, AL, Brazil;
| | - Romulo Bertuzzi
- Endurance Sports Research Group (GEDAE-USP), University of São Paulo, Sao Paulo 05508030, SP, Brazil;
| | - David J. Bishop
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 8001, Australia
| |
Collapse
|
5
|
Takagi R, Tabuchi A, Poole DC, Kano Y. In vivo cooling-induced intracellular Ca 2+ elevation and tension in rat skeletal muscle. Physiol Rep 2021; 9:e14921. [PMID: 34245114 PMCID: PMC8271258 DOI: 10.14814/phy2.14921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022] Open
Abstract
It is an open question as to whether cooling‐induced muscle contraction occurs in the in vivo environment. In this investigation, we tested the hypotheses that a rise in intracellular Ca²⁺ concentration ([Ca²⁺]i) and concomitant muscle contraction could be evoked in vivo by reducing muscle temperature and that this phenomenon would be facilitated or inhibited by specific pharmacological interventions designed to impact Ca²⁺‐induced Ca²⁺‐release (CICR). Progressive temperature reductions were imposed on the spinotrapezius muscle of Wistar rats under isoflurane anesthesia by means of cold fluid immersion. The magnitude, location, and temporal profile of [Ca²⁺]i were estimated using fura‐2 loading. Caffeine (1.25–5.0 mM) and procaine (1.6–25.6 mM) loading were applied in separatum to evaluate response plasticity by promoting or inhibiting CICR, respectively. Lowering the temperature of the muscle surface to ~5°C produced active tension and discrete sites with elevated [Ca²⁺]i. This [Ca²⁺]i elevation differed in magnitude from fiber to fiber and also from site to site within a fiber. Caffeine at 1.25 and 5.0 mM reduced the magnitude of cooling necessary to elevate [Ca²⁺]i (i.e., from ~5°C to ~8 and ~16°C, respectively, both p < 0.05) and tension. Conversely, 25.6 mM procaine lowered the temperature at which [Ca²⁺]i elevation and tension were detected to ~2°C (p < 0.05). Herein we demonstrate the spatial and temporal relationship between cooling‐induced [Ca²⁺]i elevation and muscle contractile force in vivo and the plasticity of these responses with CICR promotion and inhibition.
Collapse
Affiliation(s)
- Ryo Takagi
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan.,Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - David C Poole
- Department of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas, USA
| | - Yutaka Kano
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan.,Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
6
|
Paz G, de Freitas Maia M, de Araújo Farias D, Miranda H, Willardson J. Muscle activation and volume load performance of paired resistance training bouts with differing inter-session recovery periods. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
8
|
Abstract
This paper aims to critically evaluate and thoroughly discuss the evidence on the topic of caffeine supplementation when performing resistance exercise, as well as provide practical guidelines for the ingestion of caffeine prior to resistance exercise. Based on the current evidence, it seems that caffeine increases both maximal strength and muscular endurance. Furthermore, power appears to be enhanced with caffeine supplementation, although this effect might, to a certain extent, be caffeine dose- and external load-dependent. A reduction in rating of perceived exertion (RPE) might contribute to the performance-enhancing effects of caffeine supplementation as some studies have observed decreases in RPE coupled with increases in performance following caffeine ingestion. However, the same does not seem to be the case for pain perception as there is evidence showing acute increases in resistance exercise performance without any significant effects of caffeine ingestion on pain perception. Some studies have reported that caffeine ingestion did not affect exercise-induced muscle damage, but that it might reduce perceived resistance exercise-induced delayed-onset muscle soreness; however, this needs to be explored further. There is some evidence that caffeine ingestion, compared with a placebo, may lead to greater increases in the production of testosterone and cortisol following resistance exercise. However, given that the acute changes in hormone levels seem to be weakly correlated with hallmark adaptations to resistance exercise, such as hypertrophy and increased muscular strength, these findings are likely of questionable practical significance. Although not without contrasting findings, the available evidence suggests that caffeine ingestion can lead to acute increases in blood pressure (primarily systolic), and thus caution is needed regarding caffeine supplementation among individuals with high blood pressure. In the vast majority of studies, caffeine was administered in capsule or powder forms, and therefore the effects of alternative forms of caffeine, such as chewing gums or mouth rinses, on resistance exercise performance remain unclear. The emerging evidence suggests that coffee might be at least equally ergogenic as caffeine alone when the caffeine dose is matched. Doses in the range of 3-9 mg·kg-1 seem to be adequate for eliciting an ergogenic effect when administered 60 min pre-exercise. In general, caffeine seems to be safe when taken in the recommended doses. However, at doses as high as 9 mg·kg-1 or higher, side effects such as insomnia might be more pronounced. It remains unclear whether habituation reduces the ergogenic benefits of caffeine on resistance exercise as no evidence exists for this type of exercise. Caution is needed when extrapolating these conclusions to females as the vast majority of studies involved only male participants.
Collapse
|
9
|
Mesquita RNO, Cronin NJ, Kyröläinen H, Hintikka J, Avela J. Effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise. Exp Physiol 2020; 105:690-706. [PMID: 32092208 DOI: 10.1113/ep088265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/27/2020] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of the study? What are the effects of caffeine on neuromuscular function in a non-fatigued state and during fatiguing exercise? What is the main finding and its importance? In a non-fatigued state, caffeine decreased the duration of the silent period evoked by transcranial magnetic stimulation. Caffeine-induced reduction of inhibitory mechanisms in the central nervous system before exercise was associated with an increased performance. Individuals who benefit from caffeine ingestion may experience lower perception of effort during exercise and an accelerated recovery of M-wave amplitude postfatigue. This study elucidates the mechanisms of action of caffeine and demonstrates that inter-individual variability of its effects on neuromuscular function is a fruitful area for further work. ABSTRACT Caffeine enhances exercise performance, but its mechanisms of action remain unclear. In this study, we investigated its effects on neuromuscular function in a non-fatigued state and during fatiguing exercise. Eighteen men participated in this randomized, double-blind, placebo-controlled crossover trial. Baseline measures included plantarflexion force, drop jump, squat jump, voluntary activation of triceps surae muscle, soleus muscle contractile properties, M-wave, α-motoneuron excitability (H-reflex), corticospinal excitability, short-interval intracortical inhibition, intracortical facilitation, silent period evoked by transcranial magnetic stimulation (SP) and plasma potassium and caffeine concentrations. Immediately after baseline testing, participants ingested caffeine (6 mg·kg-1 ) or placebo. After a 1-h rest, baseline measures were repeated, followed by a fatiguing stretch-shortening cycle exercise (sets of 40 bilateral rebound jumps on a sledge apparatus) until task failure. Neuromuscular testing was carried out throughout the fatigue protocol and afterwards. Caffeine enhanced drop jump height (by 4.2%) and decreased the SP (by 12.6%) in a non-fatigued state. A caffeine-related decrease in SP and short-interval intracortical inhibition before the fatiguing activity was associated with an increased time to task failure. The participants who benefitted from an improved performance on the caffeine day reported a significantly lower sense of effort during exercise and had an accelerated postexercise recovery of M-wave amplitude. Caffeine modulates inhibitory mechanisms of the CNS, recovery of M-wave amplitude and perception of effort. This study lays the groundwork for future examinations of differences in caffeine-induced neuromuscular changes between those who are deemed to benefit from caffeine ingestion and those who are not.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia.,Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Neil J Cronin
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department for Health, Bath University, Bath, UK
| | - Heikki Kyröläinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jukka Hintikka
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Janne Avela
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Myoelectric Responses of Lower-Body Muscles Performing Squat and Lunge Exercise Variations Adopting Visual Feedback With a Laser Sensor. J Sport Rehabil 2020; 29:1159-1165. [PMID: 31945738 DOI: 10.1123/jsr.2019-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022]
Abstract
STUDY DESIGN Cross-over study. CONTEXT The squat, single-leg squat, forward lunge, and reverse lunge are fundamental movements often performed in activities of daily living, sports competitions, and sport-specific training. OBJECTIVE The purpose of this study was to investigate the effect of visual feedback with a laser sensor (VFLS) versus a control condition on the myoelectric activity (surface electromyography [sEMG]) of the vastus medialis oblique (VMO), vastus lateralis, gluteus medius (Gmed), and erector spinae muscles during the performance of several squat variations with bodyweight. METHODS Nineteen female college students (20 [2.5] y, 165.3 [10.2] cm, 66.4 [4.1] kg, 2 [1.2] y of resistance training experience) with a background in strength or sports training volunteered to participate in this study. Over 4 separate visits, subjects performed 2 sets of 10 repetitions of a squat variation exercise in random order (ie, squat, single-leg squat, forward lunge, and reverse lunge). The first set of a given squat variation condition was considered a control set, and then after 3-minute rest, a second set was performed with VFLS. RESULTS Significant decreases in VMO and Gmed myoelectric activity were observed during the VFLS set versus the control set for the forward lunge exercise (P = .03). No differences were observed between the control set and VFLS set in the sEMG normalized signal for all muscles analyzed for the squat and single-leg squat, respectively. However, the sample entropy of the sEMG signal for the erector spinae became more irregular during the VFLS set versus the control set for the squat exercise (P = .01), whereas the Gmed presented a more irregular sEMG signal during the VFLS set versus the control set for the single-leg squat (P = .08). CONCLUSION Laser sensor biofeedback may induce significant decreases in VMO and Gmed activation performing forward lunge exercise. Therefore, laser sensor biofeedback may induce a reduction in muscle activity of neutralizers muscles during a few squat bodyweight variations (bilateral, single-leg, forward, and reverse lunge).
