1
|
Lee JL, Casamento-Moran A, Bastian AJ, Cullen KE, Chib VS. Striatal and cerebellar interactions during reward-based motor performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636434. [PMID: 39975096 PMCID: PMC11839110 DOI: 10.1101/2025.02.06.636434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Goal-directed motor performance relies on the brain's ability to distinguish between actions that lead to successful and unsuccessful outcomes. The basal ganglia (BG) and cerebellum (CBL) are integral to processing performance outcomes, yet their functional interactions remain underexplored. This study scanned participants' brains with functional magnetic imaging (fMRI) while they performed a skilled motor task for monetary rewards, where outcomes depended on their motor performance and also probabilistic events that were not contingent on their performance. We found successful motor outcomes increased activity in the ventral striatum (VS), a functional sub-region of the BG, whereas unsuccessful motor outcomes engaged the CBL. In contrast, for probabilistic outcomes unrelated to motor performance, the BG and CBL exhibited no differences in activity between successful and unsuccessful outcomes. Dynamic causal modeling revealed that VS-to-CBL connectivity was inhibitory following successful motor outcomes, suggesting that the VS may suppress CBL error processing for correct actions. Conversely, CBL-to-VS connectivity was inhibitory after unsuccessful motor outcomes, potentially preventing reinforcement of erroneous actions. Additionally, interindividual differences in task preference, assessed by having participants choose between performing the motor task or flipping a coin for monetary rewards, were related to inhibitory VS-CBL connectivity. These findings highlight a performance-mediated functional network between the VS and CBL, modulated by motivation and subjective preferences, supporting goal-directed behavior.
Collapse
Affiliation(s)
- Joonhee Leo Lee
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Agostina Casamento-Moran
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vikram S Chib
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Zhong R, Zhang L, Li H, Wang Y, Cao L, Bao W, Gao Y, Gong Q, Huang X. Elucidating trauma-related and disease-related regional cortical activity in post-traumatic stress disorder. Cereb Cortex 2024; 34:bhae307. [PMID: 39077917 DOI: 10.1093/cercor/bhae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Trauma exposure may precipitate a cascade of plastic modifications within the intrinsic activity of brain regions, but it remains unclear which regions could be responsible for the development of post-traumatic stress disorder based on intrinsic activity. To elucidate trauma-related and post-traumatic stress disorder-related alterations in cortical intrinsic activity at the whole-brain level, we recruited 47 survivors diagnosed with post-traumatic stress disorder, 64 trauma-exposed controls from a major earthquake, and 46 age- and sex-matched healthy controls. All subjects were scanned with an echo-planar imaging sequence, and 5 parameters including the amplitude of low-frequency fluctuations, fractional amplitude of low-frequency fluctuations, regional homogeneity, degree centrality, and voxel-mirrored homotopic connectivity were calculated. We found both post-traumatic stress disorder patients and trauma-exposed controls exhibited decreased amplitude of low-frequency fluctuations in the bilateral posterior cerebellum and inferior temporal gyrus, decreased fractional amplitude of low-frequency fluctuation and regional homogeneity in the bilateral anterior cerebellum, and decreased fractional amplitude of low-frequency fluctuation in the middle occipital gyrus and cuneus compared to healthy controls, and these impairments were more severe in post-traumatic stress disorder patients than in trauma-exposed controls. Additionally, fractional amplitude of low-frequency fluctuation in left cerebellum was positively correlated with Clinician-Administered PTSD Scale scores in post-traumatic stress disorder patients. We identified brain regions that might be responsible for the emergence of post-traumatic stress disorder, providing important information for the treatment of this disorder.
Collapse
Affiliation(s)
- Ruihan Zhong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lianqing Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hailong Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingying Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingxiao Cao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weijie Bao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingxue Gao
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
- The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
3
|
Manes JL, Bullock L, Meier AM, Turner RS, Richardson RM, Guenther FH. A neurocomputational view of the effects of Parkinson's disease on speech production. Front Hum Neurosci 2024; 18:1383714. [PMID: 38812472 PMCID: PMC11133703 DOI: 10.3389/fnhum.2024.1383714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this article is to review the scientific literature concerning speech in Parkinson's disease (PD) with reference to the DIVA/GODIVA neurocomputational modeling framework. Within this theoretical view, the basal ganglia (BG) contribute to several different aspects of speech motor learning and execution. First, the BG are posited to play a role in the initiation and scaling of speech movements. Within the DIVA/GODIVA framework, initiation and scaling are carried out by initiation map nodes in the supplementary motor area acting in concert with the BG. Reduced support of the initiation map from the BG in PD would result in reduced movement intensity as well as susceptibility to early termination of movement. A second proposed role concerns the learning of common speech sequences, such as phoneme sequences comprising words; this view receives support from the animal literature as well as studies identifying speech sequence learning deficits in PD. Third, the BG may play a role in the temporary buffering and sequencing of longer speech utterances such as phrases during conversational speech. Although the literature does not support a critical role for the BG in representing sequence order (since incorrectly ordered speech is not characteristic of PD), the BG are posited to contribute to the scaling of individual movements in the sequence, including increasing movement intensity for emphatic stress on key words. Therapeutic interventions for PD have inconsistent effects on speech. In contrast to dopaminergic treatments, which typically either leave speech unchanged or lead to minor improvements, deep brain stimulation (DBS) can degrade speech in some cases and improve it in others. However, cases of degradation may be due to unintended stimulation of efferent motor projections to the speech articulators. Findings of spared speech after bilateral pallidotomy appear to indicate that any role played by the BG in adult speech must be supplementary rather than mandatory, with the sequential order of well-learned sequences apparently represented elsewhere (e.g., in cortico-cortical projections).
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Latané Bullock
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andrew M. Meier
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Frank H. Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Gmaz JM, Keller JA, Dudman JT, Gallego JA. Integrating across behaviors and timescales to understand the neural control of movement. Curr Opin Neurobiol 2024; 85:102843. [PMID: 38354477 DOI: 10.1016/j.conb.2024.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/03/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
The nervous system evolved to enable navigation throughout the environment in the pursuit of resources. Evolutionarily newer structures allowed increasingly complex adaptations but necessarily added redundancy. A dominant view of movement neuroscientists is that there is a one-to-one mapping between brain region and function. However, recent experimental data is hard to reconcile with the most conservative interpretation of this framework, suggesting a degree of functional redundancy during the performance of well-learned, constrained behaviors. This apparent redundancy likely stems from the bidirectional interactions between the various cortical and subcortical structures involved in motor control. We posit that these bidirectional connections enable flexible interactions across structures that change depending upon behavioral demands, such as during acquisition, execution or adaptation of a skill. Observing the system across both multiple actions and behavioral timescales can help isolate the functional contributions of individual structures, leading to an integrated understanding of the neural control of movement.
Collapse
Affiliation(s)
- Jimmie M Gmaz
- Department of Bioengineering, Imperial College London, London, UK. https://twitter.com/j_gmaz
| | - Jason A Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA. https://twitter.com/jakNeurd
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn VA, USA.
