1
|
Miserocchi G. Physiopathology of High-Altitude Pulmonary Edema. High Alt Med Biol 2025; 26:1-12. [PMID: 39331568 DOI: 10.1089/ham.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Miserocchi, Giuseppe. Physiopathology of high-altitude pulmonary edema. High Alt Med Biol. 26:1-12, 2025.-The air-blood barrier is well designed to accomplish the matching of gas diffusion with blood flow. This function is achieved by maintaining its thickness at ∼0.5 µm, a feature implying to keep extravascular lung water to the minimum. Exposure to hypobaric hypoxia, especially when associated with exercise, is a condition potentially leading to the development of the so-called high-altitude pulmonary edema (HAPE). This article presents a view of the physiopathology of HAPE by merging available data in humans exposed to high altitude with data from animal experimental approaches. A model is also presented to characterize HAPE nonsusceptible versus susceptible individuals based on the efficiency of alveolar-capillary oxygen uptake and estimated morphology of the air-blood barrier.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine, University of Milano Bicocca, Monza, Italy
| |
Collapse
|
2
|
Kizhakke Puliyakote AS, Tedjasaputra V, Petersen GM, Sá RC, Hopkins SR. Assessing the pulmonary vascular responsiveness to oxygen with proton MRI. J Appl Physiol (1985) 2024; 136:853-863. [PMID: 38385182 PMCID: PMC11343071 DOI: 10.1152/japplphysiol.00747.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Ventilation-perfusion matching occurs passively and is also actively regulated through hypoxic pulmonary vasoconstriction (HPV). The extent of HPV activity in humans, particularly normal subjects, is uncertain. Current evaluation of HPV assesses changes in ventilation-perfusion relationships/pulmonary vascular resistance with hypoxia and is invasive, or unsuitable for patients because of safety concerns. We used a noninvasive imaging-based approach to quantify the pulmonary vascular response to oxygen as a metric of HPV by measuring perfusion changes between breathing 21% and 30%O2 using arterial spin labeling (ASL) MRI. We hypothesized that the differences between 21% and 30%O2 images reflecting HPV release would be 1) significantly greater than the differences without [Formula: see text] changes (e.g., 21-21% and 30-30%O2) and 2) negatively associated with ventilation-perfusion mismatch. Perfusion was quantified in the right lung in normoxia (baseline), after 15 min of 30% O2 breathing (hyperoxia) and 15 min normoxic recovery (recovery) in healthy subjects (7 M, 7 F; age = 41.4 ± 19.6 yr). Normalized, smoothed, and registered pairs of perfusion images were subtracted and the mean square difference (MSD) was calculated. Separately, regional alveolar ventilation and perfusion were quantified from specific ventilation, proton density, and ASL imaging; the spatial variance of ventilation-perfusion (σ2V̇a/Q̇) distributions was calculated. The O2-responsive MSD was reproducible (R2 = 0.94, P < 0.0001) and greater (0.16 ± 0.06, P < 0.0001) than that from subtracted images collected under the same [Formula: see text] (baseline = 0.09 ± 0.04, hyperoxia = 0.08 ± 0.04, recovery = 0.08 ± 0.03), which were not different from one another (P = 0.2). The O2-responsive MSD was correlated with σ2V̇a/Q̇ (R2 = 0.47, P = 0.007). These data suggest that active HPV optimizes ventilation-perfusion matching in normal subjects. This noninvasive approach could be applied to patients with different disease phenotypes to assess HPV and ventilation-perfusion mismatch.NEW & NOTEWORTHY We developed a new proton MRI method to noninvasively quantify the pulmonary vascular response to oxygen. Using a hyperoxic stimulus to release HPV, we quantified the resulting redistribution of perfusion. The differences between normoxic and hyperoxic images were greater than those between images without [Formula: see text] changes and negatively correlated with ventilation-perfusion mismatch. This suggests that active HPV optimizes ventilation-perfusion matching in normal subjects. This approach is suitable for assessing patients with different disease phenotypes.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Radiology, University of California, San Diego, La Jolla, California, United States
| | - Vincent Tedjasaputra
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Gregory M Petersen
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Medicine, University of California, San Diego, La Jolla, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, La Jolla, California, United States
- Department of Radiology, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
3
|
Abstract
The pulmonary circulation is a low-pressure, low-resistance circuit whose primary function is to deliver deoxygenated blood to, and oxygenated blood from, the pulmonary capillary bed enabling gas exchange. The distribution of pulmonary blood flow is regulated by several factors including effects of vascular branching structure, large-scale forces related to gravity, and finer scale factors related to local control. Hypoxic pulmonary vasoconstriction is one such important regulatory mechanism. In the face of local hypoxia, vascular smooth muscle constriction of precapillary arterioles increases local resistance by up to 250%. This has the effect of diverting blood toward better oxygenated regions of the lung and optimizing ventilation-perfusion matching. However, in the face of global hypoxia, the net effect is an increase in pulmonary arterial pressure and vascular resistance. Pulmonary vascular resistance describes the flow-resistive properties of the pulmonary circulation and arises from both precapillary and postcapillary resistances. The pulmonary circulation is also distensible in response to an increase in transmural pressure and this distention, in addition to recruitment, moderates pulmonary arterial pressure and vascular resistance. This article reviews the physiology of the pulmonary vasculature and briefly discusses how this physiology is altered by common circumstances.
