1
|
Xie T, Schorn RE, Kitto KF, Florio SK, Peterson CD, Wilcox GL, Vulchanova L, Fairbanks CA. Agmatine inhibits NMDA receptor-mediated calcium transients in mouse spinal cord dorsal horn via intact PSD95-nNOS signaling. J Pharmacol Exp Ther 2024; 392:100061. [PMID: 39969272 PMCID: PMC11969267 DOI: 10.1016/j.jpet.2024.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
Intrathecal administration of agmatine, an NMDA receptor (NMDAr) antagonist and nitric oxide synthase inhibitor, prevents neuropathic pain behavior in a dose-dependent manner by acting at the GluN2B subunit of the NMDAr. The present study investigated the pharmacological mechanism of agmatine's inhibitory effect using calcium imaging and an in vivo assay of nociceptive responses induced by NMDA. The application of NMDA-evoked calcium transients in the mouse spinal cord dorsal horn slice was inhibited by the NMDAr antagonist, 2-amino-5-phosphonovalerate. Agmatine also concentration-dependently inhibited NMDA-evoked calcium responses. To evaluate the role of the GluN2B subunit of the NMDAr in the agmatine response, we conditionally knocked-down Grin2B, the gene encoding GluN2B, in spinal cord dorsal horn neurons (GluN2B knockdown [GluN2B-KD]). In control spinal cord slices, ifenprodil inhibited NMDAr-mediated calcium transients, but it was not effective in GluN2B-KD. Surprisingly, agmatine was equally effective in reducing calcium transients in control and GluN2B-KD mouse spinal cord slices. To determine whether the effect of agmatine could be attributed to an action downstream of the NMDAr (eg, neuronal nitric oxide synthase [nNOS]), we used the PSD95-nNOS tethering inhibitor, IC87201, to disrupt the link between NMDAr and nNOS. In the presence of IC87201, agmatine's attenuation of NMDA-evoked calcium transients in ex vivo spinal cord dorsal horn was significantly reversed as was agmatine's antihyperalgesic effect in the intrathecal NMDA-evoked thermal hyperalgesia in vivo model. These results indicated that agmatine requires an intact NMDAr-PSD95-nNOS pathway to attenuate NMDAr-mediated calcium transients and thermal hyperalgesia induced by intrathecal NMDA. SIGNIFICANCE STATEMENT: Chronic pain is an urgent public health concern, and effective long-term treatments are still needed. Agmatine reduces pain in preclinical models without the side effects of motor dysfunction or addiction. Clarifying the pharmacological mechanism of agmatine's analgesic effect in spinal neurotransmission may facilitate the development of novel pain-alleviating therapeutics.
Collapse
Affiliation(s)
- Tongzhen Xie
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Rachel E Schorn
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | | - Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota; Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota; Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
2
|
Rafi H, Rafiq H, Farhan M. Pharmacological profile of agmatine: An in-depth overview. Neuropeptides 2024; 105:102429. [PMID: 38608401 DOI: 10.1016/j.npep.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Agmatine, a naturally occurring polyamine derived from arginine via arginine decarboxylase, has been shown to play multifaceted roles in the mammalian body, impacting a wide range of physiological and pathological processes. This comprehensive review delineates the significant insights into agmatine's pharmacological profile, emphasizing its structure and metabolism, neurotransmission and regulation, and pharmacokinetics and function. Agmatine's biosynthesis is highly conserved across species, highlighting its fundamental role in cellular functions. In the brain, comparable to established neurotransmitters, agmatine acts as a neuromodulator, influencing the regulation, metabolism, and reabsorption of neurotransmitters that are key to mood disorders, learning, cognition, and the management of anxiety and depression. Beyond its neuromodulatory functions, agmatine exhibits protective effects across various cellular and systemic contexts, including neuroprotection, nephroprotection, cardioprotection, and cytoprotection, suggesting a broad therapeutic potential. The review explores agmatine's interaction with multiple receptor systems, including NMDA, α2-adrenoceptors, and imidazoline receptors, elucidating its role in enhancing cell viability, neuronal protection, and synaptic plasticity. Such interactions underpin agmatine's potential in treating neurological diseases and mood disorders, among other conditions. Furthermore, agmatine's pharmacokinetics, including its absorption, distribution, metabolism, and excretion, are discussed, underlining the complexity of its action and the potential for therapeutic application. The safety and efficacy of agmatine supplementation, demonstrated through various animal and human studies, affirm its potential as a beneficial therapeutic agent. Conclusively, the diverse physiological and therapeutic effects of agmatine, spanning neurotransmission, protection against cellular damage, and modulation of various receptor pathways, position it as a promising candidate for further research and clinical application. This review underscores the imperative for continued exploration into agmatine's mechanisms of action and its potential in pharmacology and medicine, promising advances in the treatment of numerous conditions.