| | - Juan A Gallego
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
5
|
Verdel D, Bruneau O, Sahm G, Vignais N, Berret B. The value of time in the invigoration of human movements when interacting with a robotic exoskeleton. SCIENCE ADVANCES 2023; 9:eadh9533. [PMID: 37729420 PMCID: PMC10511201 DOI: 10.1126/sciadv.adh9533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Time and effort are thought to be subjectively balanced during the planning of goal-directed actions, thereby setting the vigor of volitional movements. Theoretical models predicted that the value of time should then amount to high levels of effort. However, the time-effort trade-off has so far only been studied for a narrow range of efforts. To investigate the extent to which humans can invest in a time-saving effort, we used a robotic exoskeleton to substantially vary the energetic cost associated with a certain vigor during reaching movements. In this situation, minimizing the time-effort trade-off should lead to high and low human efforts for upward and downward movements, respectively. Consistently, all participants expended substantial amounts of energy upward and remained essentially inactive by harnessing the work of gravity downward, while saving time in both cases. A common time-effort trade-off may therefore determine the vigor of reaching movements for a wide range of efforts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Guillaume Sahm
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Wang L, Zheng WM, Liang TF, Yang YH, Yang BN, Chen X, Chen Q, Li XJ, Lu J, Li BW, Chen N. Brain Activation Evoked by Motor Imagery in Pediatric Patients with Complete Spinal Cord Injury. AJNR Am J Neuroradiol 2023; 44:611-617. [PMID: 37080724 PMCID: PMC10171374 DOI: 10.3174/ajnr.a7847] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND AND PURPOSE Currently, there is no effective treatment for pediatric patients with complete spinal cord injury. Motor imagery has been proposed as an alternative to physical training for patients who are unable to move voluntarily. Our aim was to reveal the potential mechanism of motor imagery in the rehabilitation of pediatric complete spinal cord injury. MATERIALS AND METHODS Twenty-six pediatric patients with complete spinal cord injury and 26 age- and sex-matched healthy children as healthy controls were recruited. All participants underwent the motor imagery task-related fMRI scans, and additional motor execution scans were performed only on healthy controls. First, we compared the brain-activation patterns between motor imagery and motor execution in healthy controls. Then, we compared the brain activation of motor imagery between the 2 groups and compared the brain activation of motor imagery in pediatric patients with complete spinal cord injury and that of motor execution in healthy controls. RESULTS In healthy controls, compared with motor execution, motor imagery showed increased activation in the left inferior parietal lobule and decreased activation in the left supplementary motor area, paracentral lobule, middle cingulate cortex, and right insula. In addition, our results revealed that the 2 groups both activated the bilateral supplementary motor area, middle cingulate cortex and left inferior parietal lobule, and supramarginal gyrus during motor imagery. Compared with healthy controls, higher activation in the bilateral paracentral lobule, supplementary motor area, putamen, and cerebellar lobules III-V was detected in pediatric complete spinal cord injury during motor imagery, and the activation of these regions was even higher than that of healthy controls during motor execution. CONCLUSIONS Our study demonstrated that part of the motor imagery network was functionally preserved in pediatric complete spinal cord injury and could be activated through motor imagery. In addition, higher-level activation in sensorimotor-related regions was also found in pediatric complete spinal cord injury during motor imagery. Our findings may provide a theoretic basis for the application of motor imagery training in pediatric complete spinal cord injury.
Collapse
Affiliation(s)
- L Wang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - W M Zheng
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - T F Liang
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - Y H Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B N Yang
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - X Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - Q Chen
- Department of Radiology (Q.C.), Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - X J Li
- Department of Radiology (X.J.L.), China Rehabilitation Research Center, Beijing, China
| | - J Lu
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| | - B W Li
- Department of Medical Imaging (T.F.L., B.W.L.), Affiliated Hospital of Hebei Engineering University, Handan, Hebei Province, China
| | - N Chen
- From the Department of Radiology and Nuclear Medicine (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics (L.W., W.M.Z., Y.H.Y., B.N.Y., X.C., J.L., N.C.), Beijing, China
| |
Collapse
|
7
|
Correia JP, Vaz JR, Domingos C, Freitas SR. From thinking fast to moving fast: motor control of fast limb movements in healthy individuals. Rev Neurosci 2022; 33:919-950. [PMID: 35675832 DOI: 10.1515/revneuro-2021-0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The ability to produce high movement speeds is a crucial factor in human motor performance, from the skilled athlete to someone avoiding a fall. Despite this relevance, there remains a lack of both an integrative brain-to-behavior analysis of these movements and applied studies linking the known dependence on open-loop, central control mechanisms of these movements to their real-world implications, whether in the sports, performance arts, or occupational setting. In this review, we cover factors associated with the planning and performance of fast limb movements, from the generation of the motor command in the brain to the observed motor output. At each level (supraspinal, peripheral, and motor output), the influencing factors are presented and the changes brought by training and fatigue are discussed. The existing evidence of more applied studies relevant to practical aspects of human performance is also discussed. Inconsistencies in the existing literature both in the definitions and findings are highlighted, along with suggestions for further studies on the topic of fast limb movement control. The current heterogeneity in what is considered a fast movement and in experimental protocols makes it difficult to compare findings in the existing literature. We identified the role of the cerebellum in movement prediction and of surround inhibition in motor slowing, as well as the effects of fatigue and training on central motor control, as possible avenues for further research, especially in performance-driven populations.
Collapse
Affiliation(s)
- José Pedro Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413, Rio Maior, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| |
Collapse
|
8
|
Park J, Phillips JW, Guo JZ, Martin KA, Hantman AW, Dudman JT. Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes. SCIENCE ADVANCES 2022; 8:eabj5167. [PMID: 35263129 PMCID: PMC8906739 DOI: 10.1126/sciadv.abj5167] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/18/2022] [Indexed: 05/30/2023]
Abstract
The interaction of descending neocortical outputs and subcortical premotor circuits is critical for shaping skilled movements. Two broad classes of motor cortical output projection neurons provide input to many subcortical motor areas: pyramidal tract (PT) neurons, which project throughout the neuraxis, and intratelencephalic (IT) neurons, which project within the cortex and subcortical striatum. It is unclear whether these classes are functionally in series or whether each class carries distinct components of descending motor control signals. Here, we combine large-scale neural recordings across all layers of motor cortex with cell type-specific perturbations to study cortically dependent mouse motor behaviors: kinematically variable manipulation of a joystick and a kinematically precise reach-to-grasp. We find that striatum-projecting IT neuron activity preferentially represents amplitude, whereas pons-projecting PT neurons preferentially represent the variable direction of forelimb movements. Thus, separable components of descending motor cortical commands are distributed across motor cortical projection cell classes.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James W. Phillips
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jian-Zhong Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kathleen A. Martin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam W. Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
9
|
Binder T, Hobert MA, Pfrommer T, Leks E, Granert O, Weigl B, Ethofer T, Erb M, Wilke M, Maetzler W, Berg D. Increased functional connectivity in a population at risk of developing Parkinson's disease. Parkinsonism Relat Disord 2021; 92:1-6. [PMID: 34649107 DOI: 10.1016/j.parkreldis.2021.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND While the concept of prodromal Parkinson's disease (PD) is well established, reliable markers for the diagnosis of this disease stage are still lacking. We investigated the functional connectivity of the putamina in a resting-state functional MRI analysis in persons with at least two prodromal factors for PD, which is considered a high risk for PD (HRPD) group, in comparison to PD patients and controls. METHODS We included 16 PD patients, 20 healthy controls and 20 HRPD subjects. Resting state echo planar images and anatomical T1-weighted images were acquired with a Siemens Prisma 3 T scanner. The computation of correlation maps of the left and the right putamen to the rest of the brain was done in a voxel-wise approach using the REST toolbox. Finally, group differences in the correlation maps were compared on voxel-level and summarized in cluster z-statistics. RESULTS Compared to both PD patients and healthy controls, the HRPD group showed higher functional connectivity of both putamina to brain regions involved in execution of motion and coordination (cerebellum, vermis, pre- and postcentral gyrus, supplementary motor area) as well as the planning of movement (precuneus, cuneus, superior medial frontal lobe). CONCLUSIONS Higher functional connectivity of the putamina of HRPD subjects to other brain regions involved in motor execution and planning may indicate a compensatory mechanism. Follow-up evaluation and independent longitudinal studies should test whether our results reflect a dynamic process associated with a prodromal PD state.
Collapse
Affiliation(s)
- Tobias Binder
- Center for Neurology and Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany; Department of Neurology, Julius-Maximilians-University, Würzburg, Germany.
| | - Markus A Hobert
- Center for Neurology and Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany; Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Teresa Pfrommer
- Center for Neurology and Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany
| | - Edyta Leks
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Germany
| | - Oliver Granert
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Benedikt Weigl
- Center for Neurology and Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Germany; Department of General Psychiatry, University of Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen, Germany
| | - Marco Wilke
- Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tübingen, Germany; Experimental Pediatric Neuroimaging Group, Pediatric Neurology & Department of Neuroradiology, University Hospital Tübingen, Germany
| | - Walter Maetzler
- Center for Neurology and Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany; Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Daniela Berg
- Center for Neurology and Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany; Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
10
|
Kowalczyk‐Grębska N, Skorko M, Dobrowolski P, Kossowski B, Myśliwiec M, Hryniewicz N, Gaca M, Marchewka A, Kossut M, Brzezicka A. Lenticular nucleus volume predicts performance in real-time strategy game: cross-sectional and training approach using voxel-based morphometry. Ann N Y Acad Sci 2021; 1492:42-57. [PMID: 33372699 PMCID: PMC8246877 DOI: 10.1111/nyas.14548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft® II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.
