1
|
Gordy C, Straka H, Houston DW, Fritzsch B, Elliott KL. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. Dev Neurobiol 2018; 78:1064-1080. [PMID: 30027559 PMCID: PMC6552669 DOI: 10.1002/dneu.22629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Numerous tissue transplantations have demonstrated that otocysts can develop into normal ears in any location in all vertebrates tested thus far, though the pattern of innervation of these transplanted ears has largely been understudied. Here, expanding on previous findings that transplanted ears demonstrate capability of local brainstem innervation and can also be innervated themselves by efferents, we show that inner ear afferents grow toward the spinal cord mostly along existing afferent and efferent fibers and preferentially enter the dorsal spinal cord. Once in the dorsal funiculus of the spinal cord, they can grow toward the hindbrain and can diverge into vestibular nuclei. Inner ear afferents can also project along lateral line afferents. Likewise, lateral line afferents can navigate along inner ear afferents to reach hair cells in the ear. In addition, transplanted ears near the heart show growth of inner ear afferents along epibranchial placode-derived vagus afferents. Our data indicate that inner ear afferents can navigate in foreign locations, likely devoid of any local ear-specific guidance cues, along existing nerves, possibly using the nerve-associated Schwann cells as substrate to grow along. However, within the spinal cord and hindbrain, inner ear afferents can navigate to vestibular targets, likely using gradients of diffusible factors that define the dorso-ventral axis to guide them. Finally, afferents of transplanted ears functionally connect to native hindbrain vestibular circuitry, indicated by eliciting a startle behavior response, and providing excitatory input to specific sets of extraocular motoneurons.
Collapse
Affiliation(s)
- Clayton Gordy
- Department of Biology, University of Iowa, Iowa City, Iowa
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
| | | | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa
| | | |
Collapse
|
2
|
Branoner F, Straka H. Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis. Dev Neurobiol 2014; 75:1051-67. [PMID: 25266079 DOI: 10.1002/dneu.22234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 02/03/2023]
Abstract
Gaze stabilization during head/body movements is achieved to a large extent by vestibular-evoked compensatory eye movements. These reflexes derive from semicircular canal and otolith organs and depend on the transformation of the respective sensory signals into extraocular motor commands. To elicit directionally and dynamically appropriate compensatory eye movements, extraocular motoneurons require spatiotemporally specific inputs from semicircular canals and regions of the utricular epithelium with matching directional sensitivity. The ontogenetic establishment and maturation of the directional tuning of otolith inputs in extraocular motoneurons was studied in Xenopus laevis tadpoles. In young larvae at stage 46-48, superior oblique (SO) extraocular motoneurons receive omnidirectional utricular signals during horizontal translational motion, indicating an absence of spatial tuning. In contrast, in older larvae beyond stage 49 these motoneurons were activated by directionally more restricted otolith inputs with an increasingly enhanced spatial tuning until stage 53. This developmental process limited the origin of otolith signals to a utricular epithelial sector with a hair cell sensitivity that is coaligned with the pulling direction of the SO eye muscle. The maturation of the otolith response vector was abolished by enzymatic prevention of semicircular canal formation in postembryonic tadpoles at stage 44, suggesting that functionally intact semicircular canals are causally responsible for the observed directional tuning of utricular responses. A likely mechanism by which semicircular canals might influence the tuning of the otolith responses includes stabilization of coactivated and centrally converging sensory signals from semicircular canal and spatially aligned epithelial utricular regions during natural head/body motion.
Collapse
Affiliation(s)
- Francisco Branoner
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| |
Collapse
|
3
|
Yu XJ, Thomassen JS, Dickman JD, Newlands SD, Angelaki DE. Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion. J Neurophysiol 2014; 112:870-89. [PMID: 24848470 DOI: 10.1152/jn.00280.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The vestibular system operates in a push-pull fashion using signals from both labyrinths and an intricate bilateral organization. Unilateral vestibular lesions cause well-characterized motor deficits that are partially compensated over time and whose neural correlates have been traced in the mean response modulation of vestibular nuclei cells. Here we compare both response gains and neural detection thresholds of vestibular nuclei and semicircular canal afferent neurons in intact vs. unilateral-lesioned macaques using three-dimensional rotation and translation stimuli. We found increased stimulus-driven spike count variability and detection thresholds in semicircular canal afferents, although mean responses were unchanged, after contralateral labyrinth lesion. Analysis of trial-by-trial spike count correlations of a limited number of simultaneously recorded pairs of canal afferents suggests increased noise correlations after lesion. In addition, we also found persistent, chronic deficits in rotation detection thresholds of vestibular nuclei neurons, which were larger in the ipsilesional than the contralesional brain stem. These deficits, which persisted several months after lesion, were due to lower rotational response gains, whereas spike count variability was similar in intact and lesioned animals. In contrast to persistent deficits in rotation threshold, translation detection thresholds were not different from those in intact animals. These findings suggest that, after compensation, a single labyrinth is sufficient to recover motion sensitivity and normal thresholds for the otolith, but not the semicircular canal, system.