Collapse
|
11
|
Jodra P, Lago-Rodríguez A, Sánchez-Oliver AJ, López-Samanes A, Pérez-López A, Veiga-Herreros P, San Juan AF, Domínguez R. Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. J Int Soc Sports Nutr 2020; 17:2. [PMID: 31900166 PMCID: PMC6942320 DOI: 10.1186/s12970-019-0332-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/13/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Caffeine supplementation (CAFF) has an established ergogenic effect on physical performance and the psychological response to exercise. However, few studies have compared the response to CAFF intake among athletes of different competition level. This study compares the acute effects of CAFF on anaerobic performance, mood and perceived effort in elite and moderately-trained recreational athletes. METHODS Participants for this randomized, controlled, crossover study were 8 elite athletes (in the senior boxing national team) and 10 trained-recreational athletes. Under two experimental conditions, CAFF supplementation (6 mg/kg) or placebo (PLAC), the athletes completed a Wingate test. Subjective exertion during the test was recorded as the rating of perceived exertion (RPE) both at the general level (RPEgeneral) and at the levels muscular (RPEmuscular) and cardiorespiratory (RPEcardio). Before the Wingate test, participants completed the questionnaires Profiles of Moods States (POMS) and Subjective Vitality Scale (SVS). RESULTS In response to CAFF intake, improvements were noted in Wpeak (11.22 ± 0.65 vs 10.70 ± 0.84; p = 0.003; [Formula: see text] =0.44), Wavg (8.75 ± 0.55 vs 8.41 0.46; p = 0.001; [Formula: see text] =0.53) and time taken to reach Wpeak (7.56 ± 1.58 vs 9.11 ± 1.53; p < 0.001; [Formula: see text] =0.57) both in the elite and trained-recreational athletes. However, only the elite athletes showed significant increases in tension (+ 325%), vigor (+ 31%) and SVS (+ 28%) scores after the intake of CAFF compared to levels recorded under the condition PLAC (p < 0.05). Similarly, levels of vigor after consuming CAFF were significantly higher in the elite than the trained-recreational athletes (+ 5.8%). CONCLUSIONS CAFF supplementation improved anaerobic performance in both the elite and recreational athletes. However, the ergogenic effect of CAFF on several mood dimensions and subjective vitality was greater in the elite athletes.
Collapse
Affiliation(s)
- P. Jodra
- Faculty of Health Sciences, Universidad Alfonso X El Sabio, Madrid, Spain
- University of Alcalá, Madrid, Spain
| | | | - A. J. Sánchez-Oliver
- Department of Human Motricity and Sports Performance, Faculty of Education Sciences, Seville University, Seville, Spain
| | - A. López-Samanes
- School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - A. Pérez-López
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | - P. Veiga-Herreros
- Faculty of Health Sciences, Universidad Alfonso X El Sabio, Madrid, Spain
| | - A. F. San Juan
- Sports Biomechanics Laboratory, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences – INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | - R. Domínguez
- Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain
| |
Collapse
|
12
|
Neyroud D, Cheng AJ, Donnelly C, Bourdillon N, Gassner AL, Geiser L, Rudaz S, Kayser B, Westerblad H, Place N. Toxic doses of caffeine are needed to increase skeletal muscle contractility. Am J Physiol Cell Physiol 2018; 316:C246-C251. [PMID: 30566390 DOI: 10.1152/ajpcell.00269.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Discrepant results have been reported regarding an intramuscular mechanism underlying the ergogenic effect of caffeine on neuromuscular function in humans. Here, we reevaluated the effect of caffeine on muscular force production in humans and combined this with measurements of the caffeine dose-response relationship on force and cytosolic free [Ca2+] ([Ca2+]i) in isolated mouse muscle fibers. Twenty-one healthy and physically active men (29 ± 9 yr, 178 ± 6 cm, 73 ± 10 kg, mean ± SD) took part in the present study. Nine participants were involved in two experimental sessions during which supramaximal single and paired electrical stimulations (at 10 and 100 Hz) were applied to the femoral nerve to record evoked forces. Evoked forces were recorded before and 1 h after ingestion of 1) 6 mg caffeine/kg body mass or 2) placebo. Caffeine plasma concentration was measured in 12 participants. In addition, submaximal tetanic force and [Ca2+]i were measured in single mouse flexor digitorum brevis (FDB) muscle fibers exposed to 100 nM up to 5 mM caffeine. Six milligrams of caffeine per kilogram body mass (plasma concentration ~40 µM) did not increase electrically evoked forces in humans. In superfused FDB single fibers, millimolar caffeine concentrations (i.e., 15- to 35-fold above usual concentrations observed in humans) were required to increase tetanic force and [Ca2+]i. Our results suggest that toxic doses of caffeine are required to increase muscle contractility, questioning the purported intramuscular ergogenic effect of caffeine in humans.
Collapse
Affiliation(s)
- Daria Neyroud
- Institute of Sport Sciences, University of Lausanne , Lausanne , Switzerland
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Chris Donnelly
- Institute of Sport Sciences, University of Lausanne , Lausanne , Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne , Lausanne , Switzerland
| | - Anne-Laure Gassner
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Laurent Geiser
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne , Lausanne , Switzerland
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet , Stockholm , Sweden
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
13
|
Kalmar JM. On task: Considerations and future directions for studies of corticospinal excitability in exercise neuroscience and related disciplines. Appl Physiol Nutr Metab 2018; 43:1113-1121. [DOI: 10.1139/apnm-2018-0123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last few decades, transcranial magnetic stimulation (TMS) has emerged as a conventional laboratory technique in human neurophysiological research. Exercise neuroscientists have used TMS to study central nervous system contributions to fatigue, training, and performance in health, injury, and disease. In such studies, corticospinal excitability is often assessed at rest or during simple isometric tasks with the implication that the results may be extrapolated to more functional and complex movement outside of the laboratory. However, the neural mechanisms that influence corticospinal excitability are both state- and task-dependent. Furthermore, there are many sites of modulation along the pathway from the motor cortex to the muscle; a fact that is somewhat obscured by the all-encompassing and poorly defined term “corticospinal excitability”. Therefore, the tasks we use to assess corticospinal excitability and the conclusions that we draw from such a global measure of the motor pathway must be taken into consideration. The overall objective of this review is to highlight the task-dependent nature of corticospinal excitability and the tools used to assess modulation at cortical and spinal sites of modulation. By weighing the advantages and constraints of conventional approaches to studying corticospinal excitability, and considering some new and novel approaches, we will continue to advance our understanding of the neural control of movement during exercise.
