1
|
Li P, Lu C, Wang M, Mao Y, Wang X, Liu Y, Zhang J, Zhao S. Mapping the pain pathway: the VPL-S1HL-ACC circuit's role in central post-stroke pain. Brain Res Bull 2025; 227:111406. [PMID: 40449628 DOI: 10.1016/j.brainresbull.2025.111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/18/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Central post-stroke pain (CPSP) is a chronic neuropathic condition driven by central sensitization, often resulting in poor clinical outcomes. Neural circuits play a critical role in modulating chronic pain. To elucidate the mechanisms underlying CPSP, we established a mouse model via intracranial injection of type IV collagenase. cFos immunofluorescence and in vivo calcium imaging identified pain-associated activated nuclei. Using viral tracing, optogenetics, chemogenetics, and behavioral assays, we mapped a neural circuit comprising the ventral posterolateral thalamic nucleus (VPL), the hindlimb primary somatosensory cortex (S1HL), and the anterior cingulate cortex (ACC). In CPSP mice, ipsilateral S1HLCaMKIIα and ACCCaMKIIα neurons exhibited robust activation. Chemogenetic manipulation further demonstrated that activation of these neurons induced pain behaviors, whereas their inhibition alleviated pain. Notably, specific activation of the S1HLCaMKIIα-ACCCaMKIIα circuit produced mechanical allodynia, and optogenetic stimulation of VPLCaMKIIα projections to S1HL similarly evoked pain responses while enhancing ACC neuronal firing. These findings underscore the critical role of the VPL-S1HL-ACC circuit in pain abnormalities and provide novel insights into the central sensitization underlying CPSP, suggesting promising therapeutic strategies for its management.
Collapse
Affiliation(s)
- Panyang Li
- Department of Human Anatomy, Histology and Embryology, Faculty of Basic Medicine, Henan Medical College, No.8 Shuanghu Avenue, Zhengzhou 451191, China
| | - Chaofan Lu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Mingliang Wang
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Guangzhou 510818, China
| | - Yuanyuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Xi Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Yi Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Jingjing Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China; Centre for Sport Nutrition and Health, Centre for Nutritional Ecology, School of Physical Education (Main Campus), Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China.
| | - Sen Zhao
- Department of Anesthesiology, Henan Provincial Chest Hospital, Affiliated Chest Hospital of Zhengzhou University, Zhengzhou 450000, China; Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Kim T, Li J, Tao L, Tao J, Wei X. Neuroimaging Characteristics of Pruritus Induced by Eczema: An fMRI Study. Brain Behav 2025; 15:e70415. [PMID: 40123167 PMCID: PMC11930857 DOI: 10.1002/brb3.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To explore the neuroimaging characteristics of eczema-induced pruritus with resting-state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 42 patients with eczema were recruited in the PE group, and 42 healthy participants were included in the HC group. The Visual Analogue Score (VAS), 12-Item Pruritus Severity Scale (12-PSS), Pittsburgh Sleep Quality Index (PSQI), and Self-Rating Anxiety Scale (SAS) were recorded in the PE group. The different values of fraction amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) were compared after rs-fMRI scanning. RESULTS Compared with the HC group, the fALFF values of the left precentral gyrus, left postcentral gyrus, left supplementary motor area (SMA), and left midcingulate cortex in the PE group were increased. The FC values between the left precentral gyrus, bilateral superior temporal gyrus, bilateral hippocampus, and left inferior occipital gyrus in the PE group were decreased. The FC values between left SMA and bilateral superior temporal gyrus in the PE group were decreased. The 12-PSS score was positively correlated with fALFF value of the left precentral gyrus and left postcentral gyrus. CONCLUSION Pruritus caused increased spontaneous activity in given cerebral regions, involving the perception of itch, control of scratching movements, and expression of itch-related emotions. Meanwhile, there is a correlation between fALFF values of given cerebral regions and clinical scales, which provided potential neurobiological markers for the future study of pruritus.
Collapse
Affiliation(s)
- Tae‐eun Kim
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- International Education CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jin Li
- Department of Rehabilitation MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Larissa Tao
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- International Education CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ji‐ming Tao
- Department of Rehabilitation MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐yu Wei
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Prajapati JN, Reddy P, Barik A. Neural pathways that compel us to scratch an itch. J Biosci 2024; 49:70. [PMID: 38973668 PMCID: PMC7617712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Itch is a unique sensory experience that is responded to by scratching. How pruritogens, which are mechanical and chemical stimuli with the potential to cause itch, engage specific pathways in the peripheral and central nervous system has been a topic of intense investigation over the last few years. Studies employing recently developed molecular, physiological, and behavioral techniques have delineated the dedicated mechanisms that transmit itch information to the brain. This review outlines the genetically defined and evolutionary conserved circuits for itch ranging from the skin-innervating peripheral neurons to the cortical neurons that drive scratching. Moreover, scratch suppression of itch is attributed to the concurrent activation of pain and itch pathways. Hence, we discuss the similarities between circuits driving pain and itch.
