1
|
Ashkenazi C, Waddell G, Williamon A. Antagonistic muscular co-contraction for skilled, healthy piano technique: a scoping review. Front Psychol 2025; 16:1386273. [PMID: 40376484 PMCID: PMC12079104 DOI: 10.3389/fpsyg.2025.1386273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/28/2025] [Indexed: 05/18/2025] Open
Abstract
Aims This scoping review aimed to generate a novel evidence-based model of antagonistic muscular co-contraction (AMCC)'s effects on human movement. The review applies this model to the context of skilled, healthy piano playing to enable advances in pedagogy and research that can aid pianists in developing and maintaining skill and task-related health. Background Piano playing is a challenging, complex activity that carries significant risk of playing-related neuromusculoskeletal disorder (PRNDs). AMCC is a contentious, terminologically problematic topic in pedagogical and scientific literature, and has scarcely been studied in relation to piano technique. Methods Adhering to PRISMA-ScR guidelines, the review adopted the search terms "co-contraction," "piano," "co-activation," and "antagonist," consulting 36 aggregated resources and 100 individual journals. After screening, 188 studies published between 1982 and 2021 were included. From these studies, AMCC-related content was extracted, analyzed in relation to piano technique, and categorized. The resultant categories were synthesized into a model representing the characteristics and effects of AMCC in movement. Results AMCC is a prevalent, complex, and learnable phenomenon, exhibiting the capacity for both positive and negative effects on performance and health. These effects are highly relevant to the task-specific challenges of skilled, healthy piano playing. AMCC can affect sensorimotor task control, accuracy, efficiency, coordination, internal model generation, proprioception, range of motion, individuation, neuromuscular signal-to-noise ratio, speed, power, stability, task-related injury, pain, and rehabilitation. Conclusion The review and corresponding model suggest that AMCC is a fundamental characteristic of human movement with broad and unique effects on sensorimotor task performance, including piano playing. Of the 188 publications reviewed, none were found to have robust methods investigating AMCC in healthy, skilled pianists; this review underpins ongoing research targeting the nature of AMCC in piano technique.
Collapse
Affiliation(s)
| | | | - Aaron Williamon
- Centre for Performance Science, Royal College of Music, London, United Kingdom
| |
Collapse
|
2
|
Ko DK, Lee H, Lee H, Kang N. Bilateral ankle dorsiflexion force control impairments in older adults. PLoS One 2025; 20:e0319578. [PMID: 40112015 PMCID: PMC11925285 DOI: 10.1371/journal.pone.0319578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Age-related impairments in ankle dorsiflexion force modulation are associated with gait and balance control deficits and greater fall risk in older adults. This study aimed to investigate age-related changes in bilateral ankle dorsiflexion force control capabilities compared with those for younger adults. The study enrolled 25 older and 25 younger adults. They performed bilateral ankle dorsiflexion force control at 10% and 40% of maximum voluntary contraction (MVC), for vision and no-vision conditions, respectively. Bilateral force control performances were evaluated by calculating force accuracy, variability, and complexity. To estimate bilateral force coordination between feet, vector coding and uncontrolled manifold variables were quantified. Additional correlation analyses were performed to determine potential relationships between age and force control variables in older adults. Older adults demonstrated significantly lower force accuracy with greater overshooting at 10% of MVC than those for younger adults. At 10% and 40% of MVC, older adults significantly showed more variable and less complex force outputs, and these patterns appeared in both vision and no-vision conditions. Moreover, older adults revealed significantly less anti-phase force coordination patterns and lower bilateral motor synergies with increased bad variability than younger adults. The correlation analyses found that lower complexity of bilateral forces was significantly related to increased age. These findings suggest that aging may impair sensorimotor control capabilities in the lower extremities. Considering the importance of ankle dorsiflexion for executing many activities of daily living, future studies may focus on developing training programs for advancing bilateral ankle dorsiflexion force control capabilities.
Collapse
Affiliation(s)
- Do-Kyung Ko
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hajun Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science, Sport Science Institute and Health Promotion Center, Incheon National University, Incheon, South Korea
| |
Collapse
|
3
|
Yacoubi B, Christou EA. Motor Output Variability in Movement Disorders: Insights From Essential Tremor. Exerc Sport Sci Rev 2024; 52:95-101. [PMID: 38445865 DOI: 10.1249/jes.0000000000000338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Findings on individuals with essential tremor suggest that tremor (within-trial movement unsteadiness) and inconsistency (trial-to-trial movement variance) stem from distinct pathologies and affect function uniquely. Nonetheless, the intricacies of inconsistency in movement disorders remain largely unexplored, as exemplified in ataxia where inconsistency below healthy levels is associated with greater pathology. We advocate for clinical assessments that quantify both tremor and inconsistency.