Collapse
Affiliation(s)
- Jayne M. Kalmar
- Wilfrid Laurier University, Department of Kinesiology and Physical Education, Waterloo, ON N2L 3C5, Canada
- Wilfrid Laurier University, Department of Kinesiology and Physical Education, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
14
|
Looft JM, Herkert N, Frey-Law L. Modification of a three-compartment muscle fatigue model to predict peak torque decline during intermittent tasks. J Biomech 2018; 77:16-25. [PMID: 29960732 PMCID: PMC6092960 DOI: 10.1016/j.jbiomech.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
Abstract
This study aimed to test whether adding a rest recovery parameter, r, to the analytical three-compartment controller (3CC) fatigue model (Xia and Frey Law, 2008) will improve fatigue estimates during intermittent contractions. The 3CC muscle fatigue model uses differential equations to predict the flow of muscle between three muscle states: Resting (MR), Active (MA), and Fatigued (MF). This model uses a feedback controller to match the active state to target loads and two joint-specific parameters: F, fatigue rate controlling flow from active to fatigued compartments) and R, the recovery rate controlling flow from the fatigued to the resting compartments. This model does well to predict intensity-endurance time curves for sustained isometric tasks. However, previous studies find when rest intervals are present that the model over predicts fatigue. Intermittent rest periods would allow for the occurrence of subsequent reactive vasodilation and post-contraction hyperemia. We hypothesize a modified 3CC-r fatigue model will improve predictions of force decay during intermittent contractions with the addition of a rest recovery parameter, r, to augment recovery during rest intervals, representing muscle re-perfusion. A meta-analysis compiling intermittent fatigue data from 63 publications reporting decline in peak torque (% torque decline) were used for comparison. The original model over-predicted fatigue development from 19 to 29% torque decline; the addition of a rest multiplier significantly improved fatigue estimates to 6-10% torque decline. We conclude the addition of a rest multiplier to the three-compartment controller fatigue model provides a physiologically consistent modification for tasks involving rest intervals, resulting in improved estimates of muscle fatigue.
Collapse
Affiliation(s)
- John M Looft
- Department of Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Herkert
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
15
|
Bowtell JL, Mohr M, Fulford J, Jackman SR, Ermidis G, Krustrup P, Mileva KN. Improved Exercise Tolerance with Caffeine Is Associated with Modulation of both Peripheral and Central Neural Processes in Human Participants. Front Nutr 2018; 5:6. [PMID: 29484298 PMCID: PMC5816050 DOI: 10.3389/fnut.2018.00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Background Caffeine has been shown to enhance exercise performance and capacity. The mechanisms remain unclear but are suggested to relate to adenosine receptor antagonism, resulting in increased central motor drive, reduced perception of effort, and altered peripheral processes such as enhanced calcium handling and extracellular potassium regulation. Our aims were to investigate how caffeine (i) affects knee extensor PCr kinetics and pH during repeated sets of single-leg knee extensor exercise to task failure and (ii) modulates the interplay between central and peripheral neural processes. We hypothesized that the caffeine-induced extension of exercise capacity during repeated sets of exercise would occur despite greater disturbance of the muscle milieu due to enhanced peripheral and corticospinal excitatory output, central motor drive, and muscle contractility. Methods Nine healthy active young men performed five sets of intense single-leg knee extensor exercise to task failure on four separate occasions: for two visits (6 mg·kg-1 caffeine vs placebo), quadriceps 31P-magnetic resonance spectroscopy scans were performed to quantify phosphocreatine kinetics and pH, and for the remaining two visits (6 mg·kg-1 caffeine vs placebo), femoral nerve electrical and transcranial magnetic stimulation of the quadriceps cortical motor area were applied pre- and post exercise. Results The total exercise time was 17.9 ± 6.0% longer in the caffeine (1,225 ± 86 s) than in the placebo trial (1,049 ± 73 s, p = 0.016), and muscle phosphocreatine concentration and pH (p < 0.05) were significantly lower in the latter sets of exercise after caffeine ingestion. Voluntary activation (VA) (peripheral, p = 0.007; but not supraspinal, p = 0.074), motor-evoked potential (MEP) amplitude (p = 0.007), and contractility (contraction time, p = 0.009; and relaxation rate, p = 0.003) were significantly higher after caffeine consumption, but at task failure MEP amplitude and VA were not different from placebo. Caffeine prevented the reduction in M-wave amplitude that occurred at task failure (p = 0.039). Conclusion Caffeine supplementation improved high-intensity exercise tolerance despite greater-end exercise knee extensor phosphocreatine depletion and H+ accumulation. Caffeine-induced increases in central motor drive and corticospinal excitability were attenuated at task failure. This may have been induced by the afferent feedback of the greater disturbance of the muscle milieu, resulting in a stronger inhibitory input to the spinal and supraspinal motor neurons. However, causality needs to be established through further experiments.
Collapse
Affiliation(s)
- Joanna L Bowtell
- Sport and Health Sciences, College of Life and Environmental Sciences, Exeter University, Exeter, United Kingdom
| | - Magni Mohr
- Sport and Health Sciences, College of Life and Environmental Sciences, Exeter University, Exeter, United Kingdom.,Centre of Health Science, Faculty of Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands.,Centre of Health and Human Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Fulford
- Exeter NIHR Clinical Research Facility, Medical School, University of Exeter, Exeter, United Kingdom
| | - Sarah R Jackman
- Sport and Health Sciences, College of Life and Environmental Sciences, Exeter University, Exeter, United Kingdom
| | - Georgios Ermidis
- Sport and Health Sciences, College of Life and Environmental Sciences, Exeter University, Exeter, United Kingdom.,Department of Exercise and Wellness, Parthenope University of Naples, Naples, Italy.,Department of Sports Science and Clinical Biomechanics, Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Peter Krustrup
- Sport and Health Sciences, College of Life and Environmental Sciences, Exeter University, Exeter, United Kingdom.,Department of Sports Science and Clinical Biomechanics, Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark
| | - Katya N Mileva
- Sport and Exercise Science Research Centre, School of Applied Science, London South Bank University, London, United Kingdom
| |
Collapse
|
16
|
Caffeinated energy drink intake modulates motor circuits at rest, before and after a movement. Physiol Behav 2017; 179:361-368. [PMID: 28694153 DOI: 10.1016/j.physbeh.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/20/2022]
|
17
|
Miranda H, Maia M, de Oliveira CG, Farias D, da Silva JB, Lima VP, Willardson JM, Paz GA. Myoeletric indices of fatigue adopting different rest intervals during leg press sets. J Bodyw Mov Ther 2017; 22:178-183. [PMID: 29332743 DOI: 10.1016/j.jbmt.2017.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The purpose of this study was to examine the acute effect of different rest intervals between multiple sets of the 45° angled leg press exercise (LP45) on surface electromyographic (SEMG) spectral and amplitude indices of fatigue. METHODS Fifteen recreationally trained females performed three protocols in a randomized crossover design; each consisting of four sets of 10 repetitions with 1 (P1), 3 (P3), or 5 (P5) minute rest intervals between sets. Each set was performed with 70% of the LP45 ten-repetition maximum load. The SEMG data for biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles was then evaluated. RESULTS The SEMG amplitude change in the time coefficient (CRMS) and spectral fatigue index (Cf5) indicated higher levels of fatigue for all muscles evaluated during the P3 protocol versus the P1 and P5 protocols (p ≤ 0.05), respectively. The RF and VL muscles showed greater fatigue levels by the second and third sets; whereas, greater fatigue was shown in the VM and BF muscles by the fourth set (p ≤ 0.05). CONCLUSIONS A three-minute rest interval between sets might represent a neuromuscular window between a fatigue stated and fully recovered state in the context of neural activation. Moreover, a three minute rest interval between sets might allow for consistent recruitment of high threshold motor units over multiple sets, and thus promote a more effective stimulus for strength gains.