Collapse
Affiliation(s)
| | - Maciek Skorko
- Institute of Psychology, Polish Academy of SciencesWarsawPoland
| | | | - Bartosz Kossowski
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Monika Myśliwiec
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
| | - Nikodem Hryniewicz
- CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of SciencesWarsawPoland
| | - Maciej Gaca
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Małgorzata Kossut
- Laboratory of Neuroplasticity, Department of Molecular and Cellular NeurobiologyNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
| | - Aneta Brzezicka
- Faculty of PsychologySWPS University of Social Sciences and HumanitiesWarsawPoland
- Department of NeurosurgeryCedars‐Sinai Medical CenterLos AngelesCalifornia
| |
Collapse
|
11
|
Marin-Garcia E, Mattfeld AT, Gabrieli JDE. Neural Correlates of Long-Term Memory Enhancement Following Retrieval Practice. Front Hum Neurosci 2021; 15:584560. [PMID: 33613206 PMCID: PMC7889502 DOI: 10.3389/fnhum.2021.584560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Retrieval practice, relative to further study, leads to long-term memory enhancement known as the “testing effect.” The neurobiological correlates of the testing effect at retrieval, when the learning benefits of testing are expressed, have not been fully characterized. Participants learned Swahili-English word-pairs and were assigned randomly to either the Study-Group or the Test-Group. After a week delay, all participants completed a cued-recall test while undergoing functional magnetic resonance imaging (fMRI). The Test-Group had superior memory for the word-pairs compared to the Study-Group. While both groups exhibited largely overlapping activations for remembered word-pairs, following an interaction analysis the Test-Group exhibited differential performance-related effects in the left putamen and left inferior parietal cortex near the supramarginal gyrus. The same analysis showed the Study-Group exhibited greater activations in the dorsal MPFC/pre-SMA and bilateral frontal operculum for remembered vs. forgotten word-pairs, whereas the Test-Group showed the opposite pattern of activation in the same regions. Thus, retrieval practice during training establishes a unique striatal-supramarginal network at retrieval that promotes enhanced memory performance. In contrast, study alone yields poorer memory but greater activations in frontal regions.
Collapse
Affiliation(s)
- Eugenia Marin-Garcia
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Faculty of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aaron T Mattfeld
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Psychology, Florida International University, Miami, FL, United States
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
12
|
Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR. Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling. Mov Disord 2021; 36:1180-1190. [PMID: 33427336 PMCID: PMC8127399 DOI: 10.1002/mds.28468] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Motor‐related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta‐analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta‐analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor‐related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta‐analytic approaches. Methods We applied a quantitative meta‐analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta‐analysis. We also conducted meta‐analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. Results We found consistent motor‐related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. Conclusions Despite conflicting results in individual neuroimaging studies, this revised meta‐analytic approach identified consistent patterns of abnormal motor‐related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julia A Camilleri
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Hernandez-Martin E, Marcano F, Modroño C, Janssen N, González-Mora JL. Diffuse optical tomography to measure functional changes during motor tasks: a motor imagery study. BIOMEDICAL OPTICS EXPRESS 2020; 11:6049-6067. [PMID: 33282474 PMCID: PMC7687968 DOI: 10.1364/boe.399907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
The present work shows the spatial reliability of the diffuse optical tomography (DOT) system in a group of healthy subjects during a motor imagery task. Prior to imagery task performance, the subjects executed a motor task based on the finger to thumb opposition for motor training, and to corroborate the DOT spatial localization during the motor execution. DOT technology and data treatment allows us to distinguish oxy- and deoxyhemoglobin at the cerebral gyri level unlike the cerebral activations provided by fMRI series that were processed using different approaches. Here we show the DOT reliability showing functional activations at the cerebral gyri level during motor execution and motor imagery, which provide subtler cerebral activations than the motor execution. These results will allow the use of the DOT system as a monitoring device in a brain computer interface.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
| | - Francisco Marcano
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Cristian Modroño
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| | - Niels Janssen
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
- Psychology Department, Universidad de La Laguna 38071, Spain
| | - Jose Luis González-Mora
- Department of Basic Medical Science (Physiology), Faculty of Health Sciences, Medicine Section, Universidad de La Laguna 38071, Spain
- Instituto de Tecnologías Biomédicas, Universidad de la Laguna, Spain
- Instituto de Neurociencias, Universidad de la Laguna, Spain
| |
Collapse
|
14
|
Gao F, Guo Y, Chu H, Yu W, Chen Z, Chen L, Li J, Yang D, Yang M, Du L, Li J, Chan CCH. Lower-Limb Sensorimotor Deprivation-Related Brain Activation in Patients With Chronic Complete Spinal Cord Injury. Front Neurol 2020; 11:555733. [PMID: 33123075 PMCID: PMC7573128 DOI: 10.3389/fneur.2020.555733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023] Open
Abstract
This study aims to investigate functional brain reorganization brought about by the loss of physical movement and sensory feedback in lower limbs in chronic spinal cord injury (SCI). Eleven paraplegia patients with SCI and 13 healthy controls (HCs) were recruited. The experimental task used was a visuomotor imagery task requiring subjects to engage in visualization of repetitive tapping movements of the upper or lower limbs. Blood oxygen level-dependent (BOLD) responses were captured during the experimental task, along with the accuracy rate and the response time. The SCI patients performed worse in the Rey Auditory Verbal Learning Test (RAVLT) and the Trail Making Test. SCI patients had a larger BOLD signal in the left lingual gyrus and right external globus pallidus (GPe) when imagining lower-limb movements. For the upper-limb task, SCI patients showed stronger BOLD responses than the HCs in extensive areas over the brain, including the bilateral precentral gyrus (preCG), bilateral inferior parietal gyrus, right GPe, right thalamus, left postcentral gyrus, and right superior temporal gyrus. In contrast, the HCs displayed stronger BOLD responses in the medial frontal gyrus and anterior cingulate gyrus for both upper- and lower-limb tasks than the SCI patients. In the SCI group, for the upper-limb condition, the amplitudes of BOLD responses in the left preCG were negatively correlated with the time since injury (r = -0.72, p = 0.012). For the lower-limb condition, the amplitudes of BOLD responses in the left lingual gyrus were negatively correlated with the scores on the Short Delay task of the RAVLT (r = -0.73, p = 0.011). Our study provided imaging evidence for abnormal changes in brain function and worsened cognitive test performance in SCI patients. These findings suggested possible compensatory strategies adopted by the SCI patients for the loss of sensorimotor function from the lower limbs when performing a limb imagery task.
Collapse
Affiliation(s)
- Feng Gao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yun Guo
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Hongyu Chu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Comprehensive Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Weiyong Yu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Zhenbo Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China.,SCI Unit, China Rehabilitation Science Institute, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
15
|
Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2019; 19:338-350. [PMID: 29643480 DOI: 10.1038/s41583-018-0002-7] [Citation(s) in RCA: 464] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance.
Collapse
Affiliation(s)
- Andreea C Bostan
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. .,University of Pittsburgh Brain Institute and Departments of Neurobiology, Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Steel A, Silson EH, Stagg CJ, Baker CI. Differential impact of reward and punishment on functional connectivity after skill learning. Neuroimage 2019; 189:95-105. [PMID: 30630080 PMCID: PMC7612345 DOI: 10.1016/j.neuroimage.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Reward and punishment shape behavior, but the mechanisms underlying their effect on skill learning are not well understood. Here, we tested whether the functional connectivity of premotor cortex (PMC), a region known to be critical for learning of sequencing skills, is altered after training when reward or punishment is given during training. Resting-state fMRI was collected in two experiments before and after participants trained on either a serial reaction time task (SRTT; n = 36) or force-tracking task (FTT; n = 36) with reward, punishment, or control feedback. In each experiment, training-related change in PMC functional connectivity was compared across feedback groups. In both tasks, we found that reward and punishment differentially affected PMC functional connectivity. On the SRTT, participants trained with reward showed an increase in functional connectivity between PMC and cerebellum as well as PMC and striatum, while participants trained with punishment showed an increase in functional connectivity between PMC and medial temporal lobe connectivity. After training on the FTT, subjects trained with control and reward showed increases in PMC connectivity with parietal and temporal cortices after training, while subjects trained with punishment showed increased PMC connectivity with ventral striatum. While the results from the two experiments overlapped in some areas, including ventral pallidum, temporal lobe, and cerebellum, these regions showed diverging patterns of results across the two tasks for the different feedback conditions. These findings suggest that reward and punishment strongly influence spontaneous brain activity after training, and that the regions implicated depend on the task learned.