Collapse
|
4
|
Older adults use a motor plan that is detrimental to endpoint control. Sci Rep 2021; 11:7562. [PMID: 33828133 PMCID: PMC8027829 DOI: 10.1038/s41598-021-86959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Here, we aimed to understand if older adults (OA) use a unique motor plan that is detrimental to endpoint control. We performed two experiments that used ankle ballistic contractions that reversed at the target. In Experiment 1, eight young adults (YA; 27.1 ± 4.2) and eight OA (73.3 ± 4.5) aimed to perform an ankle dorsiflexion-plantarflexion movement that reversed at 9° in 180 ms (target). We found that the coordination pattern (motor plan) differed for the two groups. OA used significantly greater soleus (SOL) activity to reverse the ankle movement than YA and exhibited greater tibialis anterior (TA) muscle activity variability (p < 0.05). OA exhibited worse endpoint control than YA, which associated with the exacerbated TA variability (R2 > 0.2; p < 0.01). Experiment 2 aimed to confirm that the OA motor plan was detrimental to endpoint control. Fifteen YA (20.5 ± 1.4) performed an ankle dorsiflexion-plantarflexion contraction that reversed at 30% MVC in 160 ms by using either a pattern that mimicked OA (High SOL) or YA (Low SOL). With the High SOL coordination pattern, YA exhibited impaired endpoint control and greater TA activation variability. These findings provide strong evidence that OA select a unique motor plan that is detrimental to endpoint control.
Collapse
|
5
|
Corti M, Casamento-Moran A, Delmas S, Bracksieck S, Bowman J, Meyer B, Norman S, Subramony S, Christou EA. Temporal but not spatial dysmetria relates to disease severity in FA. J Neurophysiol 2020; 123:718-725. [PMID: 31693434 DOI: 10.1152/jn.00165.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Friedreich's ataxia (FA) is an inherited disease that causes degeneration of the nervous system. Features of FA include proprioceptive and cerebellar deficits leading to impaired muscle coordination and, consequently, dysmetria in force and time of movement. The aim of this study is to characterize dysmetria and its association to disease severity. Also, we examine the neural mechanisms of dysmetria by quantifying the EMG burst area, duration, and time-to-peak of the agonist muscle. Twenty-seven individuals with FA and 13 healthy controls (HCs) performed the modified Functional Ataxia Rating Scale and goal-directed movements with the ankle. Dysmetria was quantified as position and time error during dorsiflexion. FA individuals exhibited greater time but not position error than HCs. Moreover, time error correlated with disease severity and was related to increased agonist EMG burst. Temporal dysmetria is associated to disease severity, likely due to altered activation of the agonist muscle.NEW & NOTEWORTHY For the first time, we quantified spatial and temporal dysmetria and its relation to disease severity in Friedreich's ataxia (FA). We found that FA individuals exhibit temporal but not spatial dysmetria relative to healthy controls. Temporal dysmetria correlated to disease severity in FA and was predicted from an altered activation of the agonist muscle. Therefore, these results provide novel evidence that FA exhibit temporal but not spatial dysmetria, which is different from previous findings on SCA6.
Collapse
Affiliation(s)
- Manuela Corti
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, Florida.,College of Medicine, Department of Neurology, University of Florida, Gainesville, Florida
| | - Agostina Casamento-Moran
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Stefan Delmas
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Samantha Bracksieck
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Jessica Bowman
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Blake Meyer
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Samantha Norman
- College of Medicine, Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Sub Subramony
- College of Medicine, Department of Neurology, University of Florida, Gainesville, Florida
| | - Evangelos A Christou
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Lodha N, Patel P, Casamento-Moran A, Gauger K, Christou EA. Endpoint accuracy of goal-directed ankle movements correlates to over-ground walking in stroke. Clin Neurophysiol 2019; 130:1008-1016. [PMID: 31005051 DOI: 10.1016/j.clinph.2019.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Goal-directed movements are essential for voluntary motor control. The inability to execute precise goal-directed movements after stroke can impair the ability to perform voluntary functions, learn new skills, and hinder rehabilitation. However, little is known about how the accuracy of single-joint, goal-directed ankle movements relates to multi-joint, lower limb function in stroke. Here, we determined the impact of stroke on the accuracy of goal-directed ankle movements and its relation to over-ground walking. METHODS Stroke (N = 28) and control (N = 28) participants performed (1) goal-directed ankle dorsiflexion movements to accurately match 9 degrees in 180 ms and (2) over-ground walking. During goal-directed ankle movements, we measured the endpoint error, position error, time error and the activation of the agonist and antagonist muscles. During over-ground walking, we measured the walking speed, paretic stride length, and cadence. RESULTS The stroke group demonstrated increased endpoint error than the controls. Increased endpoint error was associated with increased co-activation between agonist-antagonist muscles. Endpoint error was a significant predictor of walking speed and paretic stride length in stroke. CONCLUSIONS Impaired accuracy of goal-directed, ankle movements is correlated to over-ground walking in stroke. SIGNIFICANCE Quantifying accuracy of goal-directed ankle movements may provide insights into walking function post-stroke.