Collapse
Affiliation(s)
- Susan R. Hopkins
- Department of Radiology, University of California, San Diego, California
| | - Michael K. Stickland
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta
| |
Collapse
|
4
|
Kizhakke Puliyakote AS, Prisk GK, Elliott AR, Kim NH, Pazar B, Sá RC, Asadi AK, Hopkins SR. The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension. J Appl Physiol (1985) 2023; 134:969-979. [PMID: 36861672 PMCID: PMC10085549 DOI: 10.1152/japplphysiol.00463.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Global fluctuation dispersion (FDglobal), a spatial-temporal metric derived from serial images of the pulmonary perfusion obtained with MRI-arterial spin labeling, describes temporal fluctuations in the spatial distribution of perfusion. In healthy subjects, FDglobal is increased by hyperoxia, hypoxia, and inhaled nitric oxide. We evaluated patients with pulmonary arterial hypertension (PAH, 4F, aged 47 ± 15, mean pulmonary artery pressure 48 ± 7 mmHg) and healthy controls (CON, 7F, aged 47 ± 12) to test the hypothesis that FDglobal is increased in PAH. Images were acquired at ∼4-5 s intervals during voluntary respiratory gating, inspected for quality, registered using a deformable registration algorithm, and normalized. Spatial relative dispersion (RD = SD/mean) and the percent of the lung image with no measurable perfusion signal (%NMP) were also assessed. FDglobal was significantly increased in PAH (PAH = 0.40 ± 0.17, CON = 0.17 ± 0.02, P = 0.006, a 135% increase) with no overlap in values between the two groups, consistent with altered vascular regulation. Both spatial RD and %NMP were also markedly greater in PAH vs. CON (PAH RD = 1.46 ± 0.24, CON = 0.90 ± 0.10, P = 0.0004; PAH NMP = 13.4 ± 6.1%; CON = 2.3 ± 1.4%, P = 0.001 respectively) consistent with vascular remodeling resulting in poorly perfused regions of lung and increased spatial heterogeneity. The difference in FDglobal between normal subjects and patients with PAH in this small cohort suggests that spatial-temporal imaging of perfusion may be useful in the evaluation of patients with PAH. Since this MR imaging technique uses no injected contrast agents and has no ionizing radiation it may be suitable for use in diverse patient populations.NEW & NOTEWORTHY Using proton MRI-arterial spin labeling to obtain serial images of pulmonary perfusion, we show that global fluctuation dispersion (FDglobal), a metric of temporal fluctuations in the spatial distribution of perfusion, was significantly increased in female patients with pulmonary arterial hypertension (PAH) compared with healthy controls. This potentially indicates pulmonary vascular dysregulation. Dynamic measures using proton MRI may provide new tools for evaluating individuals at risk of PAH or for monitoring therapy in patients with PAH.
Collapse
Affiliation(s)
- Abhilash S Kizhakke Puliyakote
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - G Kim Prisk
- Department of Radiology, University of California, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Ann R Elliott
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Nick H Kim
- Department of Medicine, University of California, San Diego, California, United States
| | - Beni Pazar
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Rui Carlos Sá
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Medicine, University of California, San Diego, California, United States
| | - Amran K Asadi
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| | - Susan R Hopkins
- Pulmonary Imaging Laboratory, UC San Diego Health Sciences, San Diego, California, United States
- Department of Radiology, University of California, San Diego, California, United States
| |
Collapse
|
5
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
6
|
Geier ET, Prisk GK, Sá RC. Measuring short-term changes in specific ventilation using dynamic specific ventilation imaging. J Appl Physiol (1985) 2022; 132:1370-1378. [PMID: 35482322 DOI: 10.1152/japplphysiol.00652.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation imaging (SVI) measures the spatial distribution of specific ventilation (SV) in the lung with MRI by using inhaled oxygen as a contrast agent. Because of the inherently low signal to noise ratio in the technique, multiple switches between inspiring air and O2 are utilized, and the high spatial resolution SV distribution determined as an average over the entire imaging period (~20 minutes). We hypothesized that a trade-off between spatial and temporal resolution could allow imaging at a higher temporal resolution, at the cost of a coarser, yet acceptable, spatial resolution. The appropriate window length and spatial resolution compromise was determined by generating synthetic data with signal- and contrast-to-noise characteristics reflective of that in previously published experimental data, with a known and unchanging distribution of SV, and showed that acceptable results could be obtained in an imaging period of ~7 minutes (80 breaths), with a spatial resolution of ~1cm3. Previously published data were then reanalyzed. The average heterogeneity of the temporally resolved maps of SV were not different to the previous overall analysis, however the temporally resolved maps were less effective at detecting the amount of bronchoconstriction resulting from methacholine administration. The results further indicated that the initial response to inhaled methacholine and subsequent inhalation of albuterol were largely complete within ~22 minutes and ~9 minutes respectively, although there was a tendency for an ongoing developing effect in both cases. These results suggest that it is feasible to use a shortened SVI protocol, with a modest sacrifice in spatial resolution, in order to measure temporally dynamic processes.
Collapse
Affiliation(s)
- Eric T Geier
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Gordon Kim Prisk
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Buxton RB, Prisk GK, Hopkins SR. A novel nonlinear analysis of blood flow dynamics applied to the human lung. J Appl Physiol (1985) 2022; 132:1546-1559. [PMID: 35421317 DOI: 10.1152/japplphysiol.00715.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial/temporal dynamics of blood flow in the human lung can be measured noninvasively with magnetic resonance imaging (MRI) using arterial spin labeling (ASL). We report a novel data analysis method using nonlinear prediction to identify dynamic interactions between blood flow units (image voxels), potentially providing a probe of underlying vascular control mechanisms. The approach first estimates the linear relationship (predictability) of one voxel time series with another using correlation analysis, and after removing the linear component estimates the nonlinear relationship with a numerical mutual information approach. Dimensionless global metrics for linear prediction (FL) and nonlinear prediction (FNL) represent the average amplitude of fluctuations in one voxel estimated by another voxel, as a percentage of the global average voxel flow. A proof-of-principle test of this approach analyzed experimental data from a study of high-altitude pulmonary edema (HAPE), providing two groups exhibiting known differences in vascular reactivity. Subjects were mountaineers divided into HAPE-susceptible (S, n=4) and HAPE-resistant (R, n=5) groups based on prior history at high altitude. Dynamic ASL measurements in the lung in normoxia (N, FIO2=0.21) and hypoxia (H, FIO2=0.13±0.01) were compared. The nonlinear prediction metric FNL decreased with hypoxia (7.4±1.3(N) vs. 6.3±0.7(H), P=0.03) and was significantly different between groups (7.4±1.2 (R) vs. 6.2±14.1 (S), P=0.03). This proof-of-principle test demonstrates that this nonlinear analysis approach applied to ASL data is sensitive to physiological effects even in small subject cohorts, and potentially can be used in a wide range of studies in health and disease in the lung and other organs.
