1
|
McClaskey CM. Neural hyperactivity and altered envelope encoding in the central auditory system: Changes with advanced age and hearing loss. Hear Res 2024; 442:108945. [PMID: 38154191 PMCID: PMC10942735 DOI: 10.1016/j.heares.2023.108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Temporal modulations are ubiquitous features of sound signals that are important for auditory perception. The perception of temporal modulations, or temporal processing, is known to decline with aging and hearing loss and negatively impact auditory perception in general and speech recognition specifically. However, neurophysiological literature also provides evidence of exaggerated or enhanced encoding of specifically temporal envelopes in aging and hearing loss, which may arise from changes in inhibitory neurotransmission and neuronal hyperactivity. This review paper describes the physiological changes to the neural encoding of temporal envelopes that have been shown to occur with age and hearing loss and discusses the role of disinhibition and neural hyperactivity in contributing to these changes. Studies in both humans and animal models suggest that aging and hearing loss are associated with stronger neural representations of both periodic amplitude modulation envelopes and of naturalistic speech envelopes, but primarily for low-frequency modulations (<80 Hz). Although the frequency dependence of these results is generally taken as evidence of amplified envelope encoding at the cortex and impoverished encoding at the midbrain and brainstem, there is additional evidence to suggest that exaggerated envelope encoding may also occur subcortically, though only for envelopes with low modulation rates. A better understanding of how temporal envelope encoding is altered in aging and hearing loss, and the contexts in which neural responses are exaggerated/diminished, may aid in the development of interventions, assistive devices, and treatment strategies that work to ameliorate age- and hearing-loss-related auditory perceptual deficits.
Collapse
Affiliation(s)
- Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, MSC 550, Charleston, SC 29425, United States.
| |
Collapse
|
2
|
Bachmann FL, Kulasingham JP, Eskelund K, Enqvist M, Alickovic E, Innes-Brown H. Extending Subcortical EEG Responses to Continuous Speech to the Sound-Field. Trends Hear 2024; 28:23312165241246596. [PMID: 38738341 PMCID: PMC11092544 DOI: 10.1177/23312165241246596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
The auditory brainstem response (ABR) is a valuable clinical tool for objective hearing assessment, which is conventionally detected by averaging neural responses to thousands of short stimuli. Progressing beyond these unnatural stimuli, brainstem responses to continuous speech presented via earphones have been recently detected using linear temporal response functions (TRFs). Here, we extend earlier studies by measuring subcortical responses to continuous speech presented in the sound-field, and assess the amount of data needed to estimate brainstem TRFs. Electroencephalography (EEG) was recorded from 24 normal hearing participants while they listened to clicks and stories presented via earphones and loudspeakers. Subcortical TRFs were computed after accounting for non-linear processing in the auditory periphery by either stimulus rectification or an auditory nerve model. Our results demonstrated that subcortical responses to continuous speech could be reliably measured in the sound-field. TRFs estimated using auditory nerve models outperformed simple rectification, and 16 minutes of data was sufficient for the TRFs of all participants to show clear wave V peaks for both earphones and sound-field stimuli. Subcortical TRFs to continuous speech were highly consistent in both earphone and sound-field conditions, and with click ABRs. However, sound-field TRFs required slightly more data (16 minutes) to achieve clear wave V peaks compared to earphone TRFs (12 minutes), possibly due to effects of room acoustics. By investigating subcortical responses to sound-field speech stimuli, this study lays the groundwork for bringing objective hearing assessment closer to real-life conditions, which may lead to improved hearing evaluations and smart hearing technologies.
Collapse
Affiliation(s)
| | - Joshua P. Kulasingham
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | | | - Martin Enqvist
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Emina Alickovic
- Eriksholm Research Centre, Snekkersten, Denmark
- Automatic Control, Department of Electrical Engineering, Linköping University, Linköping, Sweden
| | - Hamish Innes-Brown
- Eriksholm Research Centre, Snekkersten, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Gillis M, Van Canneyt J, Francart T, Vanthornhout J. Neural tracking as a diagnostic tool to assess the auditory pathway. Hear Res 2022; 426:108607. [PMID: 36137861 DOI: 10.1016/j.heares.2022.108607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
When a person listens to sound, the brain time-locks to specific aspects of the sound. This is called neural tracking and it can be investigated by analysing neural responses (e.g., measured by electroencephalography) to continuous natural speech. Measures of neural tracking allow for an objective investigation of a range of auditory and linguistic processes in the brain during natural speech perception. This approach is more ecologically valid than traditional auditory evoked responses and has great potential for research and clinical applications. This article reviews the neural tracking framework and highlights three prominent examples of neural tracking analyses: neural tracking of the fundamental frequency of the voice (f0), the speech envelope and linguistic features. Each of these analyses provides a unique point of view into the human brain's hierarchical stages of speech processing. F0-tracking assesses the encoding of fine temporal information in the early stages of the auditory pathway, i.e., from the auditory periphery up to early processing in the primary auditory cortex. Envelope tracking reflects bottom-up and top-down speech-related processes in the auditory cortex and is likely necessary but not sufficient for speech intelligibility. Linguistic feature tracking (e.g. word or phoneme surprisal) relates to neural processes more directly related to speech intelligibility. Together these analyses form a multi-faceted objective assessment of an individual's auditory and linguistic processing.
