1
|
Shin D, Cho KH, Joo K, Rhie DJ. Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:517-527. [PMID: 33093273 PMCID: PMC7585589 DOI: 10.4196/kjpp.2020.24.6.517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/15/2022]
Abstract
Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent long-term depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.
Collapse
Affiliation(s)
- Dongchul Shin
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea
| | - Kwang-Hyun Cho
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea
| | - Kayoung Joo
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea
| | - Duck-Joo Rhie
- Department of Physiology, The Catholic University of Korea, Seoul 06591, Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
2
|
Xu W, Löwel S, Schlüter OM. Silent Synapse-Based Mechanisms of Critical Period Plasticity. Front Cell Neurosci 2020; 14:213. [PMID: 32765222 PMCID: PMC7380267 DOI: 10.3389/fncel.2020.00213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Critical periods are postnatal, restricted time windows of heightened plasticity in cortical neural networks, during which experience refines principal neuron wiring configurations. Here, we propose a model with two distinct types of synapses, innate synapses that establish rudimentary networks with innate function, and gestalt synapses that govern the experience-dependent refinement process. Nascent gestalt synapses are constantly formed as AMPA receptor-silent synapses which are the substrates for critical period plasticity. Experience drives the unsilencing and stabilization of gestalt synapses, as well as synapse pruning. This maturation process changes synapse patterning and consequently the functional architecture of cortical excitatory networks. Ocular dominance plasticity (ODP) in the primary visual cortex (V1) is an established experimental model for cortical plasticity. While converging evidence indicates that the start of the critical period for ODP is marked by the maturation of local inhibitory circuits, recent results support our model that critical periods end through the progressive maturation of gestalt synapses. The cooperative yet opposing function of two postsynaptic signaling scaffolds of excitatory synapses, PSD-93 and PSD-95, governs the maturation of gestalt synapses. Without those proteins, networks do not progress far beyond their innate functionality, resulting in rather impaired perception. While cortical networks remain malleable throughout life, the cellular mechanisms and the scope of critical period and adult plasticity differ. Critical period ODP is initiated with the depression of deprived eye responses in V1, whereas adult ODP is characterized by an initial increase in non-deprived eye responses. Our model proposes the gestalt synapse-based mechanism for critical period ODP, and also predicts a different mechanism for adult ODP based on the sparsity of nascent gestalt synapses at that age. Under our model, early life experience shapes the boundaries (the gestalt) for network function, both for its optimal performance as well as for its pathological state. Thus, reintroducing nascent gestalt synapses as plasticity substrates into adults may improve the network gestalt to facilitate functional recovery.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Neuroscience, Brown University, Providence, RI, United States
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Siegrid Löwel
- Department of Systems Neuroscience, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, University of Göttingen, Göttingen, Germany
- Campus Institute for Dynamics of Biological Networks, University of Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Oliver M. Schlüter
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex. J Neurosci 2017; 37:9353-9360. [PMID: 28821676 DOI: 10.1523/jneurosci.0334-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/04/2017] [Accepted: 08/11/2017] [Indexed: 12/29/2022] Open
Abstract
LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity, which may involve changes in NMDAR subunit composition and function. However, the effects of reexposure to light after dark rearing from birth on LTP induction have not been explored. Here, we showed that the light exposure after dark rearing revealed a novel NMDAR independent form of LTP in the layer 2/3 pyramidal cells in visual cortex of mice of both sexes, which is dependent on mGluR5 activation and is associated with intracellular Ca2+ rise, CaMKII activity, PKC activity, and intact protein synthesis. Moreover, the capacity to induce mGluR-dependent LTP is transient: it only occurs when mice of both sexes reared in the dark from birth are exposed to light for 10-12 h, and it does not occur in vision-experienced, male mice, even after prolonged exposure to dark. Thus, the mGluR5-LTP unmasked by short visual experience can only be observed after dark rearing but not after dark exposure. These results suggested that, as in hippocampus, in layer 2/3 of visual cortex, there is coexistence of two distinct activity-dependent systems of synaptic plasticity, NMDAR-LTP, and mGluR5-LTP. The mGluR5-LTP unmasked by short visual experience may play a critical role in the faster establishment of normal receptive field properties.SIGNIFICANCE STATEMENT LTP has been known to be a mechanism by which experience modifies synaptic responses in the neocortex. Visual deprivation in the form of dark exposure or dark rearing from birth enhances NMDAR-dependent LTP in layer 2/3 of visual cortex, a process often termed metaplasticity. NMDAR-dependent form of LTP in visual cortex has been well characterized. Here, we report that an NMDAR-independent form of LTP can be promoted by novel visual experience on dark-reared mice, characterized as dependent on intracellular Ca2+ rise, PKC activity, and intact protein synthesis and also requires the activation of mGluR5. These findings suggest that, in layer 2/3 of visual cortex, as in hippocampus, there is coexistence of two distinct activity-dependent systems of synaptic plasticity.