Collapse
Affiliation(s)
| | | | - Susan Roberta Hopkins
- Department of Radiology, University of California San Diego.,Department of Medicine, University of California San Diego
| |
Collapse
|
8
|
Winkler T, Kohli P, Kelly VJ, Kehl EG, Witkin AS, Rodriguez-Lopez JM, Hibbert KA, Kone MT, Systrom DM, Waxman AB, Venegas JG, Channick RN, Harris RS. Perfusion imaging heterogeneity during NO inhalation distinguishes pulmonary arterial hypertension (PAH) from healthy subjects and has potential as an imaging biomarker. Respir Res 2022; 23:325. [PMID: 36457013 PMCID: PMC9714016 DOI: 10.1186/s12931-022-02239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Without aggressive treatment, pulmonary arterial hypertension (PAH) has a 5-year mortality of approximately 40%. A patient's response to vasodilators at diagnosis impacts the therapeutic options and prognosis. We hypothesized that analyzing perfusion images acquired before and during vasodilation could identify characteristic differences between PAH and control subjects. METHODS We studied 5 controls and 4 subjects with PAH using HRCT and 13NN PET imaging of pulmonary perfusion and ventilation. The total spatial heterogeneity of perfusion (CV2Qtotal) and its components in the vertical (CV2Qvgrad) and cranio-caudal (CV2Qzgrad) directions, and the residual heterogeneity (CV2Qr), were assessed at baseline and while breathing oxygen and nitric oxide (O2 + iNO). The length scale spectrum of CV2Qr was determined from 10 to 110 mm, and the response of regional perfusion to O2 + iNO was calculated as the mean of absolute differences. Vertical gradients in perfusion (Qvgrad) were derived from perfusion images, and ventilation-perfusion distributions from images of 13NN washout kinetics. RESULTS O2 + iNO significantly enhanced perfusion distribution differences between PAH and controls, allowing differentiation of PAH subjects from controls. During O2 + iNO, CV2Qvgrad was significantly higher in controls than in PAH (0.08 (0.055-0.10) vs. 6.7 × 10-3 (2 × 10-4-0.02), p < 0.001) with a considerable gap between groups. Qvgrad and CV2Qtotal showed smaller differences: - 7.3 vs. - 2.5, p = 0.002, and 0.12 vs. 0.06, p = 0.01. CV2Qvgrad had the largest effect size among the primary parameters during O2 + iNO. CV2Qr, and its length scale spectrum were similar in PAH and controls. Ventilation-perfusion distributions showed a trend towards a difference between PAH and controls at baseline, but it was not statistically significant. CONCLUSIONS Perfusion imaging during O2 + iNO showed a significant difference in the heterogeneity associated with the vertical gradient in perfusion, distinguishing in this small cohort study PAH subjects from controls.
Collapse
Affiliation(s)
- Tilo Winkler
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Puja Kohli
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Vanessa J. Kelly
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Ekaterina G. Kehl
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Alison S. Witkin
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Josanna M. Rodriguez-Lopez
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Kathryn A. Hibbert
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Mamary T. Kone
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - David M. Systrom
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Aaron B. Waxman
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Jose G. Venegas
- grid.38142.3c000000041936754XDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 USA
| | - Richard N. Channick
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - R. Scott Harris
- grid.38142.3c000000041936754XDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
9
|
Carter BG, Swain R, Hislop J, Escudie M, H Williams R. Delivery of Inhaled Nitric Oxide During MRI to Ventilated Neonates and Infants. Respir Care 2021; 66:1254-1262. [PMID: 34006595 PMCID: PMC9994362 DOI: 10.4187/respcare.08408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Many pediatric and neonatal ICU patients receive nitric oxide (NO), with some also requiring magnetic resonance imaging (MRI) scans. MRI-compatible NO delivery devices are not always available. We describe and bench test a method of delivering NO during MRI using standard equipment in which a NO delivery device was positioned in the MRI control room with the NO blender component connected to oxygen and set to 80 ppm and delivering flow via 12 m of tubing to a MRI-compatible ventilator, set up inside the MRI scanner magnet room. METHODS For our bench test, the ventilator was set up normally and connected to an infant test lung to simulate several patients of differing weight (ie, 4 kg, 10 kg, 20 kg). The NO blender delivered flows of 2-10 L/min to the ventilator to achieve a range of NO and oxygen concentrations monitored via extended tubing. The measured values were compared to calculated values. RESULTS A range of NO concentrations (12-41 ppm) and FIO2 values (0.67-0.97) were achieved during the bench testing. The additional flow increased delivered peak inspiratory pressure and PEEP by 1-5 cm H2O. Calculated values were within acceptable ranges and were used to create a lookup table. CONCLUSIONS In clinical use, this system can safely generate a range of NO flows of 15-42 ppm with an accompanying FIO2 range of 0.34-0.98.
Collapse
Affiliation(s)
- Bradley G Carter
- Clinical Technology Service, Neonatal and Paediatric Intensive Care Units, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Rachel Swain
- Clinical Technology Service, Neonatal and Paediatric Intensive Care Units, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Jaime Hislop
- Clinical Technology Service, Neonatal and Paediatric Intensive Care Units, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Mathilde Escudie
- Clinical Technology Service, Neonatal and Paediatric Intensive Care Units, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Rachel H Williams
- Clinical Technology Service, Neonatal and Paediatric Intensive Care Units, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Barisione G, Brusasco V. Lung diffusing capacity for nitric oxide and carbon monoxide following mild-to-severe COVID-19. Physiol Rep 2021; 9:e14748. [PMID: 33625799 PMCID: PMC7903940 DOI: 10.14814/phy2.14748] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
A decreased lung diffusing capacity for carbon monoxide (DLCO ) has been reported in a variable proportion of subjects over the first 3 months of recovery from severe coronavirus disease 2019 (COVID-19). In this study, we investigated whether measurement of lung diffusing capacity for nitric oxide (DLNO ) offers additional insights on the presence and mechanisms of gas transport abnormalities. In 94 subjects, recovering from mild-to-severe COVID-19 pneumonia, we measured DLNO and DLCO between 10 and 266 days after each patient was tested negative for severe acute respiratory syndrome coronavirus 2. In 38 subjects, a chest computed tomography (CT) was available for semiquantitative analysis at six axial levels and automatic quantitative analysis of entire lungs. DLNO was abnormal in 57% of subjects, independent of time of lung function testing and severity of COVID-19, whereas standard DLCO was reduced in only 20% and mostly within the first 3 months. These differences were not associated with changes of simultaneous DLNO /DLCO ratio, while DLCO /VA and DLNO /VA were within normal range or slightly decreased. DLCO but not DLNO positively correlated with recovery time and DLCO was within the normal range in about 90% of cases after 3 months, while DLNO was reduced in more than half of subjects. Both DLNO and DLCO inversely correlated with persisting CT ground glass opacities and mean lung attenuation, but these were more frequently associated with DLNO than DLCO decrease. These data show that an impairment of DLNO exceeding standard DLCO may be present during the recovery from COVID-19, possibly due to loss of alveolar units with alveolar membrane damage, but relatively preserved capillary volume. Alterations of gas transport may be present even in subjects who had mild COVID-19 pneumonia and no or minimal persisting CT abnormalities. TRIAL REGISTRY: ClinicalTrials.gov PRS: No.: NCT04610554 Unique Protocol ID: SARS-CoV-2_DLNO 2020.