Collapse
Affiliation(s)
- Humberto Miranda
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marianna Maia
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, Brazil; Biodesp Institute, Kinesiology Center of Performance, Rio de Janeiro, Brazil
| | - Carlos G de Oliveira
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Déborah Farias
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jurandir B da Silva
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Vicente P Lima
- Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, Brazil; Biodesp Institute, Kinesiology Center of Performance, Rio de Janeiro, Brazil; Institute of Physical Education and Sports, Postgraduate Program in Exercise and Sport Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeffrey M Willardson
- Department of Health and Human Performance, Rocky Mountain College, Billings, MT, United States
| | - Gabriel A Paz
- School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biodynamic Laboratory of Exercise, Health and Performance, Castelo Branco University, Rio de Janeiro, Brazil; Biodesp Institute, Kinesiology Center of Performance, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Machado W, Paz G, Mendes L, Maia M, Winchester JB, Lima V, Willardson JM, Miranda H. Myoeletric Activity of the Quadriceps During Leg Press Exercise Performed With Differing Techniques. J Strength Cond Res 2017; 31:422-429. [DOI: 10.1519/jsc.0000000000001494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Paz G, Maia M, Whinchester J, Miranda H. Strength performance parameters and muscle activation adopting two antagonist stretching methods before and between sets. Sci Sports 2016. [DOI: 10.1016/j.scispo.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Cortical Mechanisms of Central Fatigue and Sense of Effort. PLoS One 2016; 11:e0149026. [PMID: 26859391 PMCID: PMC4747526 DOI: 10.1371/journal.pone.0149026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to investigate cortical mechanisms upstream to the corticospinal motor neuron that may be associated with central fatigue and sense of effort during and after a fatigue task. We used two different isometric finger abduction protocols to examine the effects of muscle activation and fatigue the right first dorsal interosseous (FDI) of 12 participants. One protocol was intended to assess the effects of muscle activation with minimal fatigue (control) and the other was intended to elicit central fatigue (fatigue). We hypothesized that high frequency repetitive transcranial magnetic stimulation (rTMS) of the supplementary motor area (SMA) would hasten recovery from central fatigue and offset a fatigue-induced increase in sense of effort by facilitating the primary motor cortex (M1). Constant force-sensation contractions were used to assess sense of effort associated with muscle contraction. Paired-pulse TMS was used to assess intracortical inhibition (ICI) and facilitation (ICF) in the active M1 and interhemispheric inhibitory (IHI) was assessed to determine if compensation occurs via the resting M1. These measures were made during and after the muscle contraction protocols. Corticospinal excitability progressively declined with fatigue in the active hemisphere. ICF increased at task failure and ICI was also reduced at task failure with no changes in IHI found. Although fatigue is associated with progressive reductions in corticospinal excitability, compensatory changes in inhibition and facilitation may act within, but not between hemispheres of the M1. rTMS of the SMA following fatigue enhanced recovery of maximal voluntary force and higher levels of ICF were associated with lower sense of effort following stimulation. rTMS of the SMA may have reduced the amount of upstream drive required to maintain motor output, thus contributing to a lower sense of effort and increased rate of recovery of maximal force.
Collapse
|
21
|
Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet G, Verges S. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation. Neuroscience 2016; 314:125-33. [DOI: 10.1016/j.neuroscience.2015.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 01/20/2023]
|
22
|
Maia MF, Willardson JM, Paz GA, Miranda H. Effects of different rest intervals between antagonist paired sets on repetition performance and muscle activation. J Strength Cond Res 2015; 28:2529-35. [PMID: 25148302 DOI: 10.1519/jsc.0000000000000451] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that exercising the antagonist musculature acutely enhances subsequent performance for the agonist musculature. The purpose of this study was to examine the effects of different rest intervals between sets for exercises that involve antagonistic muscle groups, a technique referred to as antagonist paired sets (APS). Fifteen recreationally trained men were tested for knee extension (KE) exercise performance, with or without previous knee flexion (KF) exercise for the antagonist musculature. The following protocols were performed in random order with 10 repetition maximum loads for the KF and KE exercises: (a) traditional protocol (TP)-1 set of KE only to repetition failure; (b) paired sets with minimal allowable rest (PMR)-1 set of KF followed immediately by a set of KE; (c) P30-30-second rest between paired sets of KF and KE; (d) P1-1-minute rest between paired sets; (e) P3-3-minute rest between paired sets; and (f) P5-5-minute rest between paired sets. The number of repetitions performed and electromyographic (EMG) activity of vastus lateralis, vastus medialis (VM), and rectus femoris (RF) muscles were recorded during the KE set in each protocol. It was demonstrated that significantly greater KE repetitions were completed during the PMR, P30, and P1 protocols vs. the TP protocol. Significantly greater EMG activity was demonstrated for the RF muscle during the KE exercise in the PMR and P30 vs. the TP, P3, and P5, respectively. In addition, significantly greater EMG activity was demonstrated for the VM muscle during the PMR vs. all other protocols. The results of this study indicate that no rest or relatively shorter rest intervals (30 seconds and 1 minute) between APS might be more effective to elicit greater agonist repetition enhancement and muscle activation.
Collapse
Affiliation(s)
- Marianna F Maia
- 1School of Physical Education and Sports, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; and 2Department of Kinesiology and Sports Studies, Eastern Illinois University, Charleston, Illinois
| | | | | | | |
Collapse
|
23
|
Miranda H, Maia MDF, Paz GA, Costa PB. Acute effects of antagonist static stretching in the inter-set rest period on repetition performance and muscle activation. Res Sports Med 2015; 23:37-50. [PMID: 25630245 DOI: 10.1080/15438627.2014.975812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the effects of antagonist passive static stretching (AS) during the inter-set rest period on repetition performance and muscle activation. Ten trained men (22.4 ± 0.9 years) participated in this study. Two protocols were adopted: Passive recovery (PR)--three sets to repetition failure were performed for the seated row (SR) with two-minute rest interval between sets without pre-exercise stretching; AS--forty seconds of stretching was applied to pectoralis major prior to each set of SR. Significant increases in the number of repetitions were noted under AS compared with PR (p < 0.05). Significant increases on latissimus dorsi (p = 0.002) and biceps brachii (p = 0.001) muscle activity were noted inter-sets under the AS compared with the PR condition. Therefore, the AS adopted during the inter-set rest period may enhance repetition performance and activation of agonist muscles in an acute manner.