Collapse
Affiliation(s)
- Adam Steel
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK; Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Edward H Silson
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK; Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuroimaging, University Department of Psychiatry, University of Oxford, Oxford, OX3 9DU, UK
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20814, USA
| |
Collapse
|
17
|
Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 2018; 94:31-44. [DOI: 10.1016/j.neubiorev.2018.08.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 11/30/2022]
|
18
|
Shirinbayan SI, Dreyer AM, Rieger JW. Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study. Hum Brain Mapp 2018; 40:151-162. [PMID: 30251771 DOI: 10.1002/hbm.24361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 11/05/2022] Open
Abstract
Reach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)-compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD-activation covaries with the speed of arm movements. We found significant activation in multiple cortical and subcortical brain regions positively correlated with endpoint (wrist) speed (speed-related activation), including contralateral premotor cortex (PMC), supplementary motor area (SMA), thalamus (putative VL/VA nuclei), and bilateral putamen. The hand and arm regions of primary sensorimotor cortex (SMC) and a posterior region of thalamus were significantly activated by reach movements but showed a more binary response characteristics (movement present or absent) than with continuously varying speed. Moreover, a subregion of contralateral SMA also showed binary movement activation but no speed-related BOLD-activation. Effect size analysis revealed bilateral putamen as the most speed-specific region among the speed-related clusters whereas primary SMC showed the strongest specificity for movement versus non-movement discrimination, independent of speed variations. The results reveal a network of multiple cortical and subcortical brain regions that are involved in speed regulation among which putamen, anterior thalamus, and PMC show highest specificity to speed, suggesting a basal-ganglia-thalamo-cortical loop for speed regulation.
Collapse
Affiliation(s)
| | - Alexander M Dreyer
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jochem W Rieger
- Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
19
|
Identification of alterations associated with age in the clustering structure of functional brain networks. PLoS One 2018; 13:e0195906. [PMID: 29795565 PMCID: PMC5967704 DOI: 10.1371/journal.pone.0195906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/02/2018] [Indexed: 12/21/2022] Open
Abstract
Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals’ functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.
Collapse
|
20
|
Stark‐Inbar A, Dayan E. Preferential encoding of movement amplitude and speed in the primary motor cortex and cerebellum. Hum Brain Mapp 2017; 38:5970-5986. [PMID: 28885740 PMCID: PMC6867018 DOI: 10.1002/hbm.23802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 07/04/2017] [Accepted: 08/27/2017] [Indexed: 11/06/2022] Open
Abstract
Voluntary movements require control of multiple kinematic parameters, a task carried out by a distributed brain architecture. However, it remains unclear whether regions along the motor system encode single, or rather a mixture of, kinematic parameters during action execution. Here, rapid event-related functional magnetic resonance imaging was used to differentiate brain activity along the motor system during the encoding of movement amplitude, duration, and speed. We present cumulative evidence supporting preferential encoding of kinematic parameters along the motor system, based on blood-oxygenation-level dependent signal recorded in a well-controlled single-joint wrist-flexion task. Whereas activity in the left primary motor cortex (M1) showed preferential encoding of movement amplitude, the anterior lobe of the right cerebellum (primarily lobule V) showed preferential encoding of movement speed. Conversely, activity in the left supplementary motor area (SMA), basal ganglia (putamen), and anterior intraparietal sulcus was not preferentially modulated by any specific parameter. We found no preference in peak activation for duration encoding in any of the tested regions. Electromyographic data was mainly modulated by movement amplitude, restricting the distinction between amplitude and muscle force encoding. Together, these results suggest that during single-joint movements, distinct kinematic parameters are controlled by largely distinct brain-regions that work together to produce and control precise movements. Hum Brain Mapp 38:5970-5986, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alit Stark‐Inbar
- Department of PsychologyUniversity of CaliforniaBerkeleyCalifornia
| | - Eran Dayan
- Department of RadiologyBiomedical Research Imaging Center and Neuroscience Curriculum, University of North Carolina at Chapel HillNorth Carolina
| |
Collapse
|
21
|
Neural basis of self-initiative in relation to apathy in a student sample. Sci Rep 2017; 7:3264. [PMID: 28607405 PMCID: PMC5468419 DOI: 10.1038/s41598-017-03564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/02/2017] [Indexed: 12/04/2022] Open
Abstract
Human behaviour can be externally driven, e.g. catching a falling glass, or self-initiated and goal-directed, e.g. drinking a cup of coffee when one deems it is time for a break. Apathy refers to a reduction of self-initiated goal-directed or motivated behaviour, frequently present in neurological and psychiatric disorders. The amount of undertaken goal-directed behaviour varies considerably in clinical as well as healthy populations. In the present study, we investigated behavioural and neural correlates of self-initiated action in a student sample (N = 39) with minimal to high levels of apathy. We replicated activation of fronto-parieto-striatal regions during self-initiation. The neural correlates of self-initiated action did not explain varying levels of apathy in our sample, neither when mass-univariate analysis was used, nor when multivariate patterns of brain activation were considered. Other hypotheses, e.g. regarding a putative role of deficits in reward anticipation, effort expenditure or executive difficulties, deserve investigation in future studies.
Collapse
|
22
|
Wichmann T, Bergman H, DeLong MR. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research. J Neural Transm (Vienna) 2017; 125:419-430. [PMID: 28601961 DOI: 10.1007/s00702-017-1736-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Abstract
Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely replaced by DBS of the subthalamic nucleus or internal pallidal segment. These procedures are not only effective in the treatment of parkinsonism, but also in the treatment of hyperkinetic conditions (such as chorea or dystonia) which result from pathophysiologic changes different from those underlying Parkinson's disease. Thus, these interventions probably do not counteract specific aspects of the pathophysiology of movement disorders, but non-specifically remove the influence of the different types of disruptive basal ganglia output from the relatively intact portions of the motor circuitry downstream from the basal ganglia. Knowledge gained from studies in NHPs remains critical for our understanding of the pathophysiology of movement disorders, of the effects of DBS on brain network activity, and the development of better treatments for patients with movement disorders and other neurologic or psychiatric conditions.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, USA. .,Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research Israel-Canada (IMRIC), Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University, Jerusalem, Israel.,Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
23
|
Hu X, Chen S, Huang CB, Qian Y, Yu Y. Frequency-dependent changes in the amplitude of low-frequency fluctuations in patients with Wilson's disease: a resting-state fMRI study. Metab Brain Dis 2017; 32:685-692. [PMID: 28116563 PMCID: PMC5418320 DOI: 10.1007/s11011-016-9946-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022]
Abstract
To investigate the frequency-dependent changes in the amplitude of low-frequency fluctuations (ALFF) in patients with Wilson's disease (WD). Resting-state function magnetic resonance imaging (R-fMRI) were employed to measure the amplitude of ALFF in 28 patients with WD and 27 matched normal controls. Slow-5 (0.01-0.027 Hz) and slow-4 (0.027-0.073 Hz) frequency bands were analyzed. Apart from the observation of atrophy in the cerebellum, basal ganglia, occipital gyrus, frontal gyrus, precentral gyrus, and paracentral lobule, we also found widespread differences in ALFF of the two bands in the medial frontal gyrus, inferior temporal gyrus, insula, basal ganglia, hippocampus/parahippocampal gyrus, and thalamus bilaterally. Compared to normal controls, WD patients had increased ALFF in the posterior lobe of the cerebellum, inferior temporal gyrus, brain stem, basal ganglia, and decreased ALFF in the anterior lobe of the cerebellum and medial frontal gyrus. Specifically, we observed that the ALFF abnormalities in the cerebellum and middle frontal gyrus were greater in the slow-5 than in the slow-4 band. Correlation analysis showed consistently positive correlations between urinary copper excretion (Cu), serum ceruloplasmin (CP) and ALFFs in the cerebellum. Our study suggests the accumulation of copper profoundly impaired intrinsic brain activity and the impairments seem to be frequency-dependent. These results provide further insights into the understanding of the pathophysiology of WD.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Siyi Chen
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department Psychologie, Ludwig-Maximilians-Universität, 80802, Munich, Germany
| | - Chang-Bing Huang
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yinfeng Qian
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Yongqiang Yu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
24
|
Saga Y, Hoshi E, Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat 2017; 11:30. [PMID: 28442999 PMCID: PMC5385466 DOI: 10.3389/fnana.2017.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022] Open
Abstract
The globus pallidus (GP) communicates with widespread cortical areas that support various functions, including motivation, cognition and action. Anatomical tract-tracing studies revealed that the anteroventral GP communicates with the medial prefrontal and orbitofrontal cortices, which are involved in motivational control; the anterodorsal GP communicates with the lateral prefrontal cortex, which is involved in cognitive control; and the posterior GP communicates with the frontal motor cortex, which is involved in action control. This organization suggests that distinct subdivisions within the GP play specific roles. Neurophysiological studies examining GP neurons in monkeys during behavior revealed that the types of information coding performed within these subdivisions differ greatly. The anteroventral GP is characterized by activities related to motivation, such as reward seeking and aversive avoidance; the anterodorsal GP is characterized by activity that reflects cognition, such as goal decision and action selection; and the posterior GP is characterized by activity associated with action preparation and execution. Pathophysiological studies have shown that GABA-related substances or GP lesions result in abnormal activity in the GP, which causes site-specific behavioral and motor symptoms. The present review article discusses the anatomical organization, physiology and pathophysiology of the three major GP territories in nonhuman primates and humans.
