1
|
Bistel R, Amador A, Mindlin GB. Response of wild songbirds to songs synthesized with a low-dimensional model. Phys Rev E 2024; 109:054410. [PMID: 38907439 DOI: 10.1103/physreve.109.054410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/12/2024] [Indexed: 06/24/2024]
Abstract
In this work, we used a dynamical system derived from an avian vocal production model to generate synthetic songs that mimic the Zonotrichia capensis songs. We confirmed that these synthetic renditions elicited behavioral responses similar to those evoked by real songs in wild songbirds of the same species. Specifically, we observed an increase in the singing rate of individual birds when a playback device was introduced into their territories. The success of our approach instills confidence in the hypotheses underpinning the model and provides a valuable tool for investigating a wide range of biological questions.
Collapse
Affiliation(s)
- Roberto Bistel
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física Interdisciplinaria y Aplicada (INFINA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Amador
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física Interdisciplinaria y Aplicada (INFINA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel B Mindlin
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Física Interdisciplinaria y Aplicada (INFINA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Matemática Aplicada, Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
2
|
Arneodo EM, Chen S, Brown DE, Gilja V, Gentner TQ. Neurally driven synthesis of learned, complex vocalizations. Curr Biol 2021; 31:3419-3425.e5. [PMID: 34139192 DOI: 10.1016/j.cub.2021.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/03/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022]
Abstract
Brain machine interfaces (BMIs) hold promise to restore impaired motor function and serve as powerful tools to study learned motor skill. While limb-based motor prosthetic systems have leveraged nonhuman primates as an important animal model,1-4 speech prostheses lack a similar animal model and are more limited in terms of neural interface technology, brain coverage, and behavioral study design.5-7 Songbirds are an attractive model for learned complex vocal behavior. Birdsong shares a number of unique similarities with human speech,8-10 and its study has yielded general insight into multiple mechanisms and circuits behind learning, execution, and maintenance of vocal motor skill.11-18 In addition, the biomechanics of song production bear similarity to those of humans and some nonhuman primates.19-23 Here, we demonstrate a vocal synthesizer for birdsong, realized by mapping neural population activity recorded from electrode arrays implanted in the premotor nucleus HVC onto low-dimensional compressed representations of song, using simple computational methods that are implementable in real time. Using a generative biomechanical model of the vocal organ (syrinx) as the low-dimensional target for these mappings allows for the synthesis of vocalizations that match the bird's own song. These results provide proof of concept that high-dimensional, complex natural behaviors can be directly synthesized from ongoing neural activity. This may inspire similar approaches to prosthetics in other species by exploiting knowledge of the peripheral systems and the temporal structure of their output.
Collapse
Affiliation(s)
- Ezequiel M Arneodo
- Biocircuits Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; IFLP-CONICET, Departamento de Física, Universidad Nacional de La Plata, CC 67, La Plata 1900, Argentina
| | - Shukai Chen
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Daril E Brown
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Timothy Q Gentner
- Biocircuits Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Psychology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Kavli Institute for Brain and Mind, 9500 Gilman Drive, La Jolla, CA 92093, USA; Neurobiology Section, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Pagliarini S, Leblois A, Hinaut X. Vocal Imitation in Sensorimotor Learning Models: A Comparative Review. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.3041179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Döppler JF, Bush A, Amador A, Goller F, Mindlin GB. Gating related activity in a syringeal muscle allows the reconstruction of zebra finches songs. CHAOS (WOODBURY, N.Y.) 2018; 28:075517. [PMID: 30070497 PMCID: PMC6067928 DOI: 10.1063/1.5024377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Birdsong production involves the simultaneous and precise control of a set of muscles that change the configuration and dynamics of the vocal organ. Although it has been reported that each one of the different muscles is primarily involved in the control of one acoustic feature, recent advances have shown that they act synergistically to achieve the dynamical state necessary for phonation. In this work, we present a set of criteria that allow the extraction of gating-related information from the electromyographic activity of the syringealis ventralis muscle, a muscle that has been shown to be involved in frequency modulation. Using dynamical models of the muscle and syringeal dynamics, we obtain a full reconstruction of the zebra finch song using only the activity of this muscle.