Collapse
Affiliation(s)
- Humberto Miranda
- a Federal University of Rio de Janeiro , School of Physical Education and Sports , Rio de Janeiro , Brazil
| | | | | | | |
Collapse
|
24
|
BLACK CHRISTOPHERD, WADDELL DWIGHTE, GONGLACH ALEXANDERR. Caffeine’s Ergogenic Effects on Cycling. Med Sci Sports Exerc 2015; 47:1145-58. [DOI: 10.1249/mss.0000000000000513] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions. Sci Rep 2015; 5:10209. [PMID: 25969895 PMCID: PMC4429543 DOI: 10.1038/srep10209] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/02/2015] [Indexed: 11/17/2022] Open
Abstract
This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.
Collapse
|
26
|
Pageaux B, Angius L, Hopker JG, Lepers R, Marcora SM. Central alterations of neuromuscular function and feedback from group III-IV muscle afferents following exhaustive high-intensity one-leg dynamic exercise. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1008-20. [PMID: 25855308 DOI: 10.1152/ajpregu.00280.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 04/07/2015] [Indexed: 11/22/2022]
Abstract
The aims of this investigation were to describe the central alterations of neuromuscular function induced by exhaustive high-intensity one-leg dynamic exercise (OLDE, study 1) and to indirectly quantify feedback from group III-IV muscle afferents via muscle occlusion (MO, study 2) in healthy adult male humans. We hypothesized that these central alterations and their recovery are associated with changes in afferent feedback. Both studies consisted of two time-to-exhaustion tests at 85% peak power output. In study 1, voluntary activation level (VAL), M-wave, cervicomedullary motor evoked potential (CMEP), motor evoked potential (MEP), and MEP cortical silent period (CSP) of the knee extensor muscles were measured. In study 2, mean arterial pressure (MAP) and leg muscle pain were measured during MO. Measurements were performed preexercise, at exhaustion, and after 3 min recovery. Compared with preexercise values, VAL was lower at exhaustion (-13 ± 13%, P < 0.05) and after 3 min of recovery (-6 ± 6%, P = 0.05). CMEP area/M area was lower at exhaustion (-38 ± 13%, P < 0.01) and recovered after 3 min. MEP area/M area was higher at exhaustion (+25 ± 27%, P < 0.01) and after 3 min of recovery (+17 ± 20%, P < 0.01). CSP was higher (+19 ± 9%, P < 0.01) only at exhaustion and recovered after 3 min. Markers of afferent feedback (MAP and leg muscle pain during MO) were significantly higher only at exhaustion. These findings suggest that the alterations in spinal excitability and CSP induced by high-intensity OLDE are associated with an increase in afferent feedback at exhaustion, whereas central fatigue does not fully recover even when significant afferent feedback is no longer present.
Collapse
Affiliation(s)
- Benjamin Pageaux
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| | - Luca Angius
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| | - James G Hopker
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| | - Romuald Lepers
- Laboratoire Institut national de la santé et de la recherche médical U1093, Université de Bourgogne, Faculté des Sciences du Sports, UFR STAPS, Dijon, France
| | - Samuele M Marcora
- Endurance Research Group, School of Sport & Exercise Sciences, University of Kent, Chatham, United Kingdom; and
| |
Collapse
|
27
|
Gruet M, Temesi J, Brisswalter J, Millet G, Vergès S. Stimulation magnétique transcrânienne : application à la physiologie de l’exercice. Sci Sports 2014. [DOI: 10.1016/j.scispo.2014.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Behrens M, Mau-Moeller A, Heise S, Skripitz R, Bader R, Bruhn S. Alteration in neuromuscular function of the plantar flexors following caffeine ingestion. Scand J Med Sci Sports 2014; 25:e50-8. [DOI: 10.1111/sms.12243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Behrens
- Department of Exercise Science; University of Rostock; Rostock Germany
| | - Anett Mau-Moeller
- Department of Orthopaedics; University Medicine Rostock; Rostock Germany
| | - Sandra Heise
- Department of Exercise Science; University of Rostock; Rostock Germany
| | - Ralf Skripitz
- Department of Orthopaedics; University Medicine Rostock; Rostock Germany
| | - Rainer Bader
- Department of Orthopaedics; University Medicine Rostock; Rostock Germany
| | - Sven Bruhn
- Department of Exercise Science; University of Rostock; Rostock Germany
| |
Collapse
|
29
|
Temesi J, Gruet M, Rupp T, Verges S, Millet GY. Resting and active motor thresholds versus stimulus-response curves to determine transcranial magnetic stimulation intensity in quadriceps femoris. J Neuroeng Rehabil 2014; 11:40. [PMID: 24655366 PMCID: PMC3976163 DOI: 10.1186/1743-0003-11-40] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
Background Transcranial magnetic stimulation (TMS) is a widely-used investigative technique in motor cortical evaluation. Recently, there has been a surge in TMS studies evaluating lower-limb fatigue. TMS intensity of 120-130% resting motor threshold (RMT) and 120% active motor threshold (AMT) and TMS intensity determined using stimulus–response curves during muscular contraction have been used in these studies. With the expansion of fatigue research in locomotion, the quadriceps femoris is increasingly of interest. It is important to select a stimulus intensity appropriate to evaluate the variables, including voluntary activation, being measured in this functionally important muscle group. This study assessed whether selected quadriceps TMS stimulus intensity determined by frequently employed methods is similar between methods and muscles. Methods Stimulus intensity in vastus lateralis, rectus femoris and vastus medialis muscles was determined by RMT, AMT (i.e. during brief voluntary contractions at 10% maximal voluntary force, MVC) and maximal motor-evoked potential (MEP) amplitude from stimulus–response curves during brief voluntary contractions at 10, 20 and 50% MVC at different stimulus intensities. Results Stimulus intensity determined from a 10% MVC stimulus–response curve and at 120 and 130% RMT was higher than stimulus intensity at 120% AMT (lowest) and from a 50% MVC stimulus–response curve (p < 0.05). Stimulus intensity from a 20% MVC stimulus–response curve was similar to 120% RMT and 50% MVC stimulus–response curve. Mean stimulus intensity for stimulus–response curves at 10, 20 and 50% MVC corresponded to approximately 135, 115 and 100% RMT and 180, 155 and 130% AMT, respectively. Selected stimulus intensity was similar between muscles for all methods (p > 0.05). Conclusions Similar optimal stimulus intensity and maximal MEP amplitudes at 20 and 50% MVC and the minimal risk of residual fatigue at 20% MVC suggest that a 20% MVC stimulus–response curve is appropriate for determining TMS stimulus intensity in the quadriceps femoris. The higher selected stimulus intensities at 120-130% RMT have the potential to cause increased coactivation and discomfort and the lower stimulus intensity at 120% AMT may underestimate evoked responses. One muscle may also act as a surrogate in determining optimal quadriceps femoris stimulation intensity.
Collapse
Affiliation(s)
| | | | | | | | - Guillaume Y Millet
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, Saint-Etienne F-42023, France.
| |
Collapse
|
30
|
Corticomotor Excitability During a Noxious Stimulus Before and After Exercise in Women With Fibromyalgia. J Clin Neurophysiol 2014; 31:94-8. [DOI: 10.1097/wnp.0000000000000025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Girard O, Bishop DJ, Racinais S. Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints. PLoS One 2013; 8:e61793. [PMID: 23650503 PMCID: PMC3641084 DOI: 10.1371/journal.pone.0061793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study investigated the supraspinal processes of fatigue of the quadriceps muscle in response to repeated cycling sprints. METHODS Twelve active individuals performed 10 × 6-s "all-out" sprints on a cycle ergometer (recovery = 30 s), followed 6 min later by 5 × 6-s sprints (recovery = 30 s). Transcranial magnetic and electrical femoral nerve stimulations during brief (5-s) and sustained (30-s) isometric contractions of the knee extensors were performed before and 3 min post-exercise. RESULTS Maximal strength of the knee extensors decreased during brief and sustained contractions (~11% and 9%, respectively; P<0.001). Peripheral and cortical voluntary activation, motor evoked potential amplitude and silent period duration responses measured during briefs contractions were unaltered (P>0.05). While cortical voluntary activation declined (P<0.01) during the sustained maximal contraction in both test sessions, larger reductions occurred (P<0.05) after exercise. Lastly, resting twitch amplitude in response to both femoral nerve and cortical stimulations was largely (> 40%) reduced (P<0.001) following exercise. CONCLUSION The capacity of the motor cortex to optimally drive the knee extensors following a repeated-sprint test was shown in sustained, but not brief, maximal isometric contractions. Additionally, peripheral factors were largely involved in the exercise-induced impairment in neuromuscular function, while corticospinal excitability was well-preserved.