Collapse
Affiliation(s)
- Yosuke Saga
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| | - Eiji Hoshi
- Frontal Lobe Function Project, Tokyo Metropolitan Institute of Medical ScienceTokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and DevelopmentTokyo, Japan
| | - Léon Tremblay
- Institute of Cognitive Science Marc Jeannerod, UMR-5229 CNRSBron, France
| |
Collapse
|
25
|
Eliminating Direction Specificity in Visuomotor Learning. J Neurosci 2016; 36:3839-47. [PMID: 27030768 DOI: 10.1523/jneurosci.2712-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The generalization of learning offers a unique window for investigating the nature of motor learning. Error-based motor learning reportedly cannot generalize to distant directions because the aftereffects are direction specific. This direction specificity is often regarded as evidence that motor adaptation is model-based learning, and is constrained by neuronal tuning characteristics in the primary motor cortices and the cerebellum. However, recent evidence indicates that motor adaptation also involves model-free learning and explicit strategy learning. Using rotation paradigms, here we demonstrate that savings (faster relearning), which is closely related to model-free learning and explicit strategy learning, is also direction specific. However, this new direction specificity can be abolished when the participants receive exposure to the generalization directions via an irrelevant visuomotor gain-learning task. Control evidence indicates that this exposure effect is weakened when direction error signals are absent during gain learning. Therefore, the direction specificity in visuomotor learning is not solely related to model-based learning; it may also result from the impeded expression of model-free learning and explicit strategy learning with untrained directions. Our findings provide new insights into the mechanisms underlying motor learning, and may have important implications for practical applications such as motor rehabilitation. SIGNIFICANCE STATEMENT Motor learning is more useful if it generalizes to untrained scenarios when needed, especially for sports training and motor rehabilitation. However, as a form of motor learning, motor adaptation is typically direction specific. Here we first show that savings with motor adaptation, an index for model-free learning and explicit strategy learning in motor learning, is also direction specific. However, the participants' additional exposure to untrained directions via an irrelevant gain-learning task can enable the complete generalization of learning. Our findings challenge existing models of motor generalization and may have important implications for practical applications.
Collapse
|
26
|
Rao J, Liu Z, Zhao C, Wei R, Zhao W, Yang Z, Li X. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol (Oxf) 2016; 217:164-73. [PMID: 26706280 DOI: 10.1111/apha.12645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
AIM Given the unclear pattern of cerebral function reorganization induced by spinal cord injury (SCI), this study aimed to longitudinally evaluate the changes in resting-state functional connectivity (FC) in the sensorimotor network after SCI and explore their relationship with gait performance. METHODS Four adult female rhesus monkeys were examined using resting-state functional magnetic resonance imaging during their healthy stage and after hemitransected SCI (4, 8 and 12 weeks after SCI), and the gait characteristics of their hindlimbs were recorded (except 4 weeks after SCI). Twenty sensorimotor-related cortical areas were adopted in the FC analysis to evaluate the functional network reorganization. Correlation analyses were then used to explore the relationship between functional network variations and gait characteristic changes. RESULTS Compared with that during the healthy stage, the FC strength during post-SCI period was significantly increased in multiple areas of the motor control network, including the primary sensorimotor cortex, supplementary motor area (SMA) and putamen (Pu). However, the FC strength was remarkably reduced in the thalamus and parieto-occipital association cortex of the sensory network 8 weeks after SCI. Most FC intensities gradually approached the normal level 12 weeks after the SCI. Correlation analyses revealed that the enhanced FC strength between Pu and SMA in the left hemisphere, which regulates motor functions of the right side, was negatively correlated with the gait height of the right hindlimb. CONCLUSION The cerebral functional network presents an adjust-recover pattern after SCI, which may help us further understand the cerebral function reorganization after SCI.
Collapse
Affiliation(s)
- J.S. Rao
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - Z. Liu
- State Key Laboratory of Brain and Cognitive Science; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
| | - C. Zhao
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - R.H. Wei
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
| | - W. Zhao
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - Z.Y. Yang
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| | - X.G. Li
- Department of Biomedical Engineering; School of Biological Science and Medical Engineering; Beihang University; Beijing China
- Department of Neurobiology; School of Basic Medical Sciences; Capital Medical University; Beijing China
| |
Collapse
|
27
|
Dudman JT, Krakauer JW. The basal ganglia: from motor commands to the control of vigor. Curr Opin Neurobiol 2016; 37:158-166. [DOI: 10.1016/j.conb.2016.02.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 01/20/2023]
|
28
|
Subcortical evoked activity and motor enhancement in Parkinson's disease. Exp Neurol 2015; 277:19-26. [PMID: 26687971 PMCID: PMC4767325 DOI: 10.1016/j.expneurol.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/24/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
Abstract
Enhancements in motor performance have been demonstrated in response to intense stimuli both in healthy subjects and in the form of 'paradoxical kinesis' in patients with Parkinson's disease. Here we identify a mid-latency evoked potential in local field potential recordings from the region of the subthalamic nucleus, which scales in amplitude with both the intensity of the stimulus delivered and corresponding enhancements in biomechanical measures of maximal handgrips, independent of the dopaminergic state of our subjects with Parkinson's disease. Recordings of a similar evoked potential in the related pedunculopontine nucleus - a key component of the reticular activating system - provide support for this neural signature in the subthalmic nucleus being a novel correlate of ascending arousal, propagated from the reticular activating system to exert an 'energizing' influence on motor circuitry. Future manipulation of this system linking arousal and motor performance may provide a novel approach for the non-dopaminergic enhancement of motor performance in patients with hypokinetic disorders such as Parkinson's disease.
Collapse
|
29
|
Wu T, Zhang J, Hallett M, Feng T, Hou Y, Chan P. Neural correlates underlying micrographia in Parkinson's disease. Brain 2015; 139:144-60. [PMID: 26525918 DOI: 10.1093/brain/awv319] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/16/2015] [Indexed: 11/14/2022] Open
Abstract
Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks.
Collapse
Affiliation(s)
- Tao Wu
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| | - Jiarong Zhang
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| | - Mark Hallett
- 3 Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tao Feng
- 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China 4 China National Clinical Research Centre for Neurological Diseases, Beijing, China 5 Department of Neurology, Centre for Neurodegenerative Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Hou
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| | - Piu Chan
- 1 Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China 2 Beijing Key Laboratory on Parkinson's Disease, Parkinson Disease Centre of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
30
|
Hong Z, Ng KK, Sim SKY, Ngeow MY, Zheng H, Lo JC, Chee MWL, Zhou J. Differential age-dependent associations of gray matter volume and white matter integrity with processing speed in healthy older adults. Neuroimage 2015; 123:42-50. [PMID: 26302672 DOI: 10.1016/j.neuroimage.2015.08.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/28/2015] [Accepted: 08/16/2015] [Indexed: 01/19/2023] Open
Abstract
Slower processing speed (PS), a highly robust feature of cognitive aging, is associated with white matter (WM) deterioration and gray matter volume (GMV) loss. Traditional linear regression models assume a constant relationship between brain structure and cognition over time. To probe for variation in the association between WM and GMV and PS over time, we used a novel sparse varying coefficient model on data collected from 126 relatively healthy older adults (67 females, aged 58-85years) evaluated with MRI and a standardized neuropsychological test-battery. We found that WM microstructural differences indexed by fractional anisotropy values in the fronto-striatal tracts (internal and external capsule) showed a stronger association with PS before the age of 70years. Contrastingly, GMV values of the left putamen and middle occipital gyrus were more strongly correlated with PS after 70years. Additionally, within GM and WM compartments, there was heterogeneity in the temporal sequence in which different cortical and subcortical elements were most strongly associated with PS. Together, these observations provide a more nuanced account of the relationships between different structural components of the aging brain and processing speed, a key cognitive domain affected in relatively healthy older adults.