Collapse
Affiliation(s)
- Hira Rafi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biochemistry, University of Karachi, Pakistan.
| | - Hamna Rafiq
- Department of Biochemistry, University of Karachi, Pakistan
| | | |
Collapse
|
3
|
Clements BM, Peterson CD, Kitto KF, Caye LD, Wilcox GL, Fairbanks CA. Biodistribution of Agmatine to Brain and Spinal Cord after Systemic Delivery. J Pharmacol Exp Ther 2023; 387:328-336. [PMID: 37770201 PMCID: PMC10658908 DOI: 10.1124/jpet.123.001828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
Agmatine, an endogenous polyamine, has been shown to reduce chronic pain behaviors in animal models and in patients. This reduction is due to inhibition of the GluN2B subunit of the N-methyl-D-aspartate receptor (NMDAR) in the central nervous system (CNS). The mechanism of action requires central activity, but the extent to which agmatine crosses biologic barriers such as the blood-brain barrier (BBB) and intestinal epithelium is incompletely understood. Determination of agmatine distribution is limited by analytical protocols with low sensitivity and/or inefficient preparation. This study validated a novel bioanalytical protocol using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) for quantification of agmatine in rat biologic matrices. These protocols were then used to determine the plasma pharmacokinetics of agmatine and the extent of distribution to the CNS. Precision and accuracy of the protocol met US Food and Drug Administration (FDA) standards in surrogate matrix as well as in corrected concentrations in appropriate matrices. The protocol also adequately withstood stability and dilution conditions. Upon application of this protocol to pharmacokinetic study, intravenous agmatine showed a half-life in plasma ranging between 18.9 and 14.9 minutes. Oral administration led to a prolonged plasma half-life (74.4-117 minutes), suggesting flip-flop kinetics, with bioavailability determined to be 29%-35%. Intravenous administration led to a rapid increase in agmatine concentration in brain but a delayed distribution and lower concentrations in spinal cord. However, half-life of agmatine in both tissues is substantially longer than in plasma. These data suggest that agmatine adequately crosses biologic barriers in rat and that brain and spinal cord pharmacokinetics can be functionally distinct. SIGNIFICANCE STATEMENT: Agmatine has been shown to be an effective nonopioid therapy for chronic pain, a significantly unmet medical necessity. Here, using a novel bioanalytical protocol for quantification of agmatine, we present the plasma pharmacokinetics and the first report of agmatine oral bioavailability as well as variable pharmacokinetics across different central nervous system tissues. These data provide a distributional rationale for the pharmacological effects of agmatine as well as new evidence for kinetic differences between brain and spinal cord.
Collapse
Affiliation(s)
- Benjamin M Clements
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Cristina D Peterson
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Kelley F Kitto
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Lukas D Caye
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Department of Pharmaceutics (B.M.C., C.D.P., C.A.F.), Department of Pharmacology (L.D.C., G.L.W., C.A.F.), Department of Neuroscience (K.F.K., G.L.W., C.A.F.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
5
|
Lopez MF, Davis EC, Cucinello-Ragland JA, Regunathan S, Edwards S, Becker HC. Agmatine reduces alcohol drinking and produces antinociceptive effects in rodent models of alcohol use disorder. Alcohol 2023; 109:23-33. [PMID: 36709008 PMCID: PMC10175169 DOI: 10.1016/j.alcohol.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing disorder characterized by an escalation of drinking and the emergence of negative affective states over time. Within this framework, alcohol may be used in excessive amounts to alleviate withdrawal-related symptoms, such as hyperalgesia. Future effective therapeutics for AUD may need to exhibit the ability to reduce drinking as well as to alleviate co-morbid conditions such as pain, and to take mechanistic sex differences into consideration. Agmatine is an endogenous neuromodulator that has been previously implicated in the regulation of reward and pain processing. In the current set of studies, we examined the ability of agmatine to reduce escalated ethanol drinking in complementary models of AUD where adult male and female mice and rats were made dependent via chronic, intermittent ethanol vapor exposure (CIE). We also examined the ability of agmatine to modify thermal and mechanical sensitivity in alcohol-dependent male and female rats. Agmatine reduced alcohol drinking in a dose-dependent fashion, with somewhat greater selectivity in alcohol-dependent female mice (versus non-dependent female mice), but equivalent efficacy across male mice and both groups of male and female rats. In mice and female rats, this efficacy did not extend to sucrose drinking, indicating some selectivity for ethanol reinforcement. Female rats made dependent on alcohol demonstrated significant hyperalgesia symptoms, and agmatine produced dose-dependent antinociceptive effects across both sexes. While additional mechanistic studies into agmatine are necessary, these findings support the broad-based efficacy of agmatine to treat co-morbid excessive drinking and pain symptoms in the context of AUD.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Erin C Davis
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Jessica A Cucinello-Ragland
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Soundar Regunathan
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Scott Edwards
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, United States.