Collapse
|
4
|
Kang SJ, Kaang BK. Metabotropic glutamate receptor dependent long-term depression in the cortex. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:557-564. [PMID: 27847432 PMCID: PMC5106389 DOI: 10.4196/kjpp.2016.20.6.557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), a type of synaptic plasticity, is characterized by a reduction in the synaptic response, mainly at the excitatory synapses of the neurons. The hippocampus and the cerebellum have been the most extensively studied regions in mGluR-dependent LTD, and Group 1 mGluR has been reported to be mainly involved in this synaptic LTD at excitatory synapses. However, mGluR-dependent LTD in other brain regions may be involved in the specific behaviors or diseases. In this paper, we focus on five cortical regions and review the literature that implicates their contribution to the pathogenesis of several behaviors and specific conditions associated with mGluR-dependent LTD.
Collapse
Affiliation(s)
- Sukjae Joshua Kang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
Sun W, Wang L, Li S, Tie X, Jiang B. Layer-specific endocannabinoid-mediated long-term depression of GABAergic neurotransmission onto principal neurons in mouse visual cortex. Eur J Neurosci 2015; 42:1952-65. [PMID: 25997857 DOI: 10.1111/ejn.12958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Visually induced endocannabinoid-mediated long-term depression of GABAergic neurotransmission (iLTD) mediates the maturation of GABAergic release in layer 2/3 of visual cortex. Here we examined whether the maturation of GABAergic transmission in other layers of visual cortex also requires endocannabinoids. The developmental plasticity of GABAergic neurotransmission onto the principal neurons in different layers of mouse visual cortex was examined in cortical slices by whole-cell recordings of inhibitory postsynaptic currents evoked by presynaptic inhibitory inputs. Theta burst stimulation of GABAergic inputs induced an endocannabinoid-mediated long-term depression of GABAergic neurotransmission onto pyramidal cells in layer 2/3 from postnatal day (P)10 to 30 and in layer 5 from P10 to 40, whereas that of GABAergic inputs did not induce iLTD onto star pyramidal neurons in layer 4 at any time postnatally, indicating that this plasticity is laminar-specific. The developmental loss of iLTD paralleled the maturation of GABAergic inhibition in both layer 2/3 and layer 5. Visual deprivation delayed the developmental loss of iLTD in layers 3 and 5 during a critical period, while 2 days of light exposure eliminated iLTD in both layers. Furthermore, the GABAergic synapses in layers 2/3 and 5 did not normally mature in the type 1 cannabinoid receptor knock-out mice, whereas those in layer 4 did not require endocannabinoid receptor for maturation. These results suggest that visually induced endocannabinoid-dependent iLTD mediates the maturation of GABAergic release in extragranular layer rather than in granular layer of mouse visual cortex.
Collapse
Affiliation(s)
- Wenjuan Sun
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Laijian Wang
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Shuo Li
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Xiaoxiu Tie
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| | - Bin Jiang
- Neuroscience Research Center, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, 74, Zhongshan Road 2, Guangzhou, 510080, China
| |
Collapse
|
6
|
Reciprocal Homosynaptic and heterosynaptic long-term plasticity of corticogeniculate projection neurons in layer VI of the mouse visual cortex. J Neurosci 2013; 33:7787-98. [PMID: 23637171 DOI: 10.1523/jneurosci.5350-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most neurons in layer VI of the visual cortex project to the dorsal lateral geniculate nucleus (dLGN). These corticogeniculate projection neurons (CG cells) receive top-down synaptic inputs from upper layers (ULs) and bottom-up inputs from the underlying white matter (WM). Use-dependent plasticity of these synapses in layer VI of the cortex has received less attention than in other layers. In the present study, we used a retrograde tracer injected into dLGN to identify CG cells, and, by analyzing EPSPs evoked by electrical stimulation of the UL or WM site, examined whether these synapses show long-term synaptic plasticity. Theta-burst stimulation induced long-term potentiation (LTP) of activated synapses (hom-LTP) and long-term depression (LTD) of nonactivated synapses (het-LTD) in either pathway. The paired-pulse stimulation protocol and the analysis of coefficient variation of EPSPs suggested postsynaptic induction of these changes except UL-induced het-LTD, which may be presynaptic in origin. Intracellular injection of a Ca(2+)-chelator suggested an involvement of postsynaptic Ca(2+) rise in all types of long-term plasticity. Pharmacological analysis indicated that NMDA receptors and type-5 metabotropic glutamate receptors are involved in WM-induced and UL-induced plasticity, respectively. Analysis with inhibitors and/or in transgenic mice suggested an involvement of cannabinoid type 1 receptors and calcineurin in UL-induced and WM-induced het-LTD, respectively. These results suggest that hom-LTP and het-LTD may play a role in switching the top-down or bottom-up regulation of CG cell function and/or in maintaining stability of synaptic transmission efficacy through different molecular mechanisms.