Collapse
Affiliation(s)
- Zhaoping Hong
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Kwun Kei Ng
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Sam K Y Sim
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Mei Yi Ngeow
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Hui Zheng
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - June C Lo
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Michael W L Chee
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore; Clinical Imaging Research Centre, the Agency for Science, Technology and Research and National University of Singapore, Singapore.
| |
Collapse
|
31
|
Abstract
Increased brain iron content has been linked to neural degeneration and to age-related decline of cognitive and motor functions. The basal ganglia (BG), which contain significant amount of iron, play an important role in establishing and modulating force requirements in hand grasp to meet specific task demands. However, it is unclear if increased BG iron content contributes to age differences in hand grasp performance. To investigate the relationship between BG iron content and hand grasp force matching in older (65.0 ± 8.9 years) healthy women, participants generated a 20% maximum voluntary exertion reference force that was matched with the opposite hand in the Contralateral Remembered (CR) and Contralateral Concurrent (CC) conditions and with the same hand in the Ipsilateral Remembered (IR) condition. T2* relaxation times calculated from MRI scans served to estimate iron content in the caudate nucleus (Cd), globus pallidus (GP), and putamen (Pt). Greater iron content in all BG was associated with relatively greater number of errors committed when matching force with the opposite hand in the CR and CC conditions than with the same hand in the IR condition. Younger women with greater estimated iron content committed more errors than their older counterparts with lesser estimated iron content in Cd and Pt. Greater iron content in the BG may contribute to sensorimotor declines in healthy women, and relative iron content quantified by MRI may be a promising biomarker of such.
Collapse
|
32
|
Ofori E, Coombes SA, Vaillancourt DE. 3D Cortical electrophysiology of ballistic upper limb movement in humans. Neuroimage 2015; 115:30-41. [PMID: 25929620 DOI: 10.1016/j.neuroimage.2015.04.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/20/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022] Open
Abstract
Precise motor control requires the ability to scale the parameters of movement. Theta oscillations across the cortex have been associated with changes in memory, attention, and sensorimotor processing. What has proven more elusive is pinpointing the region-specific frequency band oscillations that are associated with specific parameters of movement during the acceleration and deceleration phases. We report a study using 3D analytic techniques for high density electroencephalography that examines electrocortical dynamics while participants produce upper limb movements to different distances at varying rates. During fast ballistic movements, we observed increased theta band activity in the left motor area contralateral to the moving limb during the acceleration phase of the movement, and theta power correlated with the acceleration of movement. In contrast, beta band activity scaled with the type of movement during the deceleration phase near the end of the movement and correlated with movement time. In the ipsilateral motor and somatosensory area, alpha band activity decreased with the type of movement near the end of the movement, and gamma band activity in visual cortex increased with the type of movement near the end of the movement. Our results suggest that humans use distinct lateralized cortical activity for distance and speed dependent arm movements. We provide new evidence that a temporary increase in theta band power relates to movement acceleration and is important during movement execution. Further, the theta power increase is coupled with desychronization of beta band power and alpha band power which are modulated by the task near the end of movement.
Collapse
Affiliation(s)
- Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Stephen A Coombes
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
33
|
Daneault JF, Carignan B, Sadikot AF, Duval C. Inter-limb coupling during diadochokinesis in Parkinson's and Huntington's disease. Neurosci Res 2015; 97:60-8. [PMID: 25747139 DOI: 10.1016/j.neures.2015.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/21/2015] [Accepted: 02/27/2015] [Indexed: 11/16/2022]
Abstract
Patients with neurodegenerative diseases often exhibit deficits in bimanual coordination. One characteristic of bimanual movements is inter-limb coupling. It is the property of motor performance harmonization between hands during a bimanual task. The objective of this study was to identify whether spatial and temporal inter-limb coupling occurred in Parkinson's disease (PD) and Huntington's disease (HD) patients. Twenty-three PD patients and 15 healthy controls were tested. Data from 12 choreic HD patients were also taken from a databank. Participants were asked to perform a unimanual and bimanual rapid repetitive diadochokinesis task. The difference between hands in mean amplitude and mean duration of cycles was computed in the unimanual and bimanual tasks for each group. Results show that healthy controls exhibited temporal and spatial inter-limb coupling during the bimanual diadochokinesis task. Conversely, PD and HD patients exhibited temporal inter-limb coupling; but failed to exhibit spatial inter-limb coupling during the bimanual diadochokinesis task. Furthermore, HD patients exhibited reduced levels of structural coupling compared to controls and PD patients. These results suggest that alterations in basal ganglia-thalamo-cortical networks due to PD and HD do not affect temporal inter-limb coupling. However, common pathophysiological changes related to PD and HD may cause altered spatial inter-limb coupling during a rapid repetitive bimanual diadochokinesis task.
Collapse
Affiliation(s)
- Jean-François Daneault
- Cone Laboratory for Research in Neurosurgery, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Benoit Carignan
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Abbas F Sadikot
- Cone Laboratory for Research in Neurosurgery, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Christian Duval
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada; Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Sulzer J, Dueñas J, Stämpili P, Hepp-Reymond MC, Kollias S, Seifritz E, Gassert R. Delineating the whole brain BOLD response to passive movement kinematics. IEEE Int Conf Rehabil Robot 2014; 2013:6650474. [PMID: 24187291 DOI: 10.1109/icorr.2013.6650474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The field of brain-machine interfaces (BMIs) has made great advances in recent years, converting thought to movement, with some of the most successful implementations measuring directly from the motor cortex. However, the ability to record from additional regions of the brain could potentially improve flexibility and robustness of use. In addition, BMIs of the future will benefit from integrating kinesthesia into the control loop. Here, we examine whether changes in passively induced forefinger movement amplitude are represented in different regions than forefinger velocity via a MR compatible robotic manipulandum. Using functional magnetic resonance imaging (fMRI), five healthy participants were exposed to combinations of forefinger movement amplitude and velocity in a factorial design followed by an epoch-based analysis. We found that primary and secondary somatosensory regions were activated, as well as cingulate motor area, putamen and cerebellum, with greater activity from changes in velocity compared to changes in amplitude. This represents the first investigation into whole brain response to parametric changes in passive movement kinematics. In addition to informing BMIs, these results have implications towards neural correlates of robotic rehabilitation.
Collapse
|
35
|
Kim N, Barter JW, Sukharnikova T, Yin HH. Striatal firing rate reflects head movement velocity. Eur J Neurosci 2014; 40:3481-90. [PMID: 25209171 DOI: 10.1111/ejn.12722] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023]
Abstract
Although the basal ganglia have long been implicated in the initiation of actions, their contribution to movement remains a matter of dispute. Using wireless multi-electrode recording and motion tracking, we examined the relationship between single-unit activity in the sensorimotor striatum and movement kinematics. We recorded single-unit activity from medium spiny projection neurons and fast-spiking interneurons while monitoring the movements of mice using motion tracking. In Experiment 1, we trained mice to generate movements reliably by water-depriving them and giving them periodic cued sucrose rewards. We found high correlations between single-unit activity and movement velocity in particular directions. This correlation was found in both putative medium spiny projection neurons and fast-spiking interneurons. In Experiment 2, to rule out the possibility that the observed correlations were due to reward expectancy, we repeated the same procedure but added trials in which sucrose delivery was replaced by an aversive air puff stimulus. The air puff generated avoidance movements that were clearly different from movements on rewarded trials, but the same neurons that showed velocity correlation on reward trials exhibited a similar correlation on air puff trials. These experiments show for the first time that the firing rate of striatal neurons reflects movement velocity for different types of movements, whether to seek rewards or to avoid harm.
Collapse
Affiliation(s)
- Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Box 91050, Durham, NC, 27708, USA
| | | | | | | |
Collapse
|
36
|
Lee MJ, Kim SL, Lyoo CH, Rinne JO, Lee MS. Impact of regional striatal dopaminergic function on kinematic parameters of Parkinson's disease. J Neural Transm (Vienna) 2014; 122:669-77. [PMID: 25145816 DOI: 10.1007/s00702-014-1296-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/09/2014] [Indexed: 11/29/2022]
Abstract
Among the cardinal parkinsonian motor deficits, the severity of bradykinesia correlates with striatal dopamine loss. However, the impact of regional striatal dopamine loss on specific components of bradykinesia remains unknown. Using gyroscopes, we measured the amplitude, speed, and frequency of finger tapping in 24 untreated patients with Parkinson's disease (PD) and 28 healthy controls. Using positron emission tomography (PET) studies and [(18)F]-N-3-fluoropropyl-2-beta-carboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) in PD patients, we investigated the relationship between the mean values, variability and decrements of various kinematic parameters of finger tapping on one side (e.g. the mean, variability and decrement) and contralateral striatal FP-CIT binding. Compared with controls, PD patients had reduced amplitudes and speeds of tapping and showed greater decrement in those parameters. PD patients also exhibited greater irregularity in amplitude, speed, and frequency. Putaminal FP-CIT uptake levels correlated with the mean speed and amplitude, and caudate uptake levels correlated with mean amplitude. The variability of amplitude and speed correlated only with the caudate uptake levels. Neither caudate nor putaminal uptake correlated with frequency-related parameters or decrement in amplitude or speed. Reduced amplitude and speed of repetitive movement may be related to striatal dopaminergic deficit. Dopaminergic action in the caudate nucleus is required to maintain consistency of amplitude and speed. Although decrement of amplitude and speed is known to be specific for PD, we found that it did not mirror the degree of striatal dopamine depletion.
