1
|
Lapsansky AB, Kreyenmeier P, Spering M, Wylie DR, Altshuler DL. Hummingbirds use compensatory eye movements to stabilize both rotational and translational visual motion. Proc Biol Sci 2025; 292:20242015. [PMID: 39809307 PMCID: PMC11732407 DOI: 10.1098/rspb.2024.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
To maintain stable vision, behaving animals make compensatory eye movements in response to image slip, a reflex known as the optokinetic response (OKR). Although OKR has been studied in several avian species, eye movements during flight are expected to be minimal. This is because vertebrates with laterally placed eyes typically show weak OKR to nasal-to-temporal motion (NT), which simulates typical forward locomotion, compared with temporal-to-nasal motion (TN), which simulates atypical backward locomotion. This OKR asymmetry is also reflected in the pretectum, wherein neurons sensitive to global visual motion also exhibit a TN bias. Hummingbirds, however, stabilize visual motion in all directions through whole-body movements and are unique among vertebrates in that they lack a pretectal bias. We therefore predicted that OKR in hummingbirds would be symmetrical. We measured OKR in restrained hummingbirds by presenting gratings drifting across a range of speeds. OKR in hummingbirds was asymmetrical, although the direction of asymmetry varied with stimulus speed. Hummingbirds moved their eyes largely independently of one another. Consistent with weak eye-to-eye coupling, hummingbirds also exhibited disjunctive OKR to visual motion simulating forward and backward translation. This unexpected oculomotor behaviour, previously unexplored in birds, suggests a potential role for compensatory eye movements during flight.
Collapse
Affiliation(s)
- Anthony B. Lapsansky
- Salish Sea Research Center, Northwest Indian College, Bellingham, WA98226, USA
- Department of Zoology, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Philipp Kreyenmeier
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British ColumbiaV5Z 3N9, Canada
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British ColumbiaV5Z 3N9, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Douglas R. Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2R3, Canada
| | - Douglas L. Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| |
Collapse
|
2
|
Dash S, Baliga VB, Lapsansky AB, Wylie DR, Altshuler DL. Encoding of Global Visual Motion in the Avian Pretectum Shifts from a Bias for Temporal-to-Nasal Selectivity to Omnidirectional Excitation across Speeds. eNeuro 2024; 11:ENEURO.0301-24.2024. [PMID: 39510839 DOI: 10.1523/eneuro.0301-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The pretectum of vertebrates contains neurons responsive to global visual motion. These signals are sent to the cerebellum, forming a subcortical pathway for processing optic flow. Global motion neurons exhibit selectivity for both direction and speed, but this is usually assessed by first determining direction preference at intermediate velocity (16-32°/s) and then assessing speed tuning at the preferred direction. A consequence of this approach is that it is unknown if and how direction preference changes with speed. We measured directional selectivity in 114 pretectal neurons from 44 zebra finches (Taeniopygia guttata) across spatial and temporal frequencies, corresponding to a speed range of 0.062-1,024°/s. Pretectal neurons were most responsive at 32-64°/s with lower activity as speed increased or decreased. At each speed, we determined if cells were directionally selective, bidirectionally selective, omnidirectionally responsive, or unmodulated. Notably, at 32°/s, 60% of the cells were directionally selective, and 28% were omnidirectionally responsive. In contrast, at 1,024°/s, 20% of the cells were directionally selective, and nearly half of the population was omnidirectionally responsive. Only 15% of the cells were omnidirectionally excited across most speeds. The remaining 85% of the cells had direction tuning that changed with speed. Collectively, these results indicate a shift from a bias for directional tuning at intermediate speeds of global visual motion to a bias for omnidirectional responses at faster speeds. These results suggest a potential role for the pretectum during flight by detecting unexpected drift or potential collisions, depending on the speed of the optic flow signal.
Collapse
Affiliation(s)
- Suryadeep Dash
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Vikram B Baliga
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Anthony B Lapsansky
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| |
Collapse
|
3
|
Madhav MS, Jayakumar RP, Li BY, Lashkari SG, Wright K, Savelli F, Knierim JJ, Cowan NJ. Control and recalibration of path integration in place cells using optic flow. Nat Neurosci 2024; 27:1599-1608. [PMID: 38937582 PMCID: PMC11563580 DOI: 10.1038/s41593-024-01681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Hippocampal place cells are influenced by both self-motion (idiothetic) signals and external sensory landmarks as an animal navigates its environment. To continuously update a position signal on an internal 'cognitive map', the hippocampal system integrates self-motion signals over time, a process that relies on a finely calibrated path integration gain that relates movement in physical space to movement on the cognitive map. It is unclear whether idiothetic cues alone, such as optic flow, exert sufficient influence on the cognitive map to enable recalibration of path integration, or if polarizing position information provided by landmarks is essential for this recalibration. Here, we demonstrate both recalibration of path integration gain and systematic control of place fields by pure optic flow information in freely moving rats. These findings demonstrate that the brain continuously rebalances the influence of conflicting idiothetic cues to fine-tune the neural dynamics of path integration, and that this recalibration process does not require a top-down, unambiguous position signal from landmarks.