Collapse
Affiliation(s)
| | - Prannay Reddy
- Center for Neuroscience, Indian Institute of Science, Bengaluru560012, India
| | - Arnab Barik
- Center for Neuroscience, Indian Institute of Science, Bengaluru560012, India
| |
Collapse
|
4
|
Yoon H, Bak MS, Kim SH, Lee JH, Chung G, Kim SJ, Kim SK. Development of a spontaneous pain indicator based on brain cellular calcium using deep learning. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1179-1187. [PMID: 35982300 PMCID: PMC9385425 DOI: 10.1038/s12276-022-00828-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022]
Abstract
Chronic pain remains an intractable condition in millions of patients worldwide. Spontaneous ongoing pain is a major clinical problem of chronic pain and is extremely challenging to diagnose and treat compared to stimulus-evoked pain. Although extensive efforts have been made in preclinical studies, there still exists a mismatch in pain type between the animal model and humans (i.e., evoked vs. spontaneous), which obstructs the translation of knowledge from preclinical animal models into objective diagnosis and effective new treatments. Here, we developed a deep learning algorithm, designated AI-bRNN (Average training, Individual test-bidirectional Recurrent Neural Network), to detect spontaneous pain information from brain cellular Ca2+ activity recorded by two-photon microscopy imaging in awake, head-fixed mice. AI-bRNN robustly determines the intensity and time points of spontaneous pain even in chronic pain models and evaluates the efficacy of analgesics in real time. Furthermore, AI-bRNN can be applied to various cell types (neurons and glia), brain areas (cerebral cortex and cerebellum) and forms of somatosensory input (itch and pain), proving its versatile performance. These results suggest that our approach offers a clinically relevant, quantitative, real-time preclinical evaluation platform for pain medicine, thereby accelerating the development of new methods for diagnosing and treating human patients with chronic pain. A microscopy technique coupled with an artificial intelligence (AI) platform could help researchers discover new types of pain-relief medicines. A team from South Korea led by Sun Kwang Kim of Kyung Hee University and Sang Jeong Kim of Seoul National University created a machine-learning algorithm that converts calcium signaling data in the brain, as estimated via imaging on genetically engineered mice, into a measurement of pain intensity. The researchers applied the technique to several mouse models of chronic pain and showed that it accurately captured the analgesic effects of known painkillers. They also extended the system to multiple brain regions, cell types and another brain-controlled sensory process, itch. The researchers propose using the AI-based tool to evaluate candidate anti-pain and anti-itch medicines ahead of human trials.
Collapse
Affiliation(s)
- Heera Yoon
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myeong Seong Bak
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Hwan Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Chung G, Yun YC, Kim CY, Kim SK, Kim SJ. Metabotropic Glutamate Receptor 5 in the Dysgranular Zone of Primary Somatosensory Cortex Mediates Neuropathic Pain in Rats. Biomedicines 2022; 10:1633. [PMID: 35884938 PMCID: PMC9313034 DOI: 10.3390/biomedicines10071633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The primary somatosensory cortex (S1) plays a key role in the discrimination of somatic sensations. Among subdivisions in S1, the dysgranular zone of rodent S1 (S1DZ) is homologous to Brodmann's area 3a of primate S1, which is involved in the processing of noxious signals from the body. However, molecular changes in this region and their role in the pathological pain state have never been studied. In this study, we identified molecular alteration of the S1DZ in a rat model of neuropathic pain induced by right L5 spinal nerve ligation (SNL) surgery and investigated its functional role in pain symptoms. Brain images acquired from SNL group and control group in our previous study were analyzed, and behaviors were measured using the von Frey test, acetone test, and conditioned place preference test. We found that metabotropic glutamate receptor 5 (mGluR5) levels were significantly upregulated in the S1DZ contralateral to the nerve injury in the SNL group compared to the sham group. Pharmacological deactivation of mGluR5 in S1DZ ameliorated symptoms of neuropathic allodynia, which was shown by a significant increase in the mechanical paw withdrawal threshold and a decrease in the behavioral response to cold stimuli. We further confirmed that this treatment induced relief from the tonic-aversive state of chronic neuropathic pain, as a place preference memory associated with the treatment-paired chamber was formed in rats with neuropathic pain. Our data provide evidence that mGluR5 in the S1DZ is involved in the manifestation of abnormal pain sensations in the neuropathic pain state.
Collapse
Affiliation(s)
- Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.C.); (S.K.K.)
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
| | - Yeong-Chan Yun
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Chae Young Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
- Institut du Cerveau—Paris Brain Institute—ICM, INSERM, Sorbonne Université, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (G.C.); (S.K.K.)