Collapse
|
7
|
Sur M, Nagakura I, Chen N, Sugihara H. Mechanisms of plasticity in the developing and adult visual cortex. PROGRESS IN BRAIN RESEARCH 2013; 207:243-54. [PMID: 24309257 DOI: 10.1016/b978-0-444-63327-9.00002-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The visual cortex provides powerful evidence for experience-dependent plasticity during development, and for stimulus and reinforcement-dependent plasticity in adulthood. The synaptic and circuit mechanisms underlying such plasticity are being progressively understood. Increasing evidence supports the hypothesis that plasticity in both the developing and adult visual cortex is initiated by a transient reduction of inhibitory drive, and implemented by persistent changes at excitatory synapses. Developmental plasticity may be induced by alterations in the balance of activity from the two eyes and is implemented by a cascade of signals that lead to feedforward and feedback changes at synapses. Adult plasticity is imposed on mature synapses and requires additional neurotransmitter-dependent mechanisms that alter inhibition and subsequently response gain.
Collapse
Affiliation(s)
- Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
8
|
Experience-dependent switch in sign and mechanisms for plasticity in layer 4 of primary visual cortex. J Neurosci 2012; 32:10562-73. [PMID: 22855806 DOI: 10.1523/jneurosci.0622-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits are extensively refined by sensory experience during postnatal development. How the maturation of recurrent cortical synapses may contribute to events regulating the postnatal refinement of neocortical microcircuits remains controversial. Here we show that, in the main input layer of rat primary visual cortex, layer 4 (L4), recurrent excitatory synapses are endowed with multiple, developmentally regulated mechanisms for induction and expression of excitatory synaptic plasticity. Maturation of L4 synapses and visual experience lead to a sharp switch in sign and mechanisms for plasticity at recurrent excitatory synapses in L4 at the onset of the critical period for visual cortical plasticity. The state of maturation of excitatory pyramidal neurons allows neurons to engage different mechanisms for plasticity in response to the same induction paradigm. Experience is determinant for the maturation of L4 synapses, as well as for the transition between forms of plasticity and the mechanisms they may engage. These results indicate a tight correlation between the effects of sensory drive and maturation on cortical neurons and provide a new set of cellular mechanisms engaged in the postnatal refinement of cortical circuits.
Collapse
|
9
|
Visual cortex plasticity: a complex interplay of genetic and environmental influences. Neural Plast 2012; 2012:631965. [PMID: 22852098 PMCID: PMC3407658 DOI: 10.1155/2012/631965] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/11/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans.
Collapse
|
10
|
Gagolewicz PJ, Dringenberg HC. NR2B-subunit dependent facilitation of long-term potentiation in primary visual cortex following visual discrimination training of adult rats. Eur J Neurosci 2011; 34:1222-9. [PMID: 21895803 DOI: 10.1111/j.1460-9568.2011.07842.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Long-term potentiation (LTP) is an important mechanism thought to mediate changes in synaptic connectivity following various types of experience. We examined the effects of visual discrimination training on LTP in the mature, rodent thalamocortical visual system. Adult rats underwent visual discrimination training in a modified Morris Water Maze containing a Y-maze insert, requiring rats to associate visual cues with the location of a hidden escape platform placed in one of the two goal arms of the Y-maze insert. On the day following successful task acquisition (average of nine training days), rats were anesthetized (urethane), and LTP in the thalamocortical system was characterized. In task-naïve rats, theta-burst stimulation of the lateral geniculate nucleus resulted in modest (∼40%) potentiation of field postsynaptic potentials recorded in the primary visual cortex (V1). Rats trained on the visual discrimination task showed significantly greater levels of LTP (∼60%), an effect that was not seen in rats trained to swim in the maze without a predictive association between visual cues and platform location. An antagonist of the N-methyl-d-aspartate (NMDA) receptor NR2B subunit ([R-(R *,S *)]-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol hydrochloride (Ro 25-6981); 2 mm, applied locally at the recording site in V1) reversed the training-induced LTP enhancement without affecting LTP in task-naïve rats. An antagonist of metabotropic glutamate receptors [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY 341495); 2 mm] was ineffective in reversing the training-induced LTP facilitation. These data suggest that behavioral (visual) training can result in changes in plasticity exhibited by the mature, thalamocortical visual system that require activation of NMDA receptors containing the NR2B subunit.