Collapse
Affiliation(s)
- Neha Lodha
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| | - Prakruti Patel
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | | | - Katlyn Gauger
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
The Role of Motor Learning on Measures of Physical Requirements and Motor Variability During Repetitive Screwing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071231. [PMID: 30959882 PMCID: PMC6479693 DOI: 10.3390/ijerph16071231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
We investigated whether physical requirements and motor variability decreased over days in novices during a repetitive screwing task. Fifty-seven subjects performed one hour of repetitive screwing and fastening on three days, separated by 2–7 days. The average physical requirement and relative cycle-to-cycle variability (coefficient of variation, i.e., CV) were calculated from continuous recordings of electromyography of four arm muscles (biceps brachii, triceps brachii, flexor carpi radialis, extensor digitorum), forearm acceleration, and electrocardiography. Muscle activity levels, heart rate, and forearm acceleration decreased from day 1 to day 2 (range: ~4% to ~20%) and/or 3 (range: ~4% to ~28%). Not all muscles showed a similar pattern. Activity of the extensor digitorum and biceps brachii decreased already between days 1 and 2 (range: ~6% to ~13%), whereas activity of the flexor carpi radialis and triceps brachii decreased between days 1 and 3 (range: ~13% to ~20%). No changes in physical requirement were detected between days 2 and 3. Relative motor variability did not change across days, except that variability of forearm acceleration increased from day 1 to 3 (~5%). This study found consistent changes in physical requirements and indicated that several arm muscles show earlier decreases of muscular activity, like the extensor digitorum, compared to other body parts, like the flexor carpi radialis. Moreover, movement strategies may develop differently than muscle activation strategies, based on the different developments of physical requirements and motor variability. The development of physical requirements in industrial tasks is part of daily living and starts at task onset, highlighting the importance of task familiarization and the randomization of experimental conditions in scientific studies.
Collapse
|
8
|
Figueiredo LS, Apolinário-Souza T, Lelis-Torres N, Lage GM, Ugrinowitsch H. Differences in motor control of an aiming task in different group ages of the elderly. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-657420180003e015017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Ernster AE, Park SH, Yacoubi B, Christou EA, Casamento-Moran A, Singer ML, Humbert IA. Motor transfer from the corticospinal to the corticobulbar pathway. Physiol Behav 2018; 191:155-161. [PMID: 29678601 DOI: 10.1016/j.physbeh.2018.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022]
Abstract
There are multiple descending neural pathways, including the corticospinal pathway (CS) and the corticobulbar pathway (CB). The corticospinal pathway has been shown to exhibit within-pathway (CS-to-CS) motor transfer. However, motor transfer across each pathway (CS-to-CB or CB-to-CS) has yet to be studied in depth. The aim of the present study was to examine the effects of cross-pathway motor transfer between the ankle (CS) and tongue (CB) after training with a ballistic goal-directed motor task. Twelve healthy participants were recruited for this two-day experimental study. Six participants performed a ballistic goal-directed task with their ankle on Day 1 (ankle dorsiflexion), then tongue on Day 2 (elevate tongue against IOPI). The other 6 participants performed the same task with their tongue on Day 1, then ankle on Day 2. Both the ankle and tongue tasks (50 trials each) required matching force and time to a visual target. Our findings indicate that participants who underwent ankle training on Day 1 exhibited decreased tongue force error on Day 2 compared with participants who completed the tongue training on Day 1, with no prior ankle training (p = 0.02) (i.e. greater accuracy). This finding suggests that cross-pathway transfer from the corticospinal pathway to the corticobulbar pathway occurred with respect to force error. In other words, training of the ankle (CS) translated to improved training performance of the tongue (CB) through a reduction in force error. However, the reverse was not true - training the tongue did not elicit improved performance of the ankle. Nonetheless, if training with the corticospinal pathway can lead to improved corticobulbar pathway functioning, incorporating multi-pathway rehabilitation techniques might be valuable for clinicians across medical disciplines.
Collapse
Affiliation(s)
- Alayna E Ernster
- Swallowing Systems Core, Department of Speech, Language and Hearing Sciences, University of Florida, Gainesville, FL, United States.
| | - Seoung Hoon Park
- Neuromuscular Physiology Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Basma Yacoubi
- Neuromuscular Physiology Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Evangelos A Christou
- Neuromuscular Physiology Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Agostina Casamento-Moran
- Neuromuscular Physiology Laboratory, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Michele L Singer
- Swallowing Systems Core, Department of Speech, Language and Hearing Sciences, University of Florida, Gainesville, FL, United States
| | - Ianessa A Humbert
- Swallowing Systems Core, Department of Speech, Language and Hearing Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Casamento-Moran A, Fleeman R, Chen YT, Kwon M, Fox EJ, Yacoubi B, Christou EA. Neuromuscular variability and spatial accuracy in children and older adults. J Electromyogr Kinesiol 2018; 41:27-33. [PMID: 29723799 DOI: 10.1016/j.jelekin.2018.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022] Open
Abstract
Our ability to control movements is influenced by the developmental status of the neuromuscular system. Consequently, movement control improves from childhood to early adulthood but gradually declines thereafter. However, no study has compared movement accuracy between children and older adults. The