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea; (Y.-C.Y.); (C.Y.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
6
|
Osaki H, Kanaya M, Ueta Y, Miyata M. Distinct nociception processing in the dysgranular and barrel regions of the mouse somatosensory cortex. Nat Commun 2022; 13:3622. [PMID: 35768422 PMCID: PMC9243138 DOI: 10.1038/s41467-022-31272-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nociception, a somatic discriminative aspect of pain, is, like touch, represented in the primary somatosensory cortex (S1), but the separation and interaction of the two modalities within S1 remain unclear. Here, we show spatially distinct tactile and nociceptive processing in the granular barrel field (BF) and adjacent dysgranular region (Dys) in mouse S1. Simultaneous recordings of the multiunit activity across subregions revealed that Dys neurons are more responsive to noxious input, whereas BF neurons prefer tactile input. At the single neuron level, nociceptive information is represented separately from the tactile information in Dys layer 2/3. In contrast, both modalities seem to converge on individual layer 5 neurons of each region, but to a different extent. Overall, these findings show layer-specific processing of nociceptive and tactile information between Dys and BF. We further demonstrated that Dys activity, but not BF activity, is critically involved in pain-like behavior. These findings provide new insights into the role of pain processing in S1. The processing of nociception in the somatosensory cortex (S1) has yet to be fully understood. Here, the authors demonstrate that the dysgranular region in S1 has an affinity for nociception and is critically involved in pain-like behavior.
Collapse
Affiliation(s)
- Hironobu Osaki
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan. .,Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Moeko Kanaya
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, Graduate School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
7
|
Modulation of itch and pain signals processing in ventrobasal thalamus by thalamic reticular nucleus. iScience 2022; 25:103625. [PMID: 35106466 PMCID: PMC8786640 DOI: 10.1016/j.isci.2021.103625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Thalamic reticular nucleus (TRN) is known to be crucial for dynamically modulating sensory processing. Recently, the functional role of TRN in itch and pain sensation processing has drawn much attention. We found that ventrobasal thalamus (VB) neurons exhibited scratching behavior-related and nociceptive behavior-related neuronal activity changes, and most of VB neurons responsive to pruritic stimulus were also activated by nociceptive stimulus. Inhibition of VB could relieve itch-induced scratching behaviors and pathological pain without affecting basal nociceptive thresholds, and activation of VB could facilitate scratching behaviors. Tracing and electrophysiology recording results showed that VB mainly received inhibitory inputs from ventral TRN. Furthermore, optogenetic activation of TRN-VB projections suppressed scratching behaviors, and ablation of TRN enhanced scratching behaviors. In addition, activation of TRN-VB projections relieved the pathological pain without affecting basal nociceptive thresholds. Thus, our study indicates that TRN modulates itch and pain signals processing via TRN-VB inhibitory projections. VB is involved in both itch and pain signals processing Manipulation of VB or TRN-VB inhibitory projections modulates both itch and pain Enhancing the inhibitory tone might be a strategy for treating itch and pain
Collapse
|
8
|
Chen XJ, Liu YH, Xu NL, Sun YG. Itch perception is reflected by neuronal ignition in the primary somatosensory cortex. Natl Sci Rev 2021; 9:nwab218. [PMID: 35769233 PMCID: PMC9232292 DOI: 10.1093/nsr/nwab218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022] Open
Abstract
Multiple cortical areas including the primary somatosensory cortex (S1) are activated during itch signal processing, yet cortical representation of itch perception remains unknown. Using novel miniature two-photon microscopic imaging in free-moving mice, we investigated the coding of itch perception in S1. We found that pharmacological inactivation of S1 abolished itch-induced scratching behavior, and the itch-induced scratching behavior could be well predicted by the activity of a fraction of layer 2/3 pyramidal neurons, suggesting that a subpopulation of S1 pyramidal neurons encoded itch perception, as indicated by immediate subsequent scratching behaviors. With a newly established optogenetics-based paradigm that allows precisely controlled pruritic stimulation, we found that a small fraction of S1 neurons exhibited an ignition-like pattern at the detection threshold of itch perception. Our study revealed the neural mechanism underlying itch perceptual coding in S1, thus paving the way for the study of cortical representation of itch perception at the single-neuron level in freely moving animals.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-He Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning-Long Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | | |
Collapse
|
9
|
Mu D, Sun YG. Circuit Mechanisms of Itch in the Brain. J Invest Dermatol 2021; 142:23-30. [PMID: 34662562 DOI: 10.1016/j.jid.2021.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Itch is an unpleasant somatic sensation with the desire to scratch, and it consists of sensory, affective, and motivational components. Acute itch serves as a critical protective mechanism because an itch-evoked scratching response will help to remove harmful substances invading the skin. Recently, exciting progress has been made in deciphering the mechanisms of itch at both the peripheral nervous system and the CNS levels. Key neuronal subtypes and circuits have been revealed for ascending transmission and the descending modulation of itch. In this review, we mainly summarize the current understanding of the central circuit mechanisms of itch in the brain.
Collapse
Affiliation(s)
- Di Mu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|