| |
Collapse
|
6
|
Peterson CD, Waataja JJ, Kitto KF, Erb SJ, Verma H, Schuster DJ, Churchill CC, Riedl MS, Belur LR, Wolf DA, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Long-term reversal of chronic pain behavior in rodents through elevation of spinal agmatine. Mol Ther 2023; 31:1123-1135. [PMID: 36710491 PMCID: PMC10124077 DOI: 10.1016/j.ymthe.2023.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Jonathan J Waataja
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Samuel J Erb
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Harsha Verma
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel J Schuster
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Caroline C Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Lalitha R Belur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Daniel A Wolf
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, College of Pharmacy, 9-177 Weaver Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Ostovan VR, Amiri Z, Moezi L, Pirsalami F, Esmaili Z, Moosavi M. The effects of subchronic agmatine on passive avoidance memory, anxiety-like behavior and hippocampal Akt/GSK-3β in mice. Behav Pharmacol 2022; 33:42-50. [PMID: 34954711 DOI: 10.1097/fbp.0000000000000666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Agmatine, a polyamine derived from l-arginine, has been suggested to modulate memory. However, the available evidence regarding the effect of agmatine on the memory of intact animals is contradictory. This study aimed to assess the dose-response effect of subchronic agmatine on passive avoidance memory and anxiety-like parameters of elevated plus maze in adult intact mice. Furthermore, considering the roles of Akt/GSK-3β signaling pathway in memory and Alzheimer's disease, the hippocampal contents of phosphorylated and total forms of Akt and GSK-3β proteins were determined using the western blot technique. Agmatine was administered intraperitoneally at the doses of 10, 20, 30, 40 and 80 mg/kg/daily to adult male NMRI mice for 10 days after which the behavioral assessments were performed. Upon completion of the passive avoidance test, the hippocampi were removed for western blot analysis to detect the phosphorylated and total levels of Akt and GSK-3β proteins. Results showed the biphasic effect of agmatine on passive avoidance memory; in lower doses (10, 20 and 30 mg/kg), agmatine impaired memory whereas in higher ones (40 and 80 mg/kg) improved it. Though, agmatine in none of the doses affected animals' anxiety-like parameters in an elevated plus maze. Moreover, the memory-improving doses of agmatine augmented Akt/GSK-3β pathway. This study showed the biphasic effect of agmatine on passive avoidance memory and an augmentation of hippocampal Akt/GSK-3β signaling pathway following the memory-improving doses of this polyamine.
Collapse
Affiliation(s)
- Vahid Reza Ostovan
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz
| | - Zeynab Amiri
- Clinical Neurology Research Center and Department of Neurology, Shiraz University of Medical Sciences, Shiraz
| | - Leila Moezi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz
| | - Fatema Pirsalami
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz
| | - Zahra Esmaili
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Moosavi
- Nanobiology and Nanomedicine Research Centre, Shiraz University of Medical Sciences, Shiraz
| |
Collapse
|
8
|
Peterson CD, Kitto KF, Verma H, Pflepsen K, Delpire E, Wilcox GL, Fairbanks CA. Agmatine requires GluN2B-containing NMDA receptors to inhibit the development of neuropathic pain. Mol Pain 2021; 17:17448069211029171. [PMID: 34210178 PMCID: PMC8255568 DOI: 10.1177/17448069211029171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine’s alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.