Collapse
Affiliation(s)
- Peter J Gagolewicz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
11
|
Lee HK, Kirkwood A. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex. Semin Cell Dev Biol 2011; 22:514-20. [PMID: 21856433 DOI: 10.1016/j.semcdb.2011.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 11/16/2022]
Abstract
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and Lømo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Biology, University of Maryland, College Park, MD 20742, United States.
| | | |
Collapse
|
12
|
Petrus E, Anguh TT, Pho H, Lee A, Gammon N, Lee HK. Developmental switch in the polarity of experience-dependent synaptic changes in layer 6 of mouse visual cortex. J Neurophysiol 2011; 106:2499-505. [PMID: 21813745 DOI: 10.1152/jn.00111.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Layer 6 (L6) of primary sensory cortices is distinct from other layers in that it provides a major cortical input to primary sensory thalamic nuclei. L6 pyramidal neurons in the primary visual cortex (V1) send projections to the lateral geniculate nucleus (LGN), as well as to the thalamic reticular nucleus and higher order thalamic nuclei. Although L6 neurons are proposed to modulate the activity of thalamic relay neurons, how sensory experience regulates L6 neurons is largely unknown. Several days of visual deprivation homeostatically adjusts excitatory synapses in L4 and L2/3 of V1 depending on the developmental age. For instance, L4 exhibits an early critical period during which visual deprivation homeostatically scales up excitatory synaptic transmission. On the other hand, homeostatic changes in L2/3 excitatory synapses are delayed and persist into adulthood. In the present study we examined how visual deprivation affects excitatory synapses on L6 pyramidal neurons. We found that L6 pyramidal neurons homeostatically increase the strength of excitatory synapses following 2 days of dark exposure (DE), which was readily reversed by 1 day of light exposure. This effect was restricted to an early critical period, similar to that reported for L4 neurons. However, at a later developmental age, a longer duration of DE (1 wk) decreased the strength of excitatory synapses, which reversed to normal levels with light exposure. These changes are opposite to what is predicted from the homeostatic plasticity theory. Our results suggest that L6 neurons differentially adjust their excitatory synaptic strength to visual deprivation depending on the age of the animals.
Collapse
Affiliation(s)
- Emily Petrus
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | |
Collapse
|
13
|
Frégnac Y, Pananceau M, René A, Huguet N, Marre O, Levy M, Shulz DE. A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo. Front Synaptic Neurosci 2010; 2:147. [PMID: 21423533 PMCID: PMC3059677 DOI: 10.3389/fnsyn.2010.00147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022] Open
Abstract
Spike timing-dependent plasticity (STDP) is considered as an ubiquitous rule for associative plasticity in cortical networks in vitro. However, limited supporting evidence for its functional role has been provided in vivo. In particular, there are very few studies demonstrating the co-occurrence of synaptic efficiency changes and alteration of sensory responses in adult cortex during Hebbian or STDP protocols. We addressed this issue by reviewing and comparing the functional effects of two types of cellular conditioning in cat visual cortex. The first one, referred to as the “covariance” protocol, obeys a generalized Hebbian framework, by imposing, for different stimuli, supervised positive and negative changes in covariance between postsynaptic and presynaptic activity rates. The second protocol, based on intracellular recordings, replicated in vivo variants of the theta-burst paradigm (TBS), proven successful in inducing long-term potentiation in vitro. Since it was shown to impose a precise correlation delay between the electrically activated thalamic input and the TBS-induced postsynaptic spike, this protocol can be seen as a probe of causal (“pre-before-post”) STDP. By choosing a thalamic region where the visual field representation was in retinotopic overlap with the intracellularly recorded cortical receptive field as the afferent site for supervised electrical stimulation, this protocol allowed to look for possible correlates between STDP and functional reorganization of the conditioned cortical receptive field. The rate-based “covariance protocol” induced significant and large amplitude changes in receptive field properties, in both kitten and adult V1 cortex. The TBS STDP-like protocol produced in the adult significant changes in the synaptic gain of the electrically activated thalamic pathway, but the statistical significance of the functional correlates was detectable mostly at the population level. Comparison of our observations with the literature leads us to re-examine the experimental status of spike timing-dependent potentiation in adult cortex. We propose the existence of a correlation-based threshold in vivo, limiting the expression of STDP-induced changes outside the critical period, and which accounts for the stability of synaptic weights during sensory cortical processing in the absence of attention or reward-gated supervision.
