1
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed Representations of Sound and Action in the Auditory Midbrain. J Neurosci 2024; 44:e1831232024. [PMID: 38918064 PMCID: PMC11270520 DOI: 10.1523/jneurosci.1831-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.
Collapse
Affiliation(s)
- Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Quass GL, Rogalla MM, Ford AN, Apostolides PF. Mixed representations of sound and action in the auditory midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558449. [PMID: 37786676 PMCID: PMC10541616 DOI: 10.1101/2023.09.19.558449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Linking sensory input and its consequences is a fundamental brain operation. Accordingly, neural activity of neo-cortical and limbic systems often reflects dynamic combinations of sensory and behaviorally relevant variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur in brain regions upstream of the forebrain is less clear. Here, we conduct cellular-resolution 2-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues and mice's actions, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus in behaving animals, auditory midbrain neurons transmit a population code that reflects a joint representation of sound and action.
Collapse
Affiliation(s)
- GL Quass
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - MM Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - AN Ford
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - PF Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Mourão FAG, Guarnieri LDO, Amaral Júnior PA, Carvalho VR, Mendes EMAM, Moraes MFD. A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments. Front Neurosci 2022; 15:691788. [PMID: 35309085 PMCID: PMC8928121 DOI: 10.3389/fnins.2021.691788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Electrophysiological recordings lead amongst the techniques that aim to investigate the dynamics of neural activity sampled from large neural ensembles. However, the financial costs associated with the state-of-the-art technology used to manufacture probes and multi-channel recording systems make these experiments virtually inaccessible to small laboratories, especially if located in developing countries. Here, we describe a new method for implanting several tungsten electrode arrays, widely distributed over the brain. Moreover, we designed a headstage system, using the Intan® RHD2000 chipset, associated with a connector (replacing the expensive commercial Omnetics connector), that allows the usage of disposable and inexpensive cranial implants. Our results showed high-quality multichannel recording in freely moving animals (detecting local field, evoked responses and unit activities) and robust mechanical connections ensuring long-term continuous recordings. Our project represents an open source and inexpensive alternative to develop customized extracellular records from multiple brain regions.
Collapse
Affiliation(s)
- Flávio Afonso Gonçalves Mourão
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo de Oliveira Guarnieri
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Aparecido Amaral Júnior
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Rezende Carvalho
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Eduardo Mazoni Andrade Marçal Mendes
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Moraes MFD, de Castro Medeiros D, Mourao FAG, Cancado SAV, Cota VR. Epilepsy as a dynamical system, a most needed paradigm shift in epileptology. Epilepsy Behav 2021; 121:106838. [PMID: 31859231 DOI: 10.1016/j.yebeh.2019.106838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
The idea of the epileptic brain being highly excitable and facilitated to synchronic activity has guided pharmacological treatment since the early twentieth century. Although tackling epilepsy's seizure-prone feature, by tonically modifying overall circuit excitability and/or connectivity, the last 50 years of drug development has not seen a substantial improvement in seizure suppression of refractory epilepsies. This review presents a new conceptual framework for epilepsy in which the temporal dynamics of the disease plays a more critical role in both its understanding and therapeutic strategies. The repetitive epileptiform pattern (characteristic during ictal activity) and other well-defined electrographic signatures (i.e., present during the interictal period) are discussed in terms of the sequential activation of the circuit motifs. Lessons learned from the physiological activation of neural circuitry are used to further corroborate the argument and explore the transition from proper function to a state of instability. Furthermore, the review explores how interfering in the temporally dependent abnormal connectivity between circuits may work as a therapeutic approach. We also review the use of probing stimulation to access network connectivity and evaluate its power to determine transitional states of the dynamical system as it moves towards regions of instability, especially when conventional electrographic monitoring is proven inefficient. Unorthodox cases, with little or no scalp electrographic correlate, in which ictogenic circuitry and/or seizure spread is temporally restricted to neurovegetative, cognitive, and motivational areas are shown as possible explanations for sudden death in epilepsy (SUDEP) and other psychiatric comorbidities. In short, this review presents a paradigm shift in the way that we address the disease and is aimed to encourage debate rather than narrow the rationale epilepsy is currently engaged in. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Afonso Gonçalves Mourao
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Vinicius Rosa Cota
- Laboratório Interdisciplinar de Neuroengenharia e Neurociências, Departamento de Engenharia Elétrica, Universidade Federal de São João Del-Rei, São João Del-Rei, Brazil
| |
Collapse
|
5
|
Simões CS, Mourão FAG, Guarnieri LO, Passos MC, Moraes MF. Amygdala inhibition impairs fear conditioning but increases the stimulus-driven activity in the inferior colliculus. Neurosci Lett 2020; 738:135311. [PMID: 32818588 DOI: 10.1016/j.neulet.2020.135311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
It has been shown that fear conditioning improves the steady-state evoked potentials driven by a long lasting amplitude modulated tone in the inferior colliculus. In this work we tested the hypothesis that the amygdala modulates this effect, since it plays a crucial role in assessing the biological relevance of environmental stimuli. We inhibited the basolateral nucleus of the amygdala of rats by injecting a GABAa receptor agonist (muscimol) before the recall test session of an auditory fear conditioning paradigm and recorded the evoked activity in the central nucleus of the inferior colliculus. According to our results, the treatment with muscimol decreased the expression of freezing behavior during the recall test session, but did not impair the entrainment of the evoked activity in the inferior colliculus induced by fear conditioning. We repeated the injection protocol with another group of rats but without pairing the tone to an aversive stimulus and observed that the inhibition of the basolateral amygdala enhances the stimulus-driven activity in the inferior colliculus regardless of the conditioning task. Our findings suggest that the basolateral amygdala exerts a tonic modulation over the encoding of sensory information at the early stages of the sensory pathway.