Collapse
Affiliation(s)
- Olivier Girard
- Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.
| | | | | |
Collapse
|
32
|
Corticospinal Responses to Sustained Locomotor Exercises: Moving Beyond Single-Joint Studies of Central Fatigue. Sports Med 2013; 43:437-49. [DOI: 10.1007/s40279-013-0020-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Gruet M, Temesi J, Rupp T, Levy P, Millet G, Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience 2013; 231:384-99. [DOI: 10.1016/j.neuroscience.2012.10.058] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
|
34
|
Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One 2012; 7:e51977. [PMID: 23284836 PMCID: PMC3524088 DOI: 10.1371/journal.pone.0051977] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
The physiological equivalents of power output maintenance and recovery during repeated-sprint exercise (RSE) remain to be fully elucidated. In an attempt to improve our understanding of the determinants of RSE performance we therefore aimed to determine its recovery following exhaustive exercise (which affected intramuscular and neural factors) concomitantly with those of intramuscular concentrations of adenosine triphosphate [ATP], phosphocreatine [PCr] and pH values and electromyography (EMG) activity (a proxy for net motor unit activity) changes. Eight young men performed 10, 6-s all-out sprints on a cycle ergometer, interspersed with 30 s of recovery, followed, after 6 min of passive recovery, by five 6-s sprints, again interspersed by 30 s of passive recovery. Biopsies of the vastus lateralis were obtained at rest, immediately after the first 10 sprints and after 6 min of recovery. EMG activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Total work (TW), [ATP], [PCr], pH and EMG amplitude decreased significantly throughout the first ten sprints (P<0.05). After 6 min of recovery, TW during sprint 11 recovered to 86.3±7.7% of sprint 1. ATP and PCr were resynthesized to 92.6±6.0% and 85.3±10.3% of the resting value, respectively, but muscle pH and EMG amplitude remained depressed. PCr resynthesis was correlated with TW done in sprint 11 (r = 0.79, P<0.05) and TW done during sprints 11 to 15 (r = 0.67, P<0.05). There was a ∼2-fold greater decrease in the TW/EMG ratio in the last five sprints (sprint 11 to 15) than in the first five sprints (sprint 1 to 5) resulting in a disproportionate decrease in mechanical power (i.e., TW) in relation to EMG. Thus, we conclude that the inability to produce power output during repeated sprints is mostly mediated by intramuscular fatigue signals probably related with the control of PCr metabolism.
Collapse
|
35
|
Rupp T, Jubeau M, Wuyam B, Perrey S, Levy P, Millet GY, Verges S. Time-dependent effect of acute hypoxia on corticospinal excitability in healthy humans. J Neurophysiol 2012; 108:1270-7. [DOI: 10.1152/jn.01162.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Contradictory results regarding the effect of hypoxia on cortex excitability have been reported in healthy subjects, possibly depending on hypoxia exposure duration. We evaluated the effects of 1- and 3-h hypoxia on motor corticospinal excitability, intracortical inhibition, and cortical voluntary activation (VA) using transcranial magnetic stimulation (TMS). TMS to the quadriceps cortex area and femoral nerve electrical stimulations were performed in 14 healthy subjects. Motor-evoked potentials (MEPs at 50–100% maximal voluntary contraction; MVC), recruitment curves (MEPs at 30–100% maximal stimulator power output at 50% MVC), cortical silent periods (CSP), and VA were measured in normoxia and after 1 ( n = 12) or 3 ( n = 10) h of hypoxia (FiO2 = 0.12). One-hour hypoxia did not modify any parameters of corticospinal excitability but reduced slightly VA, probably due to the repetition of contractions 1 h apart (96 ± 4% vs. 94 ± 4%; P = 0.03). Conversely, 3-h hypoxia significantly increased 1) MEPs of the quadriceps muscles at all force levels (+26 ± 14%, +24 ± 12%, and +27 ± 17% at 50, 75, and 100% MVC, respectively; P = 0.01) and stimulator power outputs (e.g., +21 ± 14% at 70% maximal power), and 2) CSP at all force levels (+20 ± 18%, +18 ± 19%, and +14 ± 22% at 50, 75, and 100% MVC, respectively; P = 0.02) and stimulator power outputs (e.g., +9 ± 8% at 70% maximal power), but did not modify VA (98 ± 1% vs. 97 ± 3%; P = 0.42). These data demonstrate a time-dependent hypoxia-induced increase in motor corticospinal excitability and intracortical inhibition, without changes in VA. The impact of these cortical changes on physical or psychomotor performances needs to be elucidated to better understand the cerebral effects of hypoxemia.
Collapse
Affiliation(s)
- T. Rupp
- HP2 Laboratory, Joseph Fourier University & CHU Grenoble, Grenoble, France
- U1042, INSERM, Grenoble, France
| | - M. Jubeau
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, Saint-Etienne, France
- Laboratoire “Motricité, Interactions, Performance,” University of Nantes, Nantes, France; and
| | - B. Wuyam
- HP2 Laboratory, Joseph Fourier University & CHU Grenoble, Grenoble, France
- U1042, INSERM, Grenoble, France
| | - S. Perrey
- Movement To Health (M2H) Laboratory, Euromov, Montpellier-1 University, Montpellier, France
| | - P. Levy
- HP2 Laboratory, Joseph Fourier University & CHU Grenoble, Grenoble, France
- U1042, INSERM, Grenoble, France
| | - G. Y. Millet
- HP2 Laboratory, Joseph Fourier University & CHU Grenoble, Grenoble, France
- U1042, INSERM, Grenoble, France
- Laboratoire de Physiologie de l'Exercice, Université de Lyon, Saint-Etienne, France
| | - S. Verges
- HP2 Laboratory, Joseph Fourier University & CHU Grenoble, Grenoble, France
- U1042, INSERM, Grenoble, France
| |
Collapse
|
36
|
Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab 2012; 37:276-83. [PMID: 22436075 DOI: 10.1139/h11-160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the independent and combined effects of carbohydrate and caffeine ingestion on performance and various physiological parameters during aerobic cycling (∼1 h). Ten male cyclists (28 ± 9 years, 73 ± 6 kg, 66 ± 9 mL·kg(-1)·min(-1) maximal oxygen consumption) performed 20 min of steady-state (SS) cycling (60% peak power (W(max))) followed by a simulated 20-km time trial (TT) under placebo (PLA), carbohydrate (CHO), caffeine (CAF), and combined CAF-CHO conditions, all of which were performed in the fed state. CAF-CHO improved TT performance by 3.4% ± 2% (84 ± 57 s) compared with PLA (p < 0.05), whereas no differences were detected among CHO, CAF, and PLA. The SS respiratory exchange ratio was elevated in CHO (0.92 ± 0.03), CAF (0.96 ± 0.07), and CAF-CHO (0.95 ± 0.02) compared with PLA (0.89 ± 0.03) (p < 0.05). Post-SS and post-TT blood glucose levels were also elevated in CAF-CHO (88.3 ± 16.7 mg·dL(-1) and 111.2 ± 33.5 mg·dL(-1), respectively) compared with PLA (74.5 ± 9.8 mg·dL(-1) and 85.4 ± 17.6 mg·dL(-1), respectively) (p < 0.05). Treatment conditions did not differentially impact SS pulmonary ventilation, oxygen consumption, heart rate, peak quadriceps muscle strength, rating of perceived exertion, or blood lactate. CAF and CHO improved TT performance when taken together but not independently. Although the present work did not yield any definitive physiological mechanisms for the performance findings, these data suggest that cyclists in the fed state should ingest carbohydrate and caffeine together to improve time trial performance.