Collapse
Affiliation(s)
- Yves Frégnac
- Centre National de la Recherche Scientifique, Unité de Neuroscience, Information et Complexité Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Hager AM, Dringenberg HC. Assessment of different induction protocols to elicit long-term depression (LTD) in the rat visual cortex in vivo. Brain Res 2010; 1318:33-41. [DOI: 10.1016/j.brainres.2009.12.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
|
15
|
Synaptic plasticity in the adult visual cortex is regulated by the metabotropic glutamate receptor, mGLUR5. Exp Brain Res 2009; 199:391-9. [DOI: 10.1007/s00221-009-1965-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
|
16
|
Corson J, Nahmani M, Lubarsky K, Badr N, Wright C, Erisir A. Sensory activity differentially modulates N-methyl-D-aspartate receptor subunits 2A and 2B in cortical layers. Neuroscience 2009; 163:920-32. [PMID: 19596055 DOI: 10.1016/j.neuroscience.2009.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/22/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
Activity-dependent modulation of N-methyl-d-aspartate (NMDA) receptors containing selective NR2 subunits has been implicated in plastic processes in developing and adult sensory cortex. Aiming to reveal differential sensitivity of NR2 subunits to sustained changes in sensory activity, we utilized four paradigms that blocked, reinstated, or initiated sensory visual activity. Laminar prevalence of N-methyl-d-aspartate receptor subunit 2A- (NR2A)- and N-methyl-d-aspartate receptor subunit 2B- (NR2B)-containing synapses in visual cortex of postnatal and adult ferrets was assessed using quantitative electron microscopy. Light-deprivation at all ages resulted in a downregulation of NR2A, while recovery from deprivation resulted in an upregulation. Furthermore, premature eyelid opening caused a precocious increase of NR2A. Thus, transitions between periods of dark and light rapidly and bidirectionally regulate NR2A, regardless of cortical layer or age. In contrast, NR2B regulation is layer- and age-dependent. Only in layer IV, NR2B prevalence displays a one-time decline about 3 weeks after the initiation of sensory activity upon normal or premature eyelid opening, or upon termination of dark-rearing. Incongruity in patterns of NR2A and NR2B modulation by activity is consistent with involvement of these subunits in two distinct, yet partially co-occurring processes: developmental plasticity with a critical period, and lifelong plasticity that is established in early developmental ages.
Collapse
Affiliation(s)
- J Corson
- Department of Psychology, 102 Gilmer Hall, University of Virginia, P.O. Box 400400, Charlottesville, VA 22904, USA
| | | | | | | | | | | |
Collapse
|
17
|
Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc Natl Acad Sci U S A 2009; 106:9860-5. [PMID: 19470483 DOI: 10.1073/pnas.0901305106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The classic example of experience-dependent cortical plasticity is the ocular dominance (OD) shift in visual cortex after monocular deprivation (MD). The experimental model of homosynaptic long-term depression (LTD) was originally introduced to study the mechanisms that could account for deprivation-induced loss of visual responsiveness. One established LTD mechanism is a loss of sensitivity to the neurotransmitter glutamate caused by internalization of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Although it has been shown that MD similarly causes a loss of AMPARs from visual cortical synapses, the contribution of this change to the OD shift has not been established. Using an herpes simplex virus (HSV) vector, we expressed in visual cortical neurons a peptide (G2CT) designed to block AMPAR internalization by hindering the association of the C-terminal tail of the AMPAR GluR2 subunit with the AP2 clathrin adaptor complex. We found that G2CT expression interferes with NMDA receptor (NMDAR)-dependent AMPAR endocytosis and LTD, without affecting baseline synaptic transmission. When expressed in vivo, G2CT completely blocked the OD shift and depression of deprived-eye responses after MD without affecting baseline visual responsiveness or experience-dependent response potentiation in layer 4 of visual cortex. These data suggest that AMPAR internalization is essential for the loss of synaptic strength caused by sensory deprivation in visual cortex.