Collapse
Affiliation(s)
- Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Harsha Verma
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kelsey Pflepsen
- Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt School of Medicine, Nashville, TN, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.,Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| | - Carolyn A Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Graduate Program in Experimental and Clinical Pharmacology, University of Minnesota, University of Minnesota, Minneapolis, MN, USA.,Department of Pharmaceutics, University of Minnesota, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Abo El Gheit RE, Soliman NA, Badawi GA, Madi NM, El-Saka MH, Badr SM, Emam MN. Retinoprotective effect of agmatine in streptozotocin-induced diabetic rat model: avenues for vascular and neuronal protection : Agmatine in diabetic retinopathy. J Physiol Biochem 2021; 77:305-320. [PMID: 33635523 DOI: 10.1007/s13105-021-00799-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is the most common diabetic neurovascular complication, and the leading cause of preventable blindness among working-age individuals. Recently, agmatine, the endogenous decarboxylated L-arginine, has gained attention as a pleiotropic agent that modulates the diabetes-associated decline in quality of life, and exhibited varied protective biological effects. Diabetes was induced by a single streptozotocin (STZ, 50 mg/kg, i.p.) injection. When diabetes was verified, the animals were randomly allocated into three groups (16 rat each); diabetic, agmatine-treated diabetic (1 mg/kg, daily, for 12 weeks), and control group. Blood glucose homeostasis, retinal redox status, apoptotic parameters, nitric oxide synthase (NOS), nitric oxide (NO), vascular endothelial growth factor (VEGF), glutamate, glutamine, glutamine synthase (GS) activity, nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and mitogen-activated protein kinase (MAPKs) pathways were assayed biochemically. Retinal vascular permeability was measured. Retinal morphology was evaluated by hematoxylin and eosin staining. Retinal N-methyl-D-aspartic acid receptor1 (NMDAR1) and glutamate aspartate transporter (GLAST) mRNA were quantified. Glucose transporter 1, pro-caspase3, and glial fibrillary acidic protein (GFAP) expression were quantified by immunohistochemistry. Chronic agmatine treatment abrogated STZ-induced retinal neurodegeneration features including gliosis, and neuronal apoptosis, restored retinal vascular permeability, mostly through antioxidant, anti-apoptotic capacity, abolishing glutamate excitotoxicity, modulating the activity of NMDARs, MAPKs/NFκB, and NOS/NO pathways. By restoring the molecular and functional background of retinal neurovascular homeostatic balance, agmatine would be appropriate therapeutic option acting upstream of the DR, impeding its progression.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada A Badawi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish, Egypt
| | - Nermin M Madi
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mervat H El-Saka
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shimaa M Badr
- Histology Departments, Tanta University, Tanta, Egypt
| | - Marwa N Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Lionetto L, Guglielmetti M, Cipolla F, Bernardini S, Koehler BE, Capi M, De Bernardini D, Curto M, Manetti R, Nicoletti F, Simmaco M, Martelletti P. Polyamines serum levels in episodic and chronic migraine. Expert Rev Neurother 2020; 21:249-254. [PMID: 33295216 DOI: 10.1080/14737175.2021.1862650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background: Previous studies focused on food as the trigger of a migraine attack did not consider polyamines as possible activators and sensitizers of the trigeminal-vascular system through their interaction with NMDA glutamate receptors. Therefore, this study aimed to assess serum levels of nine polyamines and to evaluate their role as possible triggers and crisis maintainers in episodic and chronic migraine patients. Materials and methods: The study included 50 patients with episodic migraine (EM), 50 patients with chronic migraine (CM) and 50 healthy controls (HC). Serum levels of nine polyamines have been determined by Liquid Chromatography tandem Mass Spectrometry. Specifically, agmatine, spermidine, spermine, putrescine, cadaverine, arginine, ornithine, citrulline and lysine levels were studied. Results: Agmatine serum levels resulted reduced in EC patients with respect to CM and HC. Compared to HC subjects, serum levels of spermine and spermidine were statistically significantly increased both in CM and EM patients. Conclusions: The authors suggest that alterations of polyamines levels might contribute to the understanding of migraine external activation and help to clarify the potential role of NMDA receptor polyamines site antagonists in migraine treatment.
Collapse
Affiliation(s)
- Luana Lionetto
- Laboratory of Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital , Rome, Italy
| | - Martina Guglielmetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome, Italy.,Department of Medical, Surgical and Experimental Sciences, University of Sassari , Sassari, Italy
| | - Fabiola Cipolla
- Laboratory of Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital , Rome, Italy
| | - Simone Bernardini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome, Italy
| | | | - Matilde Capi
- Laboratory of Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital , Rome, Italy
| | - Donatella De Bernardini
- Laboratory of Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital , Rome, Italy
| | - Martina Curto
- Department of Neurology and Psychiatry, Sapienza University , Rome, Italy.,Bipolar & Psychotic Disorders Program, McLean Hospital , Belmont, MA, USA
| | - Roberto Manetti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari , Sassari, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University , Rome, Italy.,I.R.C.C.S. Neuromed , Pozzilli, Italy
| | - Maurizio Simmaco
- Laboratory of Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital , Rome, Italy.,Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Advanced Molecular Diagnostic Unit (Dima), Sant'Andrea Hospital-Sapienza University , Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome, Italy
| |
Collapse
|