Collapse
Affiliation(s)
- Marlies Gillis
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Jana Van Canneyt
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Jonas Vanthornhout
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
4
|
Tong J, Zhang J, Xu L, Liu M, Min J, Yao M, Cheng X, Zhang Q, Sun X, Yuan J. Effect of hearing loss on cognitive function in patients with mild cognitive impairment: A prospective, randomized, and controlled study. Front Aging Neurosci 2022; 14:934921. [PMID: 35978946 PMCID: PMC9376470 DOI: 10.3389/fnagi.2022.934921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hearing loss (HL) may increase the risk of cognitive decline in the elderly. However, the randomized controlled study on the effect of HL on cognitive function in mild cognitive impairment (MCI) is very limited. Methods From 1 November 2020 to 30 March 2022, 1,987 individuals aged 55–65 years were randomly divided into the MCI with hearing impairment (MCI-HI), MCI without HI (MCI-nHI), and no MCI (nMCI) groups by stratified sampling, with 30 participants in each group. The Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), the pure tone audiometry (PTA), and the auditory brainstem response (ABR) were measured at baseline and a follow-up 12 months later. The trial protocol was registered with ClinicalTrials.gov with the registration number NCT05336942. Results Among the 90 participants, the average age was 60.41 ± 6.48 years. In the MCI-HI group at baseline, the PTA score of both the ears was negatively correlated with the naming and memory score (p < 0.05), and the PTA score of both the ears was negatively correlated with the MoCA and abstraction score at the 12-month follow-up (p < 0.05). However, there were no significant differences among the PTA, the ABR, the MMSE, and the MoCA scores in the MCI-nHI and nMCI groups (p > 0.05). Regression analysis showed that the PTA score of the right ear at baseline was an important factor associated with the MoCA, visuospatial/executive, naming, and abstraction scores at the 12-month follow-up (β = −0.776 to −0.422, p < 0.05). Conclusion HL was significantly negatively associated with cognitive function only in patients with MCI with hearing impairment (HI), and the PTA of the right ear may be a predictor of cognitive decline after 1 year in patients with MCI with HI. This information may help primary healthcare clinicians to prevent MCI by screening and intervening in care for elderly patients with HL.
Collapse
Affiliation(s)
- Jie Tong
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Luli Xu
- Department of Otolaryngology, Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Meiling Liu
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Jie Min
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Miaomiao Yao
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyan Cheng
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Qi Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xirong Sun
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
- Xirong Sun
| | - Jie Yuan
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Jie Yuan
| |
Collapse
|
5
|
Bachmann FL, MacDonald EN, Hjortkjær J. Neural Measures of Pitch Processing in EEG Responses to Running Speech. Front Neurosci 2022; 15:738408. [PMID: 35002597 PMCID: PMC8729880 DOI: 10.3389/fnins.2021.738408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Linearized encoding models are increasingly employed to model cortical responses to running speech. Recent extensions to subcortical responses suggest clinical perspectives, potentially complementing auditory brainstem responses (ABRs) or frequency-following responses (FFRs) that are current clinical standards. However, while it is well-known that the auditory brainstem responds both to transient amplitude variations and the stimulus periodicity that gives rise to pitch, these features co-vary in running speech. Here, we discuss challenges in disentangling the features that drive the subcortical response to running speech. Cortical and subcortical electroencephalographic (EEG) responses to running speech from 19 normal-hearing listeners (12 female) were analyzed. Using forward regression models, we confirm that responses to the rectified broadband speech signal yield temporal response functions consistent with wave V of the ABR, as shown in previous work. Peak latency and amplitude of the speech-evoked brainstem response were correlated with standard click-evoked ABRs recorded at the vertex electrode (Cz). Similar responses could be obtained using the fundamental frequency (F0) of the speech signal as model predictor. However, simulations indicated that dissociating responses to temporal fine structure at the F0 from broadband amplitude variations is not possible given the high co-variance of the features and the poor signal-to-noise ratio (SNR) of subcortical EEG responses. In cortex, both simulations and data replicated previous findings indicating that envelope tracking on frontal electrodes can be dissociated from responses to slow variations in F0 (relative pitch). Yet, no association between subcortical F0-tracking and cortical responses to relative pitch could be detected. These results indicate that while subcortical speech responses are comparable to click-evoked ABRs, dissociating pitch-related processing in the auditory brainstem may be challenging with natural speech stimuli.
Collapse
Affiliation(s)
- Florine L Bachmann
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ewen N MacDonald
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Jens Hjortkjær
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|