Collapse
|
18
|
Smith GB, Heynen AJ, Bear MF. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:357-67. [PMID: 18977732 PMCID: PMC2674473 DOI: 10.1098/rstb.2008.0198] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that α-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-d-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field.
Collapse
Affiliation(s)
- Gordon B Smith
- Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
19
|
Tropea D, Van Wart A, Sur M. Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 2009; 364:341-55. [PMID: 18977729 PMCID: PMC2674480 DOI: 10.1098/rstb.2008.0269] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A remarkable amount of our current knowledge of mechanisms underlying experience-dependent plasticity during cortical development comes from study of the mammalian visual cortex. Recent advances in high-resolution cellular imaging, combined with genetic manipulations in mice, novel fluorescent recombinant probes, and large-scale screens of gene expression, have revealed multiple molecular mechanisms that underlie structural and functional plasticity in visual cortex. We situate these mechanisms in the context of a new conceptual framework of feed-forward and feedback regulation for understanding how neurons of the visual cortex reorganize their connections in response to changes in sensory inputs. Such conceptual advances have important implications for understanding not only normal development but also pathological conditions that afflict the central nervous system.
Collapse
Affiliation(s)
- Daniela Tropea
- Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
20
|
Kato N. Neurophysiological mechanisms of electroconvulsive therapy for depression. Neurosci Res 2009; 64:3-11. [PMID: 19321135 DOI: 10.1016/j.neures.2009.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/15/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
The neurobiological foundation of electroconvulsive therapy (ECT) remains fragile. How ECT affects neural activities in the brain of depressives is largely unknown. There has been accumulating knowledge on genes and molecules induced by the animal model of ECT. Exact functions of those molecules in the context of mood disorder remain unknown. Among the dozens of molecules highly expressed by ECT, one that shows an especially prominent induction (>6-fold) is Homer 1a, a member of the intracellular scaffold protein family Homer. We have examined effects of Homer 1a in ECT-subjected cortical pyramidal cells, on the basis of which two neurobiological consequences of ECT are proposed. First, Homer 1a either injected intracellularly or induced by ECT was shown to reduce neuronal excitability. This agrees with diverse lines of mutually consistent clinical investigations, which unanimously point to an enhanced excitability in the cerebral cortex of depressive patients. The GABAergic dysfunction hypothesis of depression was thus revitalized. Second, again by relying on Homer 1a, we have proposed a molecular mechanism by which ECT affects a form of long-term depression (LTD). The possibility is discussed that clinical effects of ECT are exerted at least partly by reducing neural excitability and modifying synaptic plasticity.
Collapse
Affiliation(s)
- Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| |
Collapse
|
21
|
Jang HJ, Cho KH, Kim HS, Hahn SJ, Kim MS, Rhie DJ. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex. J Neurophysiol 2008; 101:269-75. [PMID: 18971296 DOI: 10.1152/jn.90900.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Supragranular long-term potentiation (LTP) and depression (LTD) are continuously induced in the pathway from layer 4 during the critical period in the rodent primary visual cortex, which limits the use of supragranular long-term synaptic plasticity as a synaptic model for the mechanism of ocular dominance (OD) plasticity. The results of the present study demonstrate that the pulse duration of extracellular stimulation to evoke a field potential (FP) is critical to induction of LTP and LTD in this pathway. LTP and LTD were induced in the pathway from layer 4 to layer 2/3 in slices from 3-wk-old rats when FPs were evoked by 0.1- and 0.2-ms pulses. LTP and LTD were induced in slices from 5-wk-old rats when evoked by stimulation with a 0.2-ms pulse but not by stimulation with a 0.1-ms pulse. Both the inhibitory component of FP and the inhibitory/excitatory postsynaptic potential amplitude ratio evoked by stimulation with a 0.1-ms pulse were greater than the values elicited by a 0.2-ms pulse. Stimulation with a 0.1-ms pulse at various intensities that showed the similar inhibitory FP component with the 0.2-ms pulse induced both LTD and LTP in 5-wk-old rats. Thus extracellular stimulation with shorter-duration pulses at higher intensity resulted in greater inhibition than that observed with longer-duration pulses at low intensity. This increased inhibition might be involved in the age-dependent decline of synaptic plasticity during the critical period. These results provide an alternative synaptic model for the mechanism of OD plasticity.