Collapse
Affiliation(s)
- Xiong-Jie Yu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| | - Jakob S Thomassen
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| | - Shawn D Newlands
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Anatomy & Neurobiology, Washington University, St. Louis, Missouri; and
| |
Collapse
|
4
|
Restricted neural plasticity in vestibulospinal pathways after unilateral labyrinthectomy as the origin for scoliotic deformations. J Neurosci 2013; 33:6845-56. [PMID: 23595743 DOI: 10.1523/jneurosci.4842-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adolescent idiopathic scoliosis in humans is often associated with vestibulomotor deficits. Compatible with a vestibular origin, scoliotic deformations were provoked in adult Xenopus frogs by unilateral labyrinthectomy (UL) at larval stages. The aquatic ecophysiology and absence of body-weight-supporting limb proprioceptive signals in amphibian tadpoles as a potential sensory substitute after UL might be the cause for a persistent asymmetric descending vestibulospinal activity. Therefore, peripheral vestibular lesions in larval Xenopus were used to reveal the morphophysiological alterations at the cellular and network levels. As a result, spinal motor nerves that were modulated by the previously intact side before UL remained permanently silent during natural vestibular stimulation after the lesion. In addition, retrograde tracing of descending pathways revealed a loss of vestibular neurons on the ipsilesional side with crossed vestibulospinal projections. This loss facilitated a general mass imbalance in descending premotor activity and a permanent asymmetric motor drive to the axial musculature. Therefore, we propose that the persistent asymmetric contraction of trunk muscles exerts a constant, uncompensated differential mechanical pull on bilateral skeletal elements that enforces a distortion of the soft cartilaginous skeletal elements and bone shapes. This ultimately provokes severe scoliotic deformations during ontogenetic development similar to the human syndrome.
Collapse
|
5
|
Beraneck M, Bojados M, Le Séac'h A, Jamon M, Vidal PP. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing. PLoS One 2012; 7:e40414. [PMID: 22808156 PMCID: PMC3393735 DOI: 10.1371/journal.pone.0040414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 11/28/2022] Open
Abstract
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
Collapse
Affiliation(s)
- Mathieu Beraneck
- CNRS UMR 8194, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | |
Collapse
|
6
|
Lambert FM, Straka H. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control. Front Neurol 2012; 3:42. [PMID: 22518109 PMCID: PMC3324849 DOI: 10.3389/fneur.2012.00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/05/2012] [Indexed: 11/13/2022] Open
Abstract
Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the central nervous system (CNS) to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the CNS include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims toward a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of vestibular function.
Collapse
|
7
|
Beraneck M, Idoux E. Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 2012; 3:25. [PMID: 22403570 PMCID: PMC3289128 DOI: 10.3389/fneur.2012.00025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/09/2012] [Indexed: 12/29/2022] Open
Abstract
The sensorimotor transformations performed by central vestibular neurons constantly adapt as the animal faces conflicting sensory information or sustains injuries. To ensure the homeostasis of vestibular-related functions, neural changes could in part rely on the regulation of 2° VN intrinsic properties. Here we review evidence that demonstrates modulation and plasticity of central vestibular neurons’ intrinsic properties. We first present the partition of Rodents’ vestibular neurons into distinct subtypes, namely type A and type B. Then, we focus on the respective properties of each type, their putative roles in vestibular functions, fast control by neuromodulators and persistent modifications following a lesion. The intrinsic properties of central vestibular neurons can be swiftly modulated by a wealth of neuromodulators to adapt rapidly to temporary changes of ecophysiological surroundings. To illustrate how intrinsic excitability can be rapidly modified in physiological conditions and therefore be therapeutic targets, we present the modulation of vestibular reflexes in relation to the variations of the neuromodulatory inputs during the sleep/wake cycle. On the other hand, intrinsic properties can also be slowly, yet permanently, modified in response to major perturbations, e.g., after unilateral labyrinthectomy (UL). We revisit the experimental evidence, which demonstrates that drastic alterations of the central vestibular neurons’ intrinsic properties occur following UL, with a slow time course, more on par with the compensation of dynamic deficits than static ones. Data are interpreted in the framework of distributed processes that progress from global, large-scale coping mechanisms (e.g., changes in behavioral strategies) to local, small-scale ones (e.g., changes in intrinsic properties). Within this framework, the compensation of dynamic deficits improves over time as deeper modifications are engraved within the finer parts of the vestibular-related networks. Finally, we offer perspectives and working hypotheses to pave the way for future research aimed at understanding the modulation and plasticity of central vestibular neurons’ intrinsic properties.