Collapse
Affiliation(s)
- Giovanni Barisione
- Struttura Semplice Fisiopatologia Respiratoria, Clinica Malattie Respiratorie e Allergologia, Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Vito Brusasco
- Centro Polifunzionale di Scienze Motorie, Dipartimento di Medicina Sperimentale, Università di Genova, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
11
|
Barisione G, Garlaschi A, Occhipinti M, Baroffio M, Pistolesi M, Brusasco V. Value of lung diffusing capacity for nitric oxide in systemic sclerosis. Physiol Rep 2020; 7:e14149. [PMID: 31264386 PMCID: PMC6603284 DOI: 10.14814/phy2.14149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023] Open
Abstract
A decreased lung diffusing capacity for carbon monoxide (DLCO ) in systemic sclerosis (SSc) is considered to reflect losses of alveolar membrane diffusive conductance for CO (DMCO ), due to interstitial lung disease, and/or pulmonary capillary blood volume (VC ), due to vasculopathy. However, standard DLCO does not allow separate DMCO from VC . Lung diffusing capacity for nitric oxide (DLNO ) is considered to be more sensitive to decrement of alveolar membrane diffusive conductance than DLCO . Standard DLCO and DLNO were compared in 96 SSc subjects with or without lung restriction. Data showed that DLNO was reduced in 22% of subjects with normal lung volumes and DLCO , whereas DLCO was normal in 30% of those with decreased DLNO . In 30 subjects with available computed tomography of the chest, both DLCO and DLNO were negatively correlated with the extent of pulmonary fibrosis. However, DLNO but not DLCO was always reduced in subjects with ≥ 5% fibrosis, and also decreased in some subjects with < 5% fibrosis. DMCO and VC partitioning and Doppler ultrasound-determined systolic pulmonary artery pressure could not explain individual differences in DLCO and DLNO . DLNO may be of clinical value in SSc because it is more sensitive to DMCO loss than standard DLCO , even in nonrestricted subjects without fibrosis, whereas DLCO partitioning into its subcomponents does not provide information on whether diffusion limitation is primarily due to vascular or interstitial lung disease in individual subjects. Moreover, decreased DLCO in the absence of lung restriction does not allow to suspect pulmonary arterial hypertension without fibrosis.
Collapse
Affiliation(s)
- Giovanni Barisione
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Alessandro Garlaschi
- Dipartimento della Diagnostica per Immagini e Radioterapia, Ospedale Policlinico San Martino - IRCCS, Genova, Italy
| | - Mariaelena Occhipinti
- Dipartimento di Medicina Sperimentale e Clinica, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Michele Baroffio
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Massimo Pistolesi
- Dipartimento di Medicina Sperimentale e Clinica, Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy
| | - Vito Brusasco
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| |
Collapse
|
12
|
Clark AR, Burrowes KS, Tawhai MH. Ventilation/Perfusion Matching: Of Myths, Mice, and Men. Physiology (Bethesda) 2019; 34:419-429. [PMID: 31577170 PMCID: PMC7002871 DOI: 10.1152/physiol.00016.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/22/2022] Open
Abstract
Despite a huge range in lung size between species, there is little measured difference in the ability of the lung to provide a well-matched air flow (ventilation) to blood flow (perfusion) at the gas exchange tissue. Here, we consider the remarkable similarities in ventilation/perfusion matching between species through a biophysical lens and consider evidence that matching in large animals is dominated by gravity but in small animals by structure.
Collapse
Affiliation(s)
- Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Kelly S Burrowes
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Asadi AK, Sá RC, Arai TJ, Theilmann RJ, Hopkins SR, Buxton RB, Prisk GK. Regional pulmonary perfusion patterns in humans are not significantly altered by inspiratory hypercapnia. J Appl Physiol (1985) 2019; 127:365-375. [PMID: 31169470 DOI: 10.1152/japplphysiol.00254.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular tone is known to be sensitive to both local alveolar Po2 and Pco2. Although the effects of hypoxia are well studied, the hypercapnic response is relatively less understood. We assessed changes in regional pulmonary blood flow in humans in response to hypercapnia using previously developed MRI techniques. Dynamic measures of blood flow were made in a single slice of the right lung of seven healthy volunteers following a block-stimulus paradigm (baseline, challenge, recovery), with CO2 added to inspired gas during the challenge block to effect a 7-Torr increase in end-tidal CO2. Effects of hypercapnia on blood flow were evaluated based on changes in spatiotemporal variability (fluctuation dispersion, FD) and in regional perfusion patterns in comparison to hypoxic effects previously studied. Hypercapnia increased FD 2.5% from baseline (relative to control), which was not statistically significant (P = 0.07). Regional perfusion patterns were not significantly changed as a result of increased FICO2 (P = 0.90). Reanalysis of previously collected data using a similar protocol but with the physiological challenge replaced by decreased FIO2 (FIO2 = 0.125) showed marked flow redistribution (P = 0.01) with the suggestion of a gravitational pattern, demonstrating hypoxia has the ability to affect regional change with a global stimulus. Taken together, these data indicate that hypercapnia of this magnitude does not lead to appreciable changes in the distribution of pulmonary perfusion, and that this may represent an interesting distinction between the hypoxic and hypercapnic regulatory response.NEW & NOTEWORTHY Although it is well known that the pulmonary circulation responds to local alveolar hypoxia, and that this mechanism may facilitate ventilation-perfusion matching, the relative role of CO2 is not well appreciated. This study demonstrates that an inspiratory hypercapnic stimulus is significantly less effective at inducing changes in pulmonary perfusion patterns than inspiratory hypoxia, suggesting that in these circumstances hypercapnia is not sufficient to induce substantial integrated feedback control of ventilation-perfusion mismatch across the lung.