Collapse
Affiliation(s)
- Manu S Madhav
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ravikrishnan P Jayakumar
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Brian Y Li
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Shahin G Lashkari
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly Wright
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Savelli
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - James J Knierim
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| | - Noah J Cowan
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA.
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Gaede AH, Wu PH, Leitch DB. Variations in touch representation in the hummingbird and zebra finch forebrain. Curr Biol 2024; 34:2739-2747.e3. [PMID: 38815578 DOI: 10.1016/j.cub.2024.04.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Somatosensation is essential for animals to perceive the external world through touch, allowing them to detect physical contact, temperature, pain, and body position. Studies on rodent vibrissae have highlighted the organization and processing in mammalian somatosensory pathways.1,2 Comparative research across vertebrates is vital for understanding evolutionary influences and ecological specialization on somatosensory systems. Birds, with their diverse morphologies, sensory abilities, and behaviors, serve as ideal models for investigating the evolution of somatosensation. Prior studies have uncovered tactile-responsive areas within the avian telencephalon, particularly in pigeons,3,4,5,6 parrots,7 and finches,8 but variations in somatosensory maps and responses across avian species are not fully understood. This study aims to explore somatotopic organization and neural coding in the telencephalon of Anna's hummingbirds (Calypte anna) and zebra finches (Taeniopygia guttata) by using in vivo extracellular electrophysiology to record activity in response to controlled tactile stimuli on various body regions. These findings reveal unique representations of body regions across distinct forebrain somatosensory nuclei, indicating significant differences in the extent of areas dedicated to certain body surfaces, which may correlate with their behavioral importance.
Collapse
Affiliation(s)
- Andrea H Gaede
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK.
| | - Pei-Hsuan Wu
- Department of Zoology, University of British Columbia, #3051 - 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada
| | - Duncan B Leitch
- Department of Zoology, University of British Columbia, #3051 - 6270 University Blvd. Vancouver, BC V6T 1Z4, Canada; Department of Integrative Biology & Physiology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Gaede AH, Gutiérrez-Ibáñez C, Wu PH, Pilon MC, Altshuler DL, Wylie DR. Topography of visual and somatosensory inputs to the pontine nuclei in zebra finches (Taeniopygia guttata). J Comp Neurol 2024; 532:e25556. [PMID: 37938923 DOI: 10.1002/cne.25556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Birds have a comprehensive network of sensorimotor projections extending from the forebrain and midbrain to the cerebellum via the pontine nuclei, but the organization of these circuits in the pons is not thoroughly described. Inputs to the pontine nuclei include two retinorecipient areas, nucleus lentiformis mesencephali (LM) and nucleus of the basal optic root (nBOR), which are important structures for analyzing optic flow. Other crucial regions for visuomotor control include the retinorecipient ventral lateral geniculate nucleus (GLv), and optic tectum (TeO). These visual areas, together with the somatosensory area of the anterior (rostral) Wulst, which is homologous to the primary somatosensory cortex in mammals, project to the medial and lateral pontine nuclei (PM, PL). In this study, we used injections of fluorescent tracers to study the organization of these visual and somatosensory inputs to the pontine nuclei in zebra finches. We found a topographic organization of inputs to PM and PL. The PM has a lateral subdivision that predominantly receives projections from the ipsilateral anterior Wulst. The medial PM receives bands of inputs from the ipsilateral GLv and the nucleus laminaris precommisulis, located medial to LM. We also found that the lateral PL receives a strong ipsilateral projection from TeO, while the medial PL and region between the PM and PL receive less prominent projections from nBOR, bilaterally. We discuss these results in the context of the organization of pontine inputs to the cerebellum and possible functional implications of diverse somato-motor and visuomotor inputs and parcellation in the pontine nuclei.