Collapse
Affiliation(s)
- Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats. Brain Struct Funct 2014; 220:3595-609. [PMID: 25124274 DOI: 10.1007/s00429-014-0876-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Deep brain stimulation (DBS) is effective in managing motor symptoms of Parkinson's disease in well-selected individuals. Recently, research has shown that DBS in the basal ganglia (BG) can alter neural circuits beyond the traditional basal ganglia-thalamus-cortical (BG-TH-CX) loop. For instance, functional imaging showed alterations in cerebellar activity with DBS in the subthalamic nucleus (STN). However, these imaging studies revealed very little about how cell-specific cerebellar activity responds to STN stimulation or if these changes contribute to its efficacy. In this study, we assess whether STN-DBS provides efficacy in managing motor symptoms in Parkinson's disease by recruiting cerebellar activity. We do this by applying STN-DBS in hemiparkinsonian rats and simultaneously recording neuronal activity from the STN, brainstem and cerebellum. We found that STN neurons decreased spiking activity by 55% during DBS (P = 0.038), which coincided with a decrease in most pedunculopontine tegmental nucleus and Purkinje neurons by 29% (P < 0.001) and 28% (P = 0.003), respectively. In contrast, spike activity in the deep cerebellar nuclei increased 45% during DBS (P < 0.001), which was likely from reduced afferent activity of Purkinje cells. Then, we applied STN-DBS at sub-therapeutic current along with stimulation of the deep cerebellar nuclei and found similar improvement in forelimb akinesia as with therapeutic STN-DBS alone. This suggests that STN-DBS can engage cerebellar activity to improve parkinsonian motor symptoms. Our study is the first to describe how STN-DBS in Parkinson's disease alters cerebellar activity using electrophysiology in vivo and reveal a potential for stimulating the cerebellum to potentiate deep brain stimulation of the subthalamic nucleus.
Collapse
|
38
|
Yin C, Wei K. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory. J Neurophysiol 2014; 112:594-602. [DOI: 10.1152/jn.00070.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items.
Collapse
Affiliation(s)
- Cong Yin
- Department of Psychology, Peking University, Beijing, China
| | - Kunlin Wei
- Department of Psychology, Peking University, Beijing, China
| |
Collapse
|
39
|
Changes of motor-cortical oscillations associated with motor learning. Neuroscience 2014; 275:47-53. [PMID: 24931763 DOI: 10.1016/j.neuroscience.2014.06.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
Abstract
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning.
Collapse
|
40
|
Wenzel U, Taubert M, Ragert P, Krug J, Villringer A. Functional and structural correlates of motor speed in the cerebellar anterior lobe. PLoS One 2014; 9:e96871. [PMID: 24800742 PMCID: PMC4011948 DOI: 10.1371/journal.pone.0096871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows "power athletes" to perform a simple foot movement significantly faster than "endurance athletes". We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 "power athletes" requiring high speed foot movements (sprinters, jumpers, throwers) and 16 endurance athletes (distance runners) which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI) was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry). We tested maximum movement velocity of plantarflexion (PF-Vmax) and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Uwe Wenzel
- Institute of Training Science and General Kinesiology, University of Leipzig, Leipzig, Germany
| | - Marco Taubert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jürgen Krug
- Institute of Training Science and General Kinesiology, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
41
|
Snider J, Lee D, Harrington DL, Poizner H. Scaling and coordination deficits during dynamic object manipulation in Parkinson's disease. J Neurophysiol 2014; 112:300-15. [PMID: 24760787 DOI: 10.1152/jn.00041.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to reach for and dynamically manipulate objects in a dexterous fashion requires scaling and coordination of arm, hand, and fingertip forces during reach and grasp components of this behavior. The neural substrates underlying dynamic object manipulation are not well understood. Insight into the role of basal ganglia-thalamocortical circuits in object manipulation can come from the study of patients with Parkinson's disease (PD). We hypothesized that scaling and coordination aspects of motor control are differentially affected by this disorder. We asked 20 PD patients and 23 age-matched control subjects to reach for, grasp, and lift virtual objects along prescribed paths. The movements were subdivided into two types, intensive (scaling) and coordinative, by detecting their underlying self-similarity. PD patients off medication were significantly impaired relative to control subjects for both aspects of movement. Intensive deficits, reduced peak speed and aperture, were seen during the reach. Coordinative deficits were observed during the reach, namely, the relative position along the trajectory at which peak speed and aperture were achieved, and during the lift, when objects tilted with respect to the gravitational axis. These results suggest that basal ganglia-thalamocortical circuits may play an important role in fine motor coordination. Dopaminergic therapy significantly improved intensive but not coordinative aspects of movements. These findings are consistent with a framework in which tonic levels of dopamine in the dorsal striatum encode the energetic cost of a movement, thereby improving intensive or scaling aspects of movement. However, repletion of brain dopamine levels does not restore finely coordinated movement.
Collapse
Affiliation(s)
- Joseph Snider
- Institute of Neural Computation, University of California San Diego, La Jolla, California
| | - Dongpyo Lee
- Institute of Neural Computation, University of California San Diego, La Jolla, California
| | - Deborah L Harrington
- Research Service, Department of Veterans Affairs San Diego Healthcare System, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; and
| | - Howard Poizner
- Institute of Neural Computation, University of California San Diego, La Jolla, California; Graduate Program in Neurosciences, University of California San Diego, La Jolla, California
| |
Collapse
|
42
|
Sosnik R, Flash T, Sterkin A, Hauptmann B, Karni A. The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains. Front Hum Neurosci 2014; 8:201. [PMID: 24795591 PMCID: PMC3997032 DOI: 10.3389/fnhum.2014.00201] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/21/2014] [Indexed: 11/30/2022] Open
Abstract
There is growing experimental evidence that the engagement of different brain areas in a given motor task may change with practice, although the specific brain activity patterns underlying different stages of learning, as defined by kinematic or dynamic performance indices, are not well understood. Here we studied the change in activation in motor areas during practice on sequences of handwriting-like trajectories, connecting four target points on a digitizing table “as rapidly and as accurately as possible” while lying inside an fMRI scanner. Analysis of the subjects' pooled kinematic and imaging data, acquired at the beginning, middle, and end of the training period, revealed no correlation between the amount of activation in the contralateral M1, PM (dorsal and ventral), supplementary motor area (SMA), preSMA, and Posterior Parietal Cortex (PPC) and the amount of practice per-se. Single trial analysis has revealed that the correlation between the amount of activation in the contralateral M1 and trial mean velocity was partially modulated by performance gains related effects, such as increased hand motion smoothness. Furthermore, it was found that the amount of activation in the contralateral preSMA increased when subjects shifted from generating straight point-to-point trajectories to their spatiotemporal concatenation into a smooth, curved trajectory. Altogether, our results indicate that the amount of activation in the contralateral M1, PMd, and preSMA during the learning of movement sequences is correlated with performance gains and that high level motion features (e.g., motion smoothness) may modulate, or even mask correlations between activity changes and low-level motion attributes (e.g., trial mean velocity).
Collapse
Affiliation(s)
- Ronen Sosnik
- Department of Neurobiology, Brain Research, Weizmann Institute of Science Rehovot, Israel ; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science Rehovot, Israel
| | - Tamar Flash
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science Rehovot, Israel
| | - Anna Sterkin
- Faculty of Medicine, Goldschleger Eye Research Institute, Tel Aviv University Tel Hashomer, Israel
| | - Bjoern Hauptmann
- Department of Neurology, Segeberger Kliniken Bad Segeberg, Germany ; Department of Therapeutic Sciences, MSH Medical School Hamburg Hamburg, Germany
| | - Avi Karni
- Faculty of Education, Department of Learning Disabilities, The Brain Behavior Research Center, University of Haifa Haifa, Israel
| |
Collapse
|
43
|
Golub MD, Yu BM, Schwartz AB, Chase SM. Motor cortical control of movement speed with implications for brain-machine interface control. J Neurophysiol 2014; 112:411-29. [PMID: 24717350 DOI: 10.1152/jn.00391.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Motor cortex plays a substantial role in driving movement, yet the details underlying this control remain unresolved. We analyzed the extent to which movement-related information could be extracted from single-trial motor cortical activity recorded while monkeys performed center-out reaching. Using information theoretic techniques, we found that single units carry relatively little speed-related information compared with direction-related information. This result is not mitigated at the population level: simultaneously recorded population activity predicted speed with significantly lower accuracy relative to direction predictions. Furthermore, a unit-dropping analysis revealed that speed accuracy would likely remain lower than direction accuracy, even given larger populations. These results suggest that the instantaneous details of single-trial movement speed are difficult to extract using commonly assumed coding schemes. This apparent paucity of speed information takes particular importance in the context of brain-machine interfaces (BMIs), which rely on extracting kinematic information from motor cortex. Previous studies have highlighted subjects' difficulties in holding a BMI cursor stable at targets. These studies, along with our finding of relatively little speed information in motor cortex, inspired a speed-dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances speed control by using prevalent directional signals, rather than requiring speed to be directly decoded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard Kalman filter in a closed-loop BMI task requiring stable stops at targets. BMI systems enabling stable stops will be more effective and user-friendly when translated into clinical applications.