Collapse
Affiliation(s)
- Amran K Asadi
- Department of Anesthesiology, Stanford University, Stanford, California
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tatsuya J Arai
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California
| | - Richard B Buxton
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
14
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Vonk Noordegraaf A, Chin KM, Haddad F, Hassoun PM, Hemnes AR, Hopkins SR, Kawut SM, Langleben D, Lumens J, Naeije R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53:13993003.01900-2018. [PMID: 30545976 PMCID: PMC6351344 DOI: 10.1183/13993003.01900-2018] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
The function of the right ventricle determines the fate of patients with pulmonary hypertension. Since right heart failure is the consequence of increased afterload, a full physiological description of the cardiopulmonary unit consisting of both the right ventricle and pulmonary vascular system is required to interpret clinical data correctly. Here, we provide such a description of the unit and its components, including the functional interactions between the right ventricle and its load. This physiological description is used to provide a framework for the interpretation of right heart catheterisation data as well as imaging data of the right ventricle obtained by echocardiography or magnetic resonance imaging. Finally, an update is provided on the latest insights in the pathobiology of right ventricular failure, including key pathways of molecular adaptation of the pressure overloaded right ventricle. Based on these outcomes, future directions for research are proposed. State of the art and research perspectives in pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension with theoretical and practical aspectshttp://ow.ly/18v830mgLiP
Collapse
Affiliation(s)
- Anton Vonk Noordegraaf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kelly Marie Chin
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, TX, USA
| | - François Haddad
- Division of Cardiovascular Medicine, Stanford University and Stanford Cardiovascular Institute, Palo Alto, CA, USA
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Steven Mark Kawut
- Penn Cardiovascular Institute, Dept of Medicine, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Langleben
- Center for Pulmonary Vascular Disease, Cardiology Division, Jewish General Hospital and McGill University, Montreal, QC, Canada
| | - Joost Lumens
- Maastricht University Medical Center, CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands.,Université de Bordeaux, LIRYC (L'Institut de Rythmologie et Modélisation Cardiaque), Bordeaux, France
| | - Robert Naeije
- Dept of Cardiology, Erasme University Hospital, Brussels, Belgium.,Laboratory of Cardiorespiratory Exercise Physiology, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Coffman KE, Curry TB, Dietz NM, Chase SC, Carlson AR, Ziegler BL, Johnson BD. The influence of pulmonary vascular pressures on lung diffusing capacity during incremental exercise in healthy aging. Physiol Rep 2019; 6. [PMID: 29368799 PMCID: PMC5789722 DOI: 10.14814/phy2.13565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/24/2022] Open
Abstract
Alveolar‐capillary surface area for pulmonary gas exchange falls with aging, causing a reduction in lung diffusing capacity for carbon monoxide (DLCO). However, during exercise additional factors may influence DLCO, including pulmonary blood flow and pulmonary vascular pressures. First, we sought to determine the age‐dependent effect of incremental exercise on pulmonary vascular pressures and DLCO. We also aimed to investigate the dependence of DLCO on pulmonary vascular pressures during exercise via sildenafil administration to reduce pulmonary smooth muscle tone. Nine younger (27 ± 4 years) and nine older (70 ± 3 years) healthy subjects performed seven 5‐min exercise stages at rest, 0 (unloaded), 10, 15, 30, 50, and 70% of peak workload before and after sildenafil. DLCO, cardiac output (Q), and pulmonary artery and wedge pressure (mPAP and mPCWP; subset of participants) were collected at each stage. mPAP was higher (P = 0.029) and DLCO was lower (P = 0.009) throughout exercise in older adults; however, the rate of rise in mPAP and DLCO with increasing Q was not different. A reduction in pulmonary smooth muscle tone via sildenafil administration reduced mPAP, mPCWP, and the transpulmonary gradient (TPG = mPAP–mPCWP) in younger and older subjects (P < 0.001). DLCO was reduced following the reduction in mPAP and TPG, regardless of age (P < 0.001). In conclusion, older adults successfully adapt to age‐dependent alterations in mPAP and DLCO. Furthermore, DLCO is dependent on pulmonary vascular pressures, likely to maintain adequate pulmonary capillary recruitment. The rise in pulmonary artery pressure with aging may be required to combat pulmonary vascular remodeling and maintain lung diffusing capacity, particularly during exercise.
Collapse
Affiliation(s)
- Kirsten E Coffman
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Niki M Dietz
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Steven C Chase
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Alex R Carlson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Briana L Ziegler
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Farré R, Almendros I, Montserrat JM, Gozal D, Navajas D. Gas Partial Pressure in Cultured Cells: Patho-Physiological Importance and Methodological Approaches. Front Physiol 2018; 9:1803. [PMID: 30618815 PMCID: PMC6300470 DOI: 10.3389/fphys.2018.01803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Gas partial pressures within the cell microenvironment are one of the key modulators of cell pathophysiology. Indeed, respiratory gases (O2 and CO2) are usually altered in respiratory diseases and gasotransmitters (CO, NO, H2S) have been proposed as potential therapeutic agents. Investigating the pathophysiology of respiratory diseases in vitro mandates that cultured cells are subjected to gas partial pressures similar to those experienced by each cell type in its native microenvironment. For instance, O2 partial pressures range from ∼13% in the arterial endothelium to values as low as 2-5% in cells of other healthy tissues and to less than 1% in solid tumor cells, clearly much lower values than those used in conventional cell culture research settings (∼19%). Moreover, actual cell O2 partial pressure in vivo changes with time, at considerably different timescales as illustrated by tumors, sleep apnea, or mechanical ventilation. Unfortunately, the conventional approach to modify gas concentrations at the above culture medium precludes the tight and exact control of intra-cellular gas levels to realistically mimic the natural cell microenvironment. Interestingly, well-controlled cellular application of gas partial pressures is currently possible through commercially available silicone-like material (PDMS) membranes, which are biocompatible and have a high permeability to gases. Cells are seeded on one side of the membrane and tailored gas concentrations are circulated on the other side of the membrane. Using thin membranes (50-100 μm) the value of gas concentration is instantaneously (<0.5 s) transmitted to the cell microenvironment. As PDMS is transparent, cells can be concurrently observed by conventional or advanced microscopy. This procedure can be implemented in specific-purpose microfluidic devices and in settings that do not require expensive or complex technologies, thus making the procedure readily implementable in any cell biology laboratory. This review describes the gas composition requirements for a cell culture in respiratory research, the limitations of current experimental settings, and also suggests new approaches to better control gas partial pressures in a cell culture.
Collapse
Affiliation(s)
- Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Josep M. Montserrat
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Sleep Lab, Hospital Clinic of Barcelona, Barcelona, Spain
| | - David Gozal
- Department of Child Health, University of Missouri School of Medicine, Columbia, MO, United States
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
18
|
Olschewski A, Berghausen EM, Eichstaedt CA, Fleischmann BK, Grünig E, Grünig G, Hansmann G, Harbaum L, Hennigs JK, Jonigk D, Kuebler WM, Kwapiszewska G, Pullamsetti SS, Stacher E, Weissmann N, Wenzel D, Schermuly RT. Pathobiology, pathology and genetics of pulmonary hypertension: Update from the Cologne Consensus Conference 2018. Int J Cardiol 2018; 272S:4-10. [PMID: 30314839 DOI: 10.1016/j.ijcard.2018.09.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 01/01/2023]
Abstract
The European guidelines, which focus on clinical aspects of pulmonary hypertension (PH), provide only minimal information about the pathophysiological concepts of PH. Here, we review this topic in greater detail, focusing on specific aspects in the pathobiology, pathology and genetics, which include mechanisms of vascular inflammation, the role of transcription factors, ion channels/ion channel diseases, hypoxic pulmonary vasoconstriction, genetics/epigenetics, metabolic dysfunction, and the potential future role of histopathology of PH in the modern era of PH therapy. In addition to new insights in the pathobiology of this disease, this working group of the Cologne Consensus Conference also highlights novel concepts and potential new therapeutic targets to further improve the treatment options in PAH.