Collapse
Affiliation(s)
- Hyun-Jong Jang
- Department of Physiology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Roles of endocannabinoids in heterosynaptic long-term depression of excitatory synaptic transmission in visual cortex of young mice. J Neurosci 2008; 28:7074-83. [PMID: 18614676 DOI: 10.1523/jneurosci.0899-08.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tetanic stimulation of one of two afferent pathways converging to neurons in the visual cortex induces long-term depression (LTD) of synaptic transmission in the other, nonactivated pathway under a certain condition. This form of synaptic plasticity called heterosynaptic LTD (hetero-LTD) was not systematically investigated in previous studies, whereas homosynaptic LTD has been extensively studied. To determine whether hetero-LTD is induced in visual cortical slices of mice and, if so, through what mechanisms, we recorded EPSPs evoked in layer II/III neurons by alternating test stimulation of two sites in layer IV at 0.05 Hz. After theta-burst stimulation of one site, EPSPs evoked by test stimulation of the other site were depressed for a long time in most of the neurons, whereas homosynaptic long-term potentiation was induced at activated synapses. Such a hetero-LTD was induced in most mice at postnatal day 7-20 (P7-P20), but not induced in mice at P35-P41. Tests using the paired-pulse stimulation protocol and coefficient of variation analysis suggested that hetero-LTD was expressed at presynaptic sites. Pharmacological analysis indicated that this form of LTD was induced through activation of the type 5 of metabotropic glutamate receptors, not through the NMDA type of glutamate receptors. Additional analysis using a cannabinoid type 1 receptor agonist and an antagonist suggested that endocannabinoids (eCBs) are involved in this type of LTD. Moreover, results suggest that brain-derived neurotrophic factor, which may be released from strongly activated presynaptic sites, prevents eCBs from suppressing the release of transmitters from these sites.
Collapse
|
23
|
Ueta Y, Yamamoto R, Sugiura S, Inokuchi K, Kato N. Homer 1a suppresses neocortex long-term depression in a cortical layer-specific manner. J Neurophysiol 2007; 99:950-7. [PMID: 18077661 DOI: 10.1152/jn.01101.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homer1a/Vesl-1S is an activity-dependently induced member of the scaffold protein family Homer/Vesl, which is known to link group I metabotropic glutamate receptors (mGluRs) to endoplasmic calcium release channels and to regulate them. Here we studied roles of Homer 1a in inducing long-term depression (LTD) in rat visual cortex slices. Homer 1a protein was injected by diffusion from whole cell patch pipettes. In layer VI pyramidal cells, LTD was reduced in magnitude with Homer 1a. LTD in layer VI was suppressed by applying antagonists of mGluR5, a subtype of group I mGluRs expressed with higher density than mGluR1 in neocortex pyramidal cells, or inositol-1,4,5-triphosphate receptors (IP3Rs) but not that against N-methyl-d-aspartate receptors (NMDARs). In layer II/III or layer V, Homer 1a injection was unable to affect LTD, which is mostly dependent on NMDARs and not on group I mGluRs in these layers. To examine the effects of endogenous Homer 1a, electroconvulsive shock (ECS) was applied. Homer 1a thereby induced, as did Homer 1a injection, reduced LTD magnitude in layer VI pyramidal cells and failed to do so in layer II/III or layer V pyramidal cells. These results indicate that both exo- and endogenous Homer 1a suppressed LTD in a cortical layer-specific manner, and its layer-specificity may be explained by the high affinity of Homer 1a to group I mGluRs.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Department of Physiology, Kanazawa Medical University, 920-0293 Ishikawa, Japan
| | | | | | | | | |
Collapse
|
24
|
Jiang B, Treviño M, Kirkwood A. Sequential development of long-term potentiation and depression in different layers of the mouse visual cortex. J Neurosci 2007; 27:9648-52. [PMID: 17804625 PMCID: PMC6672979 DOI: 10.1523/jneurosci.2655-07.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visual deprivation affects the responses of layer IV cells more prominently during early postnatal development, whereas responses in layer II/III remain modifiable until later ages. We examined whether these laminar differences correlate with changes in long-term potentiation (LTP) and long-term depression (LTD) of the ascending pathways to layers IV and II/III in the mouse visual cortex. Our analysis revealed that LTP and LTD in layer IV principal cells is lost shortly after the eyes open, but persists in layers II/III beyond puberty. These results suggest that plasticity proceeds sequentially through cortical layers in a manner that parallels the flow of information during sensory processing.