Collapse
Affiliation(s)
- Juan F. Döppler
- Physics Department, FCEyN, University of Buenos Aires and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Alan Bush
- Physics Department, FCEyN, University of Buenos Aires and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ana Amador
- Physics Department, FCEyN, University of Buenos Aires and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Franz Goller
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, USA
| | - Gabriel B. Mindlin
- Physics Department, FCEyN, University of Buenos Aires and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
5
|
Neural coding of sound envelope structure in songbirds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:285-294. [PMID: 29234861 DOI: 10.1007/s00359-017-1238-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Songbirds are a well-established animal model to study the neural basis of learning, perception and production of complex vocalizations. In this system, telencephalic neurons in HVC present a state-dependent, highly selective response to auditory presentations of the bird's own song (BOS). This property provides an opportunity to study the neural code behind a complex motor behavior. In this work, we explore whether changes in the temporal structure of the sound envelope can drive changes in the neural responses of highly selective HVC units. We generated an envelope-modified BOS (MOD) by reversing each syllable's envelope but leaving the overall temporal structure of syllable spectra unchanged, which resulted in a subtle modification for each song syllable. We conducted in vivo electrophysiological recordings of HVC neurons in anaesthetized zebra finches (Taeniopygia guttata). Units analyzed presented a high BOS selectivity and lower response to MOD, but preserved the profile response shape. These results show that the temporal evolution of the sound envelope is being sensed by the avian song system and suggest that the biomechanical properties of the vocal apparatus could play a role in enhancing subtle sound differences.
Collapse
|
6
|
Döppler JF, Bush A, Goller F, Mindlin GB. From electromyographic activity to frequency modulation in zebra finch song. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:209-217. [PMID: 29170980 DOI: 10.1007/s00359-017-1231-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
Abstract
Behavior emerges from the interaction between the nervous system and peripheral devices. In the case of birdsong production, a delicate and fast control of several muscles is required to control the configuration of the syrinx (the avian vocal organ) and the respiratory system. In particular, the syringealis ventralis muscle is involved in the control of the tension of the vibrating labia and thus affects the frequency modulation of the sound. Nevertheless, the translation of the instructions (which are electrical in nature) into acoustical features is complex and involves nonlinear, dynamical processes. In this work, we present a model of the dynamics of the syringealis ventralis muscle and the labia, which allows calculating the frequency of the generated sound, using as input the electrical activity recorded in the muscle. In addition, the model provides a framework to interpret inter-syllabic activity and hints at the importance of the biomechanical dynamics in determining behavior.
Collapse
Affiliation(s)
- Juan F Döppler
- Department of Physics, FCEyN, University of Buenos Aires, and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| | - Alan Bush
- Department of Physics, FCEyN, University of Buenos Aires, and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Franz Goller
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Gabriel B Mindlin
- Department of Physics, FCEyN, University of Buenos Aires, and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| |
Collapse
|
7
|
Goldin MA, Mindlin GB. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus. PLoS Comput Biol 2017; 13:e1005699. [PMID: 28829769 PMCID: PMC5568752 DOI: 10.1371/journal.pcbi.1005699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/25/2017] [Indexed: 01/18/2023] Open
Abstract
Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on intrinsic neuronal characteristics, may help to understand emergent behavioral changes. The study of the neuronal mechanisms that give rise to the complex behavior of singing in birds has been hotly debated lately. Many models have been tested and novel tools have been developed to try to understand the role of a key brain nucleus in the song pathway: HVC. It is believed that it is highly responsible for generating the precise timing of songs, and this has been tested by manipulating it with temperature. Results showed that cooling can stretch, but that it can also restructure or “break” the song syllables. However, single neuronal mechanisms are not yet described. To better understand this, we cooled HVC in canaries and measured spontaneous activity electrophysiologically. We found three effects: spike shape widening, spike rate reduction and changes in inter-spike-interval (ISI) distributions. To explain them, we built a computational model with a detailed description of ion channel conductances and temperature dependency. We could explain the first effect with a single neuron model. The second, could be explained adding single synapses. Finally, we showed similar ISI modifications of one of the timescales present by means of multiple stochastic inputs. In addition, we found that excitatory neurons show natural bursting behavior at normal brain temperatures and that synaptic delays are the main candidates to explain song stretching at low temperatures.