Collapse
Affiliation(s)
- Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Physiology, Medical University of Graz, Austria.
| | - Eva M Berghausen
- Department of Internal Medicine III, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Baden-Württemberg, Germany; Institute of Human Genetics, Heidelberg University, Germany
| | | | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Baden-Württemberg, Germany
| | - Gabriele Grünig
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Lars Harbaum
- University Medical Center Hamburg-Eppendorf, II Department of Medicine-Oncology, Hematology, Stem Cell Transplantation, Section of Pneumology, Hamburg, Germany
| | - Jan K Hennigs
- Department of Pediatrics, the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada; Departments of Physiology & Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Physiology, Medical University of Graz, Austria
| | - Soni S Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Austria
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, University of Bonn, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardiopulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
19
|
Yamaguchi K, Tsuji T, Aoshiba K, Nakamura H. Simultaneous measurement of pulmonary diffusing capacity for carbon monoxide and nitric oxide. Respir Investig 2018; 56:100-110. [PMID: 29548647 DOI: 10.1016/j.resinv.2017.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
In Europe and America, the newly-developed, simultaneous measurement of diffusing capacity for CO (DLCO) and NO (DLNO) has replaced the classic DLCO measurement for detecting the pathophysiological abnormalities in the acinar regions. However, simultaneous measurement of DLCO and DLNO is currently not used by Japanese physicians. To encourage the use of DLNO in Japan, the authors reviewed aspects of simultaneously-estimated DLCO and DLNO from previously published manuscripts. The simultaneous DLCO-DLNO technique identifies the alveolocapillary membrane-related diffusing capacity (membrane component, DM) and the blood volume in pulmonary microcirculation (VC); VC is the principal factor constituting the blood component of diffusing capacity (DB,DB=θ·VC where θ is the specific gas conductance for CO or NO in the blood). As the association velocity of NO with hemoglobin (Hb) is fast and the affinity of NO with Hb is high in comparison with those of CO, θNO can be taken as an invariable simply determined by diffusion limitation inside the erythrocyte. This means that θNO is independent of the partial pressure of oxygen (PO2). However, θCO involves the limitations by diffusion and chemical reaction elicited by the erythrocyte, resulting in θCO to be a PO2-dependent variable. Furthermore, DLCO is determined primarily by DB (∼77%), while DLNO is determined equally by DM (∼55%) and DB (∼45%). This suggests that DLCO is more sensitive for detecting microvascular diseases, while DLNO can equally identify alveolocapillary membrane and microcirculatory abnormalities.
Collapse
Affiliation(s)
- Kazuhiro Yamaguchi
- Division of Comprehensive Sleep Medicine, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takao Tsuji
- Respiratory Medicine, Institute of Geriatrics Tokyo Women's Medical University, 2-15-1 Sibuya, Shibuya-ku, 150-0002 Tokyo, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, 300-0395 Ibaraki, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, 300-0395 Ibaraki, Japan.
| |
Collapse
|
20
|
Czerner CP, Winther HB, Zapf A, Wacker F, Vogel-Claussen J. Breath-hold and free-breathing 2D phase-contrast MRI for quantification of oxygen-induced changes of pulmonary circulation dynamics in healthy volunteers. J Magn Reson Imaging 2017; 46:1698-1706. [PMID: 28383791 DOI: 10.1002/jmri.25724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/21/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the effect of inhaled 100% oxygen on pulmonary circulation dynamics in healthy volunteers using 2D phase-contrast magnetic resonance imaging (2D PC MRI). MATERIALS AND METHODS Twenty-one healthy volunteers were examined at 1.5T. Through-plane 2D PC MRI measurements were performed in the main pulmonary artery during free-breathing and breath-hold. Acceleration time and volume, maximum and minimum area, area change, average and maximum mean velocity, forward volume, heart rate, as well as blood pressure were determined. At baseline, subjects breathed room air. After application of a closed-fit full face mask, three further measurements were conducted: at room air (control), directly after starting 15 L/min 100% oxygen (wash-in), and after 5 minutes during continuous oxygen supply (saturation). Data were analyzed with a mixed linear model. Skewed distributed variables were rank-transformed. Tukey contrasts with family-wise adjusted P-values were applied for pairwise comparisons. RESULTS Inhaled oxygen affected several hemodynamic parameters. Average mean velocity (P < 0.01: breath-hold during wash-in and saturation, P = 0.03: free-breathing during saturation) and maximum mean velocity (P < 0.01: breath-hold and free-breathing during saturation) decreased. When obtained during free-breathing, acceleration volume (P = 0.02: saturation), area change (P = 0.02: saturation), and maximum area (P = 0.02: wash-in, P = 0.03: saturation) increased, while minimum area and forward volume did not change. CONCLUSION Oxygen alters pulmonary circulation dynamics in the main pulmonary artery of healthy volunteers, which can be reliably detected using 2D phase-contrast MRI. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1698-1706.
Collapse
Affiliation(s)
- Christoph P Czerner
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Hinrich B Winther
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Antonia Zapf
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
21
|
Zavorsky GS, Hsia CCW, Hughes JMB, Borland CDR, Guénard H, van der Lee I, Steenbruggen I, Naeije R, Cao J, Dinh-Xuan AT. Standardisation and application of the single-breath determination of nitric oxide uptake in the lung. Eur Respir J 2017; 49:49/2/1600962. [PMID: 28179436 DOI: 10.1183/13993003.00962-2016] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/26/2016] [Indexed: 01/03/2023]
Abstract
Diffusing capacity of the lung for nitric oxide (DLNO), otherwise known as the transfer factor, was first measured in 1983. This document standardises the technique and application of single-breath DLNO This panel agrees that 1) pulmonary function systems should allow for mixing and measurement of both nitric oxide (NO) and carbon monoxide (CO) gases directly from an inspiratory reservoir just before use, with expired concentrations measured from an alveolar "collection" or continuously sampled via rapid gas analysers; 2) breath-hold time should be 10 s with chemiluminescence NO analysers, or 4-6 s to accommodate the smaller detection range of the NO electrochemical cell; 3) inspired NO and oxygen concentrations should be 40-60 ppm and close to 21%, respectively; 4) the alveolar oxygen tension (PAO2 ) should be measured by sampling the expired gas; 5) a finite specific conductance in the blood for NO (θNO) should be assumed as 4.5 mL·min-1·mmHg-1·mL-1 of blood; 6) the equation for 1/θCO should be (0.0062·PAO2 +1.16)·(ideal haemoglobin/measured haemoglobin) based on breath-holding PAO2 and adjusted to an average haemoglobin concentration (male 14.6 g·dL-1, female 13.4 g·dL-1); 7) a membrane diffusing capacity ratio (DMNO/DMCO) should be 1.97, based on tissue diffusivity.