Collapse
Affiliation(s)
- Bin Jiang
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Mario Treviño
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Alfredo Kirkwood
- Mind/Brain Institute and Department of Neurosciences, Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
25
|
Crozier RA, Wang Y, Liu CH, Bear MF. Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. Proc Natl Acad Sci U S A 2007; 104:1383-8. [PMID: 17227847 PMCID: PMC1783104 DOI: 10.1073/pnas.0609596104] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term depression (LTD) induced by low-frequency synaptic stimulation (LFS) was originally introduced as a model to probe potential mechanisms of deprivation-induced synaptic depression in visual cortex. In hippocampus, LTD requires activation of postsynaptic NMDA receptors, PKA, and the clathrin-dependent endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. It has long been assumed that LTD induced in visual cortical layer 2/3 by LFS of layer 4 uses similar mechanisms. Here we show in mouse visual cortex that this conclusion requires revision. We find that LTD induced in layer 2/3 by LFS is unaffected by inhibitors of PKA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor endocytosis but is reliably blocked by an endocannabinoid CB1 receptor antagonist. Conversely, LFS applied to synapses on layer 4 neurons produces LTD that appears mechanistically identical to that in CA1 and is insensitive to CB1 blockers. Occlusion experiments suggest that both mechanisms contribute to the loss of visual responsiveness after monocular deprivation.
Collapse
Affiliation(s)
- Robert A. Crozier
- *Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, 177 Massachusetts Avenue, Cambridge, MA 02139; and
| | - Yun Wang
- Division of Neurology Research, Caritas St. Elizabeth's Medical Center, Tufts University, Boston, MA 02135
| | - Cheng-Hang Liu
- *Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, 177 Massachusetts Avenue, Cambridge, MA 02139; and
| | - Mark F. Bear
- *Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Department of Brain and Cognitive Science, Massachusetts Institute of Technology, 177 Massachusetts Avenue, Cambridge, MA 02139; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Choi SY, Chang J, Jiang B, Seol GH, Min SS, Han JS, Shin HS, Gallagher M, Kirkwood A. Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex. J Neurosci 2006; 25:11433-43. [PMID: 16339037 PMCID: PMC6725895 DOI: 10.1523/jneurosci.4084-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term depression (LTD) in sensory cortices depends on the activation of NMDA receptors. Here, we report that in visual cortical slices, the induction of LTD (but not long-term potentiation) also requires the activation of receptors coupled to the phospholipase C (PLC) pathway. Using immunolesions in combination with agonists and antagonists, we selectively manipulated the activation of alpha1 adrenergic, M1 muscarinic, and mGluR5 glutamatergic receptors. Inactivation of these PLC-coupled receptors prevents the induction of LTD, but only when the three receptors were inactivated together. LTD is fully restored by activating any one of them or by supplying intracellular D-myo-inositol-1,4,5-triphosphate (IP3). LTD was also impaired by intracellular application of PLC or IP3 receptor blockers, and it was absent in mice lacking PLCbeta1, the predominant PLC isoform in the forebrain. We propose that visual cortical LTD requires a minimum of PLC activity that can be supplied independently by at least three neurotransmitter systems. This essential requirement places PLC-linked receptors in a unique position to control the induction of LTD and provides a mechanism for gating visual cortical plasticity via extra-retinal inputs in the intact organism.
Collapse
Affiliation(s)
- Se-Young Choi
- Mind/Brain Institute, Department of Neurosciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Daw N, Rao Y, Wang XF, Fischer Q, Yang Y. LTP and LTD vary with layer in rodent visual cortex. Vision Res 2004; 44:3377-80. [PMID: 15536005 DOI: 10.1016/j.visres.2004.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/29/2004] [Indexed: 11/24/2022]
Abstract
Mechanisms of plasticity in the visual cortex have been studied with long-term potentiation (LTP), long-term depression (LTD) and ocular dominance plasticity (ODP). It is now possible to compare results from these three forms of plasticity using knockout mice, and also by pharmacological manipulations. A review of the literature shows that if both LTP and LTD are completely abolished, then ODP will also be abolished. In other situations, there is little correlation. We hypothesize that this lack of correlation occurs because the mechanisms for LTP and LTD vary with layer in the visual cortex, and results show that they do.
Collapse
Affiliation(s)
- Nigel Daw
- Department of Ophthalmology, Yale University Medical School, 330 Cedar Street, New Haven, CT 06520-8061, USA.
| | | | | | | | | |
Collapse
|