Collapse
Affiliation(s)
- Mathieu Beraneck
- Centre d'Etude de la SensoriMotricité, CNRS UMR 8194, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This article reviews recent studies that have provided experimental evidence for mechanisms of neural and synaptic plasticity in the brain during vestibular compensation, the behavioural recovery that takes place following peripheral vestibular lesions. RECENT FINDINGS First, experimental evidence from animal studies indicates that an unbalanced vestibular commissural system is a fundamental cause of the syndrome of oculomotor and postural deficits after unilateral labyrinthectomy. Second, recent studies suggest the involvement of both GABAergic and glycinergic commissural neurons. In addition gliosis and reactive neurogenesis in the ipsilesional vestibular nuclei appear to be involved in compensation. Third, evidence from cerebellar-deficient mutant mice demonstrates an important role for cerebellum-dependent motor learning in the longer term. Factors such as stress steroids and neuromodulators such as histamine influence these plasticity mechanisms and may thus contribute to the development of compensation in patients. SUMMARY Vestibular compensation involves multiple, parallel plastic processes at various sites in the brain. Experimental evidence suggests that adaptive changes in the sensitivity of ipsilesional vestibular neurons to the inhibitory neurotransmitters GABA and glycine, changes in the electrophysiological excitability of vestibular neurons, changes in the inhibitory control of the brainstem vestibular networks by the cerebellum, gliosis and neurogenesis in the ipsilesional vestibular nuclei, and activity-dependent reorganization of the synaptic connectivity of the vestibular pathways are mechanisms involved in compensation.
Collapse
|
9
|
Sadeghi SG, Minor LB, Cullen KE. Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation. J Neurophysiol 2010; 105:661-73. [PMID: 21148096 DOI: 10.1152/jn.00788.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels.
Collapse
Affiliation(s)
- Soroush G Sadeghi
- McGill University, Department of Physiology, 3655 Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
10
|
Neural correlates of motor learning in the vestibulo-ocular reflex: dynamic regulation of multimodal integration in the macaque vestibular system. J Neurosci 2010; 30:10158-68. [PMID: 20668199 DOI: 10.1523/jneurosci.1368-10.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Motor learning is required for the reacquisition of skills that have been compromised as a result of brain lesion or disease, as well as for the acquisition of new skills. Behaviors with well characterized anatomy and physiology are required to yield significant insight into changes that occur in the brain during motor learning. The vestibulo-ocular reflex (VOR) is well suited to establish connections between neurons, neural circuits, and motor performance during learning. Here, we examined the linkage between neuronal and behavioral VOR responses in alert behaving monkeys (Macaca mulatta) during the impressive recovery that occurs after unilateral vestibular loss. We show, for the first time, that motor learning is characterized by the dynamic reweighting of inputs from different modalities (i.e., vestibular vs extravestibular) at the level of the single neurons that constitute the first central stage of vestibular processing. Specifically, two types of information, which did not influence neuronal responses before the lesion, had an important role during compensation. First, unmasked neck proprioceptive inputs played a critical role in the early stages of this process demonstrated by faster and more substantial recovery of vestibular responses in proprioceptive sensitive neurons. Second, neuronal and VOR responses were significantly enhanced during active relative to passive head motion later in the compensation process (>3 weeks). Together, our findings provide evidence linking the dynamic regulation of multimodal integration at the level of single neurons and behavioral recovery, suggesting a role for homeostatic mechanisms in VOR motor learning.
Collapse
|
11
|
|