Collapse
Affiliation(s)
- Matthew D Golub
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Byron M Yu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| | - Andrew B Schwartz
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Neurobiology, University of Pittsburgh Pittsburgh, Pennsylvania
| | - Steven M Chase
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| |
Collapse
|
44
|
Semrau JA, Perlmutter JS, Thoroughman KA. Visuomotor adaptation in Parkinson's disease: effects of perturbation type and medication state. J Neurophysiol 2014; 111:2675-87. [PMID: 24694937 DOI: 10.1152/jn.00095.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To perform simple everyday tasks, we use visual feedback from our external environment to generate and guide movements. However, tasks like reaching for a cup may become extremely difficult in movement disorders such as Parkinson's disease (PD), and it is unknown whether PD patients use visual information to compensate for motor deficiencies. We tested adaptation to changes in visual feedback of the hand in three subject groups, PD patients on daily levodopa (l-dopa) therapy (PD ON), PD patients off l-dopa (PD OFF), and age-matched control subjects, to determine the effects of PD on the visual control of movement. Subjects were tested on two classes of visual perturbations, one that altered visual direction of movement and one that altered visual extent of movement, allowing us to test adaptive sensitivity to changes in both movement direction (visual rotations) and extent (visual gain). The PD OFF group displayed more complete adaptation to visuomotor rotations compared with control subjects but initial, transient difficulty with adaptation to visual gain perturbations. The PD ON group displayed feedback control more sensitive to visual error compared with control subjects but compared with the PD OFF group had mild impairments during adaptation to changes in visual extent. We conclude that PD subjects can adapt to changes in visual information but that l-dopa may impair visual-based motor adaptation.
Collapse
Affiliation(s)
- Jennifer A Semrau
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Joel S Perlmutter
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri; Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri; and Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri
| | - Kurt A Thoroughman
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri; Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
45
|
Rate control and quality assurance during rhythmic force tracking. Behav Brain Res 2014; 259:186-95. [PMID: 24269498 DOI: 10.1016/j.bbr.2013.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 11/20/2022]
Abstract
Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity.
Collapse
|
46
|
Picard N, Matsuzaka Y, Strick PL. Extended practice of a motor skill is associated with reduced metabolic activity in M1. Nat Neurosci 2013; 16:1340-7. [PMID: 23912947 PMCID: PMC3757119 DOI: 10.1038/nn.3477] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022]
Abstract
How does long-term training and the development of motor skill modify the activity of the primary motor cortex (M1)? To address this issue we trained monkeys for ~1–6 years to perform visually-guided and internally-generated sequences of reaching movements. Then, we used 14C-2-deoxyglucose (2DG) uptake and single neuron recording to measure metabolic and neuron activity in M1. After extended practice, we observed a profound reduction of metabolic activity in M1 for the performance of internally-generated compared to visually-guided tasks. In contrast, measures of neuron firing displayed little difference during the two tasks. These findings suggest that the development of skill through extended practice results in a reduction in the synaptic activity required to produce internally-generated, but not visually-guided sequences of movements. Thus, practice leading to skilled performance results in more efficient generation of neuronal activity in M1.
Collapse
Affiliation(s)
- Nathalie Picard
- Center for the Neural Basis of Cognition and Systems Neuroscience Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
47
|
Kätsyri J, Hari R, Ravaja N, Nummenmaa L. Just watching the game ain't enough: striatal fMRI reward responses to successes and failures in a video game during active and vicarious playing. Front Hum Neurosci 2013; 7:278. [PMID: 23781195 PMCID: PMC3680713 DOI: 10.3389/fnhum.2013.00278] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/28/2013] [Indexed: 01/23/2023] Open
Abstract
Although the multimodal stimulation provided by modern audiovisual video games is pleasing by itself, the rewarding nature of video game playing depends critically also on the players' active engagement in the gameplay. The extent to which active engagement influences dopaminergic brain reward circuit responses remains unsettled. Here we show that striatal reward circuit responses elicited by successes (wins) and failures (losses) in a video game are stronger during active than vicarious gameplay. Eleven healthy males both played a competitive first-person tank shooter game (active playing) and watched a pre-recorded gameplay video (vicarious playing) while their hemodynamic brain activation was measured with 3-tesla functional magnetic resonance imaging (fMRI). Wins and losses were paired with symmetrical monetary rewards and punishments during active and vicarious playing so that the external reward context remained identical during both conditions. Brain activation was stronger in the orbitomedial prefrontal cortex (omPFC) during winning than losing, both during active and vicarious playing. In contrast, both wins and losses suppressed activations in the midbrain and striatum during active playing; however, the striatal suppression, particularly in the anterior putamen, was more pronounced during loss than win events. Sensorimotor confounds related to joystick movements did not account for the results. Self-ratings indicated losing to be more unpleasant during active than vicarious playing. Our findings demonstrate striatum to be selectively sensitive to self-acquired rewards, in contrast to frontal components of the reward circuit that process both self-acquired and passively received rewards. We propose that the striatal responses to repeated acquisition of rewards that are contingent on game related successes contribute to the motivational pull of video-game playing.
Collapse
Affiliation(s)
- Jari Kätsyri
- Department of Media Technology, Aalto University School of Science Espoo, Finland ; School of Business, Aalto University Helsinki, Finland
| | | | | | | |
Collapse
|
48
|
Seidler RD, Kwak Y, Fling BW, Bernard JA. Neurocognitive mechanisms of error-based motor learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 782:39-60. [PMID: 23296480 PMCID: PMC3817858 DOI: 10.1007/978-1-4614-5465-6_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rachael D. Seidler
- Department of Psychology and School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA,
| | - Youngbin Kwak
- Neuroscience Program, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA, ; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA
| | - Brett W. Fling
- School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA,
| | - Jessica A. Bernard
- Department of Psychology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA,
| |
Collapse
|
49
|
Anzak A, Tan H, Pogosyan A, Foltynie T, Limousin P, Zrinzo L, Hariz M, Ashkan K, Bogdanovic M, Green AL, Aziz T, Brown P. Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease. Brain 2012; 135:2766-78. [PMID: 22858550 PMCID: PMC3437023 DOI: 10.1093/brain/aws183] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/23/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.
Collapse
Affiliation(s)
- Anam Anzak
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Huiling Tan
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alek Pogosyan
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Thomas Foltynie
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Marwan Hariz
- 2 Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Keyoumars Ashkan
- 3 Department of Neurosurgery, Kings College Hospital, Kings College London, SE5 9RS, UK
| | - Marko Bogdanovic
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- 4 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander L. Green
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- 4 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Tipu Aziz
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- 4 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Peter Brown
- 1 Functional Neurosurgery–Experimental Neurology Group, Department of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
50
|
Abstract
Neuronal synchronization in the gamma (γ) band is considered important for information processing through functional integration of neuronal assemblies across different brain areas. Movement-related γ synchronization occurs in the human basal ganglia where it is centered at ~70 Hz and more pronounced contralateral to the moved hand. However, its functional significance in motor performance is not yet well understood. Here, we assessed whether event-related γ synchronization (ERS) recorded from the globus pallidus internus in patients undergoing deep brain stimulation for medically intractable primary focal and segmental dystonia might code specific motor parameters. Pallidal local field potentials were recorded in 22 patients during performance of a choice-reaction-time task. Movement amplitude of the forearm pronation-supination movements was parametrically modulated with an angular degree of 30°, 60°, and 90°. Only patients with limbs not affected by dystonia were tested. A broad contralateral γ band (35-105 Hz) ERS occurred at movement onset with a maximum reached at peak velocity of the movement. The pallidal oscillatory γ activity correlated with movement parameters: the larger and faster the movement, the stronger was the synchronization in the γ band. In contrast, the event-related decrease in beta band activity was similar for all movements. Gamma band activity did not change with movement direction and did not occur during passive movements. The stepwise increase of γ activity with movement size and velocity suggests a role of neuronal synchronization in this frequency range in basal ganglia control of the scaling of ongoing movements.
Collapse
|