Collapse
Affiliation(s)
- Cristiano Soares Simões
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Oliveira Guarnieri
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Matheus Costa Passos
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Márcio Flávio Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Amaral-Júnior PA, Mourão FAG, Amancio MCL, Pinto HPP, Carvalho VR, Guarnieri LDO, Magalhães HA, Moraes MFD. A Custom Microcontrolled and Wireless-Operated Chamber for Auditory Fear Conditioning. Front Neurosci 2019; 13:1193. [PMID: 31787872 PMCID: PMC6853868 DOI: 10.3389/fnins.2019.01193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Animal behavioral paradigms, such as classical conditioning and operant conditioning, are an important tool to study the neural basis of cognition and behavior. These paradigms involve manipulating sensory stimuli in a way that learning processes are induced under controlled experimental conditions. However, the majority of the commercially available equipment did not offer flexibility to manipulate stimuli. Therefore, the development of most versatile devices would allow the study of more complex cognitive functions. The purpose of this work is to present a low-cost, customized and wireless-operated chamber for animal behavior conditioning, based on the joint operation of two microcontroller modules: Arduino Due and ESP8266-12E. Our results showed that the auditory stimulation system allows setting the carrier frequency in the range of 1 Hz up to more than 100 kHz and the sound stimulus can be modulated in amplitude, also over a wide range of frequencies. Likewise, foot-shock could be precisely manipulated regarding its amplitude (from ∼200 μA to ∼1500 μA) and frequency (up to 20 pulses per second). Finally, adult rats exposed to a protocol of cued fear conditioning in our device showed consistent behavioral response and electrophysiological evoked responses in the midbrain auditory pathway. Furthermore, the device developed in the current study represents an open source alternative to develop customized protocols to study fear memory under conditions of varied sensory stimuli.
Collapse
Affiliation(s)
- Paulo Aparecido Amaral-Júnior
- Programa de Pós Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Chamon Ladeira Amancio
- Programa de Pós Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hyorrana Priscila Pereira Pinto
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Rezende Carvalho
- Programa de Pós Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo de Oliveira Guarnieri
- Programa de Pós Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hermes Aguiar Magalhães
- Programa de Pós Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Pinto HPP, de Oliveira Lucas EL, Carvalho VR, Mourão FAG, de Oliveira Guarnieri L, Mendes EMAM, de Castro Medeiros D, Moraes MFD. Seizure Susceptibility Corrupts Inferior Colliculus Acoustic Integration. Front Syst Neurosci 2019; 13:63. [PMID: 31780904 PMCID: PMC6851260 DOI: 10.3389/fnsys.2019.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/11/2019] [Indexed: 01/20/2023] Open
Abstract
Evidence suggests that the pathophysiology associated with epileptic susceptibility may disturb the functional connectivity of neural circuits and compromise the brain functions, even when seizures are absent. Although memory impairment is a common comorbidity found in patients with epilepsy, it is still unclear whether more caudal structures may play a role in cognitive deficits, particularly in those cases where there is no evidence of hippocampal sclerosis. This work used a genetically selected rat strain for seizure susceptibility (Wistar audiogenic rat, WAR) and distinct behavioral (motor and memory-related tasks) and electrophysiological (inferior colliculus, IC) approaches to access acoustic primary integrative network properties. The IC neural assemblies' response was evaluated by auditory transient (focusing on bottom-up processing) and steady-state evoked response (ASSR, centering on feedforward and feedback forces over neural circuitry). The results show that WAR displayed no disturbance in motor performance or hippocampus-dependent memory tasks. Nonetheless, WAR animals exhibited significative impairment for auditory fear conditioning (AFC) along with no indicative of IC plastic changes between the pre-conditioning and test phases (ASSR coherence analysis). Furthermore, WAR's IC response to transient stimuli presented shorter latency and higher amplitude compared with Wistar; and the ASSR analysis showed similar results for WAR and Wistar animals under subthreshold dose of pentylenetetrazol (pro-convulsive drug) for seizure-induction. Our work demonstrated alterations at WAR IC neural network processing, which may explain the associated disturbance on AFC memory.
Collapse
Affiliation(s)
- Hyorrana Priscila Pereira Pinto
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eric Levi de Oliveira Lucas
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Rezende Carvalho
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Afonso Gonçalves Mourão
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo de Oliveira Guarnieri
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Mazoni Andrade Marçal Mendes
- Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel de Castro Medeiros
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|