Collapse
Affiliation(s)
- Andrea H Gaede
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | - Pei-Hsuan Wu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison C Pilon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Baliga VB, Dakin R, Wylie DR, Altshuler DL. Hummingbirds use distinct control strategies for forward and hovering flight. Proc Biol Sci 2024; 291:20232155. [PMID: 38196357 PMCID: PMC10777153 DOI: 10.1098/rspb.2023.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
The detection of optic flow is important for generating optomotor responses to mediate retinal image stabilization, and it can also be used during ongoing locomotion for centring and velocity control. Previous work in hummingbirds has separately examined the roles of optic flow during hovering and when centring through a narrow passage during forward flight. To develop a hypothesis for the visual control of forward flight velocity, we examined the behaviour of hummingbirds in a flight tunnel where optic flow could be systematically manipulated. In all treatments, the animals exhibited periods of forward flight interspersed with bouts of spontaneous hovering. Hummingbirds flew fastest when they had a reliable signal of optic flow. All optic flow manipulations caused slower flight, suggesting that hummingbirds had an expected optic flow magnitude that was disrupted. In addition, upward and downward optic flow drove optomotor responses for maintaining altitude during forward flight. When hummingbirds made voluntary transitions to hovering, optomotor responses were observed to all directions. Collectively, these results are consistent with hummingbirds controlling flight speed via mechanisms that use an internal forward model to predict expected optic flow whereas flight altitude and hovering position are controlled more directly by sensory feedback from the environment.
Collapse
Affiliation(s)
- Vikram B. Baliga
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Roslyn Dakin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | - Douglas R. Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Douglas L. Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
7
|
Gutiérrez-Ibáñez C, Wylie DR, Altshuler DL. From the eye to the wing: neural circuits for transforming optic flow into motor output in avian flight. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:839-854. [PMID: 37542566 DOI: 10.1007/s00359-023-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Avian flight is guided by optic flow-the movement across the retina of images of surfaces and edges in the environment due to self-motion. In all vertebrates, there is a short pathway for optic flow information to reach pre-motor areas: retinal-recipient regions in the midbrain encode optic flow, which is then sent to the cerebellum. One well-known role for optic flow pathways to the cerebellum is the control of stabilizing eye movements (the optokinetic response). However, the role of this pathway in controlling locomotion is less well understood. Electrophysiological and tract tracing studies are revealing the functional connectivity of a more elaborate circuit through the avian cerebellum, which integrates optic flow with other sensory signals. Here we review the research supporting this framework and identify the cerebellar output centres, the lateral (CbL) and medial (CbM) cerebellar nuclei, as two key nodes with potentially distinct roles in flight control. The CbM receives bilateral optic flow information and projects to sites in the brainstem that suggest a primary role for flight control over time, such as during forward flight. The CbL receives monocular optic flow and other types of visual information. This site provides feedback to sensory areas throughout the brain and has a strong projection the nucleus ruber, which is known to have a dominant role in forelimb muscle control. This arrangement suggests primary roles for the CbL in the control of wing morphing and for rapid maneuvers.
Collapse
Affiliation(s)
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Wylie DR, Gaede AH, Gutiérrez-Ibáñez C, Wu PH, Pilon MC, Azargoon S, Altshuler DL. Topography of optic flow processing in olivo-cerebellar pathways in zebra finches (Taeniopygia guttata). J Comp Neurol 2023; 531:640-662. [PMID: 36648211 DOI: 10.1002/cne.25454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are brainstem nuclei involved in the analysis of optic flow. A major projection site of both nBOR and LM is the medial column of the inferior olive (IO), which provides climbing fibers to the vestibulocerebellum. This pathway has been well documented in pigeons, but not other birds. Recent works have highlighted that zebra finches show specializations with respect to optic flow processing, which may be reflected in the organization of optic flow pathways to the IO. In this study, we characterized the organization of these pathways in zebra finches. We found that the medial column consists of at least eight subnuclei (i-viii) visible in Nissl-stained tissue. Using anterograde traces we found that the projections from LM and nBOR to the IO were bilateral, but heavier to the ipsilateral side, and showed a complementary pattern: LM projected to subnucleus i, whereas nBOR projected to subnuclei ii and v. Using retrograde tracers, we found that these subnuclei (i, ii and v) projected to the vestibulocerebellum (folia IXcd and X), whereas the other subnuclei projected to IXab and the lateral margin of VII and VIII. The nBOR also projected ipsilaterally to the caudo-medial dorsal lamella of the IO, which the retrograde experiments showed as projecting to the medial margin of VII and VIII. We compare these results with previous studies in other avian species.
Collapse
Affiliation(s)
- Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea H Gaede
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Pei-Hsuan Wu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison C Pilon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sarina Azargoon
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Smyth G, Baliga VB, Gaede AH, Wylie DR, Altshuler DL. Specializations in optic flow encoding in the pretectum of hummingbirds and zebra finches. Curr Biol 2022; 32:2772-2779.e4. [DOI: 10.1016/j.cub.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|