Collapse
Affiliation(s)
- Gerald S Zavorsky
- Dept of Respiratory Therapy, Georgia State University, Atlanta, GA, USA
| | - Connie C W Hsia
- Dept of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Colin D R Borland
- Dept of Medicine, University of Cambridge, Hinchingbrooke Hospital, Huntingdon, UK
| | - Hervé Guénard
- Dept of Physiology and Pulmonary Laboratory, University of Bordeaux and CHU, Bordeaux, France
| | - Ivo van der Lee
- Dept of Pulmonary Diseases, Spaarne Hospital, Hoofddorp, The Netherlands
| | | | - Robert Naeije
- Dept of Cardiology, Erasme University Hospital, Brussels, Belgium
| | - Jiguo Cao
- Dept of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | - Anh Tuan Dinh-Xuan
- Dept of Physiology, Cochin Hospital, Paris Descartes University, Paris, France
| |
Collapse
|
22
|
Johansson MJ, Kvitting JPE, Flatebø T, Nicolaysen A, Nicolaysen G, Walther SM. Inhibition of Constitutive Nitric Oxide Synthase Does Not Influence Ventilation-Perfusion Matching in Normal Prone Adult Sheep With Mechanical Ventilation. Anesth Analg 2016; 123:1492-1499. [PMID: 27622722 DOI: 10.1213/ane.0000000000001556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Local formation of nitric oxide in the lung induces vasodilation in proportion to ventilation and is a putative mechanism behind ventilation-perfusion matching. We hypothesized that regional ventilation-perfusion matching occurs in part due to local constitutive nitric oxide formation. METHODS Ventilation and perfusion were analyzed in lung regions (≈1.5 cm) before and after inhibition of constitutive nitric oxide synthase with N-nitro-L-arginine methyl ester (L-NAME) (25 mg/kg) in 7 prone sheep ventilated with 10 cm H2O positive end-expiratory pressure. Ventilation and perfusion were measured by the use of aerosolized fluorescent and infused radiolabeled microspheres, respectively. The animals were exsanguinated while deeply anesthetized; then, lungs were excised, dried at total lung capacity, and divided into cube units. The spatial location for each cube was tracked and fluorescence and radioactivity per unit weight determined. RESULTS After administration of L-NAME, pulmonary artery pressure increased from a mean of 16.6-23.6 mm Hg, P = .007 but PaO2, PaCO2, and SD log(V/Q) did not change. Distribution of ventilation was not influenced by L-NAME, but a small redistribution of perfusion from ventral to dorsal lung regions was observed. Perfusion to regions with the highest ventilation (fifth quintile of the ventilation distribution) remained unchanged after L-NAME. CONCLUSIONS We found minimal or no influence of constitutive nitric oxide synthase inhibition by L-NAME on the distributions of ventilation and perfusion, and ventilation-perfusion in prone, anesthetized, ventilated, and healthy adult sheep with normal gas exchange.
Collapse
Affiliation(s)
- Mats J Johansson
- From the *Department of Cardiothoracic Anesthesia and Intensive Care; †Division of Cardiovascular Medicine, Department of Medical and Health Sciences; ‡Department of Cardiothoracic Surgery, Linköping University Hospital, Linköping, Sweden; and §Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
23
|
Barisione G, Brusasco C, Garlaschi A, Baroffio M, Brusasco V. Lung diffusing capacity for nitric oxide as a marker of fibrotic changes in idiopathic interstitial pneumonias. J Appl Physiol (1985) 2016; 120:1029-38. [DOI: 10.1152/japplphysiol.00964.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
Lung diffusing capacity for carbon monoxide (DLCO) is decreased in both usual interstitial pneumonia-idiopathic pulmonary fibrosis (UIP-IPF) and nonspecific interstitial pneumonia (NSIP), but is moderately related to computed tomography (CT)-determined fibrotic changes. This may be due to the relative insensitivity of DLCO to changes in alveolar membrane diffusive conductance (DMCO). The purpose of this study was to determine whether measurement of lung diffusing capacity for nitric oxide (DLNO) better reflects fibrotic changes than DLCO. DLNO-DLCO were measured simultaneously in 30 patients with UIP-IPF and 30 with NSIP. Eighty-one matched healthy subjects served as a control group. The amount of pulmonary fibrosis was estimated by CT volumetric analysis of visually bounded areas showing reticular opacities and honeycombing. DMCO and pulmonary capillary volume (VC) were calculated. DLNO was below the lower limit of normal in all patients irrespective of extent and nature of disease, whereas DLCO was within the normal range in a nonnegligible number of patients. Both DLNO and DLCO were significantly correlated with visual assessment of fibrosis but DLNO more closely than DLCO. DMCO was also below the lower limit of normal in all UIP-IPF and NSIP patients and significantly correlated with fibrosis extent in both diseases, whereas VC was weakly correlated with fibrosis in UIP-IPF and uncorrelated in NSIP, with normal values in half of patients. In conclusion, measurement of DLNO may provide a more sensitive evaluation of fibrotic changes than DLCO in either UIP-IPF or NSIP, because it better reflects DMCO.
Collapse
Affiliation(s)
- Giovanni Barisione
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, Genoa, Italy; and
| | - Claudia Brusasco
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, Genoa, Italy; and
| | - Alessandro Garlaschi
- Dipartimento di Diagnostica della Patologia e delle Cure ad Alta Complessità Tecnologica, IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Genoa, Italy
| | - Michele Baroffio
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, Genoa, Italy; and
| | - Vito Brusasco
- Unità Operativa Fisiopatologia Respiratoria, Dipartimento di Medicina Interna e Specialità Mediche, Università di Genova, Genoa, Italy; and
| |
Collapse
|
24
|
Hon YY, Lin EE, Tian X, Yang Y, Sun H, Swenson ER, Taveira-Dasilva AM, Gladwin MT, Machado RF. Increased consumption and vasodilatory effect of nitrite during exercise. Am J Physiol Lung Cell Mol Physiol 2015; 310:L354-64. [PMID: 26684248 DOI: 10.1152/ajplung.00081.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 12/11/2015] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effects of aerobic-to-anaerobic exercise on nitrite stores in the human circulation and evaluated the effects of systemic nitrite infusion on aerobic and anaerobic exercise capacity and hemodynamics. Six healthy volunteers were randomized to receive sodium nitrite or saline for 70 min in two separate occasions in an exercise study. Subjects cycled on an upright electronically braked cycle ergometer 30 min into the infusion according to a ramp protocol designed to attain exhaustion in 10 min. They were allowed to recover for 30 min thereafter. The changes of whole blood nitrite concentrations over the 70-min study period were analyzed by pharmacokinetic modeling. Longitudinal measurements of hemodynamic and clinical variables were analyzed by fitting nonparametric regression spline models. During exercise, nitrite consumption/elimination rate was increased by ∼137%. Cardiac output (CO), mean arterial pressure (MAP), and pulmonary artery pressure (PAP) were increased, but smaller elevation of MAP and larger increases of CO and PAP were found during nitrite infusion compared with placebo control. The higher CO and lower MAP during nitrite infusion were likely attributed to vasodilation and a trend toward decrease in systemic vascular resistance. In contrast, there were no significant changes in mean pulmonary artery pressures and pulmonary vascular resistance. These findings, together with the increased consumption of nitrite and production of iron-nitrosyl-hemoglobin during exercise, support the notion of nitrite conversion to release NO resulting in systemic vasodilatation. However, at the dosing used in this protocol achieving micromolar plasma concentrations of nitrite, exercise capacity was not enhanced, as opposed to other reports using lower dosing.