Collapse
|
37
|
Racinais S, Girard O. Neuromuscular failure is unlikely to explain the early exercise cessation in hot ambient conditions. Psychophysiology 2012; 49:853-65. [DOI: 10.1111/j.1469-8986.2012.01360.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/16/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Racinais
- Research and Education Centre; ASPETAR-Qatar Orthopaedic and Sports Medicine Hospital; Doha; Qatar
| | - Olivier Girard
- Research and Education Centre; ASPETAR-Qatar Orthopaedic and Sports Medicine Hospital; Doha; Qatar
| |
Collapse
|
38
|
Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med 2011; 41:673-94. [PMID: 21780851 DOI: 10.2165/11590550-000000000-00000] [Citation(s) in RCA: 507] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Short-duration sprints (<10 seconds), interspersed with brief recoveries (<60 seconds), are common during most team and racket sports. Therefore, the ability to recover and to reproduce performance in subsequent sprints is probably an important fitness requirement of athletes engaged in these disciplines, and has been termed repeated-sprint ability (RSA). This review (Part I) examines how fatigue manifests during repeated-sprint exercise (RSE), and discusses the potential underpinning muscular and neural mechanisms. A subsequent companion review to this article will explain a better understanding of the training interventions that could eventually improve RSA. Using laboratory and field-based protocols, performance analyses have consistently shown that fatigue during RSE typically manifests as a decline in maximal/mean sprint speed (i.e. running) or a decrease in peak power or total work (i.e. cycling) over sprint repetitions. A consistent result among these studies is that performance decrements (i.e. fatigue) during successive bouts are inversely correlated to initial sprint performance. To date, there is no doubt that the details of the task (e.g. changes in the nature of the work/recovery bouts) alter the time course/magnitude of fatigue development during RSE (i.e. task dependency) and potentially the contribution of the underlying mechanisms. At the muscle level, limitations in energy supply, which include energy available from phosphocreatine hydrolysis, anaerobic glycolysis and oxidative metabolism, and the intramuscular accumulation of metabolic by-products, such as hydrogen ions, emerge as key factors responsible for fatigue. Although not as extensively studied, the use of surface electromyography techniques has revealed that failure to fully activate the contracting musculature and/or changes in inter-muscle recruitment strategies (i.e. neural factors) are also associated with fatigue outcomes. Pending confirmatory research, other factors such as stiffness regulation, hypoglycaemia, muscle damage and hostile environments (e.g. heat, hypoxia) are also likely to compromise fatigue resistance during repeated-sprint protocols.
Collapse
Affiliation(s)
- Olivier Girard
- ASPETAR Qatar Orthopaedic and Sports Medicine Hospital, Research and Education Centre, Doha, Qatar.
| | | | | |
Collapse
|
39
|
The origins of neuromuscular fatigue post-stroke. Exp Brain Res 2011; 214:303-15. [DOI: 10.1007/s00221-011-2826-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 08/02/2011] [Indexed: 11/25/2022]
|
40
|
Fernandez-del-Olmo M, Rodriguez FA, Marquez G, Iglesias X, Marina M, Benitez A, Vallejo L, Acero RM. Isometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms. Scand J Med Sci Sports 2011; 23:57-65. [PMID: 21812824 DOI: 10.1111/j.1600-0838.2011.01355.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Central and peripheral fatigue have been explored during and after running or cycling exercises. However, the fatigue mechanisms associated with a short maximal cycling exercise (30 s Wingate test) have not been investigated. In this study, 10 volunteer subjects performed several isometric voluntary contractions using the leg muscle extensors before and after two bouts of cycling at 25% of maximal power output and two bouts of Wingate tests. Transcranial magnetic stimulation (TMS) and electrical motor nerve stimulation (NM) were applied at rest and during the voluntary contractions. Maximal voluntary contraction (MVC), voluntary activation (VA), twitch amplitude evoked by electrical nerve stimulation, M wave and motor potential evoked by TMS (MEP) were recorded. MVC, VA and twitch amplitude evoked at rest by NM decreased significantly after the first and second Wingate tests, indicating central and peripheral fatigue. MVC and VA, but not the twitch amplitude evoked by NM, recovered before the second Wingate test. These results suggest that the Wingate test results in a decrease in MVC associated with peripheral and central fatigue. While the peripheral fatigue is associated with an intramuscular impairment, the central fatigue seems to be the main reason for the Wingate test-induced impairment of MVC.
Collapse
Affiliation(s)
- M Fernandez-del-Olmo
- Facultade de Ciencias do Deporte e a Educación Física, INEF Galicia Universidade da Coruña, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hilty L, Lutz K, Maurer K, Rodenkirch T, Spengler CM, Boutellier U, Jäncke L, Amann M. Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Exp Physiol 2011; 96:505-17. [PMID: 21317218 DOI: 10.1113/expphysiol.2010.056226] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the influence of spinal opioid receptor-sensitive muscle afferents on cortical changes following fatiguing unilateral knee-extensor exercise. On separate days, seven subjects performed an identical five sets of intermittent isometric right-quadriceps contractions, each consisting of eight submaximal contractions [63 ± 7% maximal voluntary contraction (MVC)] and one MVC. The exercise was performed following either lumbar interspinous saline injection or lumbar intrathecal fentanyl injection blocking the central projection of spinal opioid receptor-sensitive lower limb muscle afferents. To quantify exercise-induced peripheral fatigue, quadriceps twitch force (Q(tw,pot)) was assessed via supramaximal magnetic femoral nerve stimulation before and after exercise. Motor evoked potentials and cortical silent periods (CSPs) were evaluated via transcranial magnetic stimulation of the motor cortex during a 3% MVC pre-activation period immediately following exercise. End-exercise quadriceps fatigue was significant and similar in both conditions (Q(tw,pot) -35 and -39% for placebo and fentanyl, respectively; P = 0.38). Immediately following exercise on both days, motor evoked potentials were similar to those obtained prior to exercise. Compared with pre-exercise baseline, CSP in the placebo trial was 21 ± 5% longer postexercise (P < 0.01). In contrast, CSP following the fentanyl trial was not significantly prolonged compared with the pre-exercise baseline (6 ± 4%). Our findings suggest that the central effects of spinal opioid receptor-sensitive muscle afferents might facilitate the fatigue-induced increase in CSP. Furthermore, since the CSP is thought to reflect inhibitory intracortical interneuron activity, which may contribute to central fatigue, our findings imply that spinal opioid receptor-sensitive muscle afferents might influence central fatigue by facilitating intracortical inhibition.
Collapse
Affiliation(s)
- Lea Hilty
- Exercise Physiology, ETH Zurich and Institute of Physiology, University of Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
WARREN GORDONL, PARK NICOLED, MARESCA ROBERTD, MCKIBANS KIMBERLYI, MILLARD-STAFFORD MELINDAL. Effect of Caffeine Ingestion on Muscular Strength and Endurance. Med Sci Sports Exerc 2010; 42:1375-87. [DOI: 10.1249/mss.0b013e3181cabbd8] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Martin V, Kerhervé H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Féasson L, Millet GY. Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol (1985) 2010; 108:1224-33. [PMID: 20167672 DOI: 10.1152/japplphysiol.01202.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This experiment investigated the fatigue induced by a 24-h running exercise (24TR) and particularly aimed at testing the hypothesis that the central component would be the main mechanism responsible for neuromuscular fatigue. Neuromuscular function evaluation was performed before, every 4 h during, and at the end of the 24TR on 12 experienced ultramarathon runners. It consisted of a determination of the maximal voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), the maximal voluntary activation (%VA) of the KE and PF, and the maximal compound muscle action potential amplitude (Mmax) on the soleus and vastus lateralis. Tetanic stimulations also were delivered to evaluate the presence of low-frequency fatigue and the KE maximal muscle force production ability. Strength loss occurred throughout the exercise, with large changes observed after 24TR in MVC for both the KE and PF muscles (−40.9 ± 17.0 and −30.3 ± 12.5%, respectively; P < 0.001) together with marked reductions of %VA (−33.0 ± 21.8 and −14.8 ± 18.9%, respectively; P < 0.001). A reduction of Mmax amplitude was observed only on soleus, and no low-frequency fatigue was observed for any muscle group. Finally, KE maximal force production ability was reduced to a moderate extent at the end of the 24TR (−10.2%; P < 0.001), but these alterations were highly variable ( ± 15.7%). These results suggest that central factors are mainly responsible for the large maximal muscle torque reduction after ultraendurance running, especially on the KE muscles. Neural drive reduction may have contributed to the relative preservation of peripheral function and also affected the evolution of the running speed during the 24TR.
Collapse
Affiliation(s)
- Vincent Martin
- Institut National de la Santé et de la Recherche Médicale Unité 902, University of Evry Val d'Essonne, Evry
| | - Hugo Kerhervé
- Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne
| | | | - Jean-Claude Banfi
- Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne
| | - André Geyssant
- Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne
- Department of Clinical Physiology of Exercise, Bellevue Hospital, University Hospital Center, Saint-Etienne, France
| | - Regis Bonnefoy
- Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne
| | - Léonard Féasson
- Exercise Physiology Laboratory, Jean Monnet University, Saint-Etienne
- Department of Clinical Physiology of Exercise, Bellevue Hospital, University Hospital Center, Saint-Etienne, France
| | | |
Collapse
|
44
|
No effect of prior caffeine ingestion on neuromuscular recovery after maximal fatiguing contractions. Eur J Appl Physiol 2009; 108:123-30. [PMID: 19760253 DOI: 10.1007/s00421-009-1198-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to test the hypothesis that prior caffeine ingestion would enhance neural recovery after isometric fatiguing maximal intermittent plantar flexions, and thus would enhance the recovery of voluntary muscle strength. After a familiarisation session, 13 males randomly participated in two experimental trials where they ingested either caffeine (approximately 6 mg/kg) or identical placebo pills 1 h prior to testing. Subjects were tested for electromyogram (EMG) activity and evoked V-waves in the soleus and gastrocnemius medialis muscles. These measurements were obtained during brief plantar flexion maximum voluntary isometric contractions (MVICs), and normalised by the superimposed maximal M-wave (EMG/M(SUP) and V/M(SUP), respectively), before and after (20 s, 10 min and 20 min) a fatigue protocol (seven 25 s MVICs, 5 s rest). There were no effects (P > 0.05) of caffeine ingestion on EMG/M(SUP), V/M(SUP), MVIC or M(SUP). The central neural modulation (EMG/M(SUP) and V/M(SUP)) and voluntary strength changes followed a similar time-course with a substantial reduction 20 s post-fatigue and a gradual return towards baseline values.
Collapse
|
45
|
KREMENIC IANJ, GLACE BETHW, BEN-AVI SSIMON, NICHOLAS STEPHENJ, McHUGH MALACHYP. Central Fatigue after Cycling Evaluated Using Peripheral Magnetic Stimulation. Med Sci Sports Exerc 2009; 41:1461-6. [DOI: 10.1249/mss.0b013e318199eb75] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Fatiguing exercise attenuates pain-induced corticomotor excitability. Neurosci Lett 2009; 452:209-13. [DOI: 10.1016/j.neulet.2009.01.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 11/17/2022]
|
47
|
Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech (Bristol, Avon) 2008; 23:81-92. [PMID: 17889972 DOI: 10.1016/j.clinbiomech.2007.08.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND In spite of ongoing prevention developments, anterior cruciate ligament injury rates and the associated sex-disparity have remained, suggesting an incomplete understanding of the injury mechanism. While both fatigue and decision making are known in isolation to directly impact anterior cruciate ligament injury risk, their combined manifestations remain unknown. We thus examined the combined effects of fatigue and decision making on lower limb kinematics during sports relevant landings. METHODS Twenty five female National College Athletic Association athletes had initial contact and peak stance phase 3D lower limb joint kinematics quantified during anticipated and unanticipated single (left and right) leg landings, both before and during the accumulation of fatigue. Jump direction was governed by light stimuli activated prior to and during the pre-land phase of respective anticipated and unanticipated trials. To induce fatigue, subjects performed repetitive squat (n=5) and randomly ordered jump sequences, until squats were no longer possible. Subject-based measures of each dependent factor were then calculated across pre-fatigue trials, and for those denoting 100% and 50% fatigue, and submitted to a 3-way mixed design analysis of covariance to test for the main effects of fatigue time, decision and leg. FINDINGS Fatigue caused significant increases in initial contact hip extension and internal rotation, and in peak stance knee abduction and internal rotation and ankle supination angles. Fatigue-induced increases in initial contact hip rotations and in peak knee abduction angle were also significantly more pronounced during unanticipated compared to anticipated landings. INTERPRETATION The integrative effects of fatigue and decision making may represent a worst case scenario in terms of anterior cruciate ligament injury risk during dynamic single leg landings, by perpetuating substantial degradation and overload of central control mechanisms.
Collapse
Affiliation(s)
- Bhushan S Borotikar
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | |
Collapse
|
48
|
Dayer MJ, Jonville S, Chatwin M, Swallow EB, Porcher R, Sharshar T, Ross ET, Hopkinson NS, Moxham J, Polkey MI. Exercise-induced depression of the diaphragm motor evoked potential is not affected by non-invasive ventilation. Respir Physiol Neurobiol 2007; 155:243-54. [PMID: 16914394 DOI: 10.1016/j.resp.2006.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Whole body exercise is followed by a depression of the diaphragm motor evoked potential (MEP). It is unknown whether the change is due to diaphragm activity or whole body exercise. To test the hypothesis that exercise-induced MEP depression was related to diaphragm activity, we performed two experiments. The first examined the effect of whole body exercise, performed with and without the use of non-invasive ventilation (NIV). NIV resulted in significant unloading of the diaphragm (pressure time product 101+/-68 cm H(2)O/s/min versus 278+/-95 cm H(2)O/s/min, p<0.001). Both conditions produced significant MEP depression compared to the control condition (% drop at 5 min, after exercise and exercise with NIV: 29 and 34%, p=0.77). Study 2 compared exercise with isocapnic hyperventilation. At 20 min the MEP had fallen by 29% in the exercise session versus 5% with hyperventilation (p=0.098). We conclude that the work of breathing during whole body exercise is not the primary driver of exercise-induced diaphragm MEP depression.
Collapse
Affiliation(s)
- Mark J Dayer
- Respiratory Muscle Laboratory, Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gandevia SC, Taylor JL. Supraspinal fatigue: the effects of caffeine on human muscle performance. J Appl Physiol (1985) 2006; 100:1749-50. [PMID: 16714410 DOI: 10.1152/japplphysiol.00121.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|