Collapse
Affiliation(s)
- Matías A. Goldin
- Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail:
| | - Gabriel B. Mindlin
- Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
8
|
Picardo MA, Merel J, Katlowitz KA, Vallentin D, Okobi DE, Benezra SE, Clary RC, Pnevmatikakis EA, Paninski L, Long MA. Population-Level Representation of a Temporal Sequence Underlying Song Production in the Zebra Finch. Neuron 2017; 90:866-76. [PMID: 27196976 DOI: 10.1016/j.neuron.2016.02.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/14/2016] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
The zebra finch brain features a set of clearly defined and hierarchically arranged motor nuclei that are selectively responsible for producing singing behavior. One of these regions, a critical forebrain structure called HVC, contains premotor neurons that are active at precise time points during song production. However, the neural representation of this behavior at a population level remains elusive. We used two-photon microscopy to monitor ensemble activity during singing, integrating across multiple trials by adopting a Bayesian inference approach to more precisely estimate burst timing. Additionally, we examined spiking and motor-related synaptic inputs using intracellular recordings during singing. With both experimental approaches, we find that premotor events do not occur preferentially at the onsets or offsets of song syllables or at specific subsyllabic motor landmarks. These results strongly support the notion that HVC projection neurons collectively exhibit a temporal sequence during singing that is uncoupled from ongoing movements.
Collapse
Affiliation(s)
- Michel A Picardo
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Josh Merel
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Kalman A Katlowitz
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Daniela Vallentin
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Daniel E Okobi
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam E Benezra
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Rachel C Clary
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Eftychios A Pnevmatikakis
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA; Simons Center for Data Analysis, Simons Foundation, New York, NY 10010, USA
| | - Liam Paninski
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Michael A Long
- New York University Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
9
|
Lynch GF, Okubo TS, Hanuschkin A, Hahnloser RHR, Fee MS. Rhythmic Continuous-Time Coding in the Songbird Analog of Vocal Motor Cortex. Neuron 2017; 90:877-92. [PMID: 27196977 DOI: 10.1016/j.neuron.2016.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Songbirds learn and produce complex sequences of vocal gestures. Adult birdsong requires premotor nucleus HVC, in which projection neurons (PNs) burst sparsely at stereotyped times in the song. It has been hypothesized that PN bursts, as a population, form a continuous sequence, while a different model of HVC function proposes that both HVC PN and interneuron activity is tightly organized around motor gestures. Using a large dataset of PNs and interneurons recorded in singing birds, we test several predictions of these models. We find that PN bursts in adult birds are continuously and nearly uniformly distributed throughout song. However, we also find that PN and interneuron firing rates exhibit significant 10-Hz rhythmicity locked to song syllables, peaking prior to syllable onsets and suppressed prior to offsets-a pattern that predominates PN and interneuron activity in HVC during early stages of vocal learning.
Collapse
Affiliation(s)
- Galen F Lynch
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tatsuo S Okubo
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander Hanuschkin
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich 8057, Switzerland
| | - Richard H R Hahnloser
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich 8057, Switzerland; Neuroscience Center Zurich (ZNZ), Zurich 8057, Switzerland
| | - Michale S Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Danish HH, Aronov D, Fee MS. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations. PLoS One 2017; 12:e0169568. [PMID: 28617829 PMCID: PMC5472270 DOI: 10.1371/journal.pone.0169568] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023] Open
Abstract
Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC.
Collapse
Affiliation(s)
- Husain H. Danish
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Dmitriy Aronov
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Michale S. Fee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Norton P, Scharff C. "Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm. Front Neurosci 2016; 10:309. [PMID: 27458334 PMCID: PMC4934119 DOI: 10.3389/fnins.2016.00309] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.
Collapse
Affiliation(s)
- Philipp Norton
- AG Verhaltensbiologie, Freie Universität Berlin Berlin, Germany
| | | |
Collapse
|