Collapse
Affiliation(s)
- Yuen Yi Hon
- Clinical Center Pharmacy Department, National Institutes of Health, Bethesda, Maryland
| | - Elaina E Lin
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Yang Yang
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - He Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Erik R Swenson
- Division of Pulmonary and Critical Care Medicine, VA Puget Sound Health Care System, University of Washington, Seattle, Washington; and
| | - Angelo M Taveira-Dasilva
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Mark T Gladwin
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Roberto F Machado
- Vascular Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland;
| |
Collapse
|
25
|
Wolf SJ, Reske AP, Hammermüller S, Costa ELV, Spieth PM, Hepp P, Carvalho AR, Kraßler J, Wrigge H, Amato MBP, Reske AW. Correlation of lung collapse and gas exchange - a computer tomographic study in sheep and pigs with atelectasis in otherwise normal lungs. PLoS One 2015; 10:e0135272. [PMID: 26258686 PMCID: PMC4530863 DOI: 10.1371/journal.pone.0135272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
Background Atelectasis can provoke pulmonary and non-pulmonary complications after general anaesthesia. Unfortunately, there is no instrument to estimate atelectasis and prompt changes of mechanical ventilation during general anaesthesia. Although arterial partial pressure of oxygen (PaO2) and intrapulmonary shunt have both been suggested to correlate with atelectasis, studies yielded inconsistent results. Therefore, we investigated these correlations. Methods Shunt, PaO2 and atelectasis were measured in 11 sheep and 23 pigs with otherwise normal lungs. In pigs, contrasting measurements were available 12 hours after induction of acute respiratory distress syndrome (ARDS). Atelectasis was calculated by computed tomography relative to total lung mass (Mtotal). We logarithmically transformed PaO2 (lnPaO2) to linearize its relationships with shunt and atelectasis. Data are given as median (interquartile range). Results Mtotal was 768 (715–884) g in sheep and 543 (503–583) g in pigs. Atelectasis was 26 (16–47) % in sheep and 18 (13–23) % in pigs. PaO2 (FiO2 = 1.0) was 242 (106–414) mmHg in sheep and 480 (437–514) mmHg in pigs. Shunt was 39 (29–51) % in sheep and 15 (11–20) % in pigs. Atelectasis correlated closely with lnPaO2 (R2 = 0.78) and shunt (R2 = 0.79) in sheep (P-values<0.0001). The correlation of atelectasis with lnPaO2 (R2 = 0.63) and shunt (R2 = 0.34) was weaker in pigs, but R2 increased to 0.71 for lnPaO2 and 0.72 for shunt 12 hours after induction of ARDS. In both, sheep and pigs, changes in atelectasis correlated strongly with corresponding changes in lnPaO2 and shunt. Discussion and Conclusion In lung-healthy sheep, atelectasis correlates closely with lnPaO2 and shunt, when blood gases are measured during ventilation with pure oxygen. In lung-healthy pigs, these correlations were significantly weaker, likely because pigs have stronger hypoxic pulmonary vasoconstriction (HPV) than sheep and humans. Nevertheless, correlations improved also in pigs after blunting of HPV during ARDS. In humans, the observed relationships may aid in assessing anaesthesia-related atelectasis.
Collapse
Affiliation(s)
- Samuel J. Wolf
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Alexander P. Reske
- Anaesthesiology and Intensive Care Medicine, Fachkrankenhaus Coswig, Coswig/Meißen, Germany
| | - Sören Hammermüller
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Eduardo L. V. Costa
- Cardio-Pulmonary Department, Pulmonary Division, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
- Research and Education Institute, Hospital Sírio Libanês, São Paulo, Brazil
| | - Peter M. Spieth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Pierre Hepp
- Department of Orthopedic, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Alysson R. Carvalho
- Carlos Chagas Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jens Kraßler
- Anaesthesiology and Intensive Care Medicine, Fachkrankenhaus Coswig, Coswig/Meißen, Germany
| | - Hermann Wrigge
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Marcelo B. P. Amato
- Cardio-Pulmonary Department, Pulmonary Division, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Andreas W. Reske
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
26
|
Frise MC, Robbins PA. Iron, oxygen, and the pulmonary circulation. J Appl Physiol (1985) 2015; 119:1421-31. [PMID: 26066825 PMCID: PMC4683351 DOI: 10.1152/japplphysiol.00179.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/05/2015] [Indexed: 12/24/2022] Open
Abstract
The human pulmonary vasculature vasoconstricts in response to a reduction in alveolar oxygen tension, a phenomenon termed hypoxic pulmonary vasoconstriction (HPV). This review describes the time course of this behavior, which occurs in distinct phases, and then explores the importance for HPV of the hypoxia-inducible factor (HIF) pathway. Next, the HIF-hydroxylase enzymes that act as molecular oxygen sensors within the HIF pathway are discussed. These enzymes are particularly sensitive to intracellular iron availability, which confers iron-sensing properties on the HIF pathway. Human studies of iron chelation and supplementation are then reviewed. These demonstrate that the iron sensitivity of the HIF pathway evident from in vitro experiments is relevant to human pulmonary vascular physiology. Next, the importance of iron status in high-altitude illness and chronic cardiopulmonary disease is explored, and the therapeutic potential of intravenous iron discussed. The review concludes by highlighting some further complexities that arise from interactions between the HIF pathway and other intracellular iron-sensing mechanisms.
Collapse
Affiliation(s)
- Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Sightings edited by Erik Swenson and Peter Bärtsch. High Alt Med Biol 2015. [DOI: 10.1089/ham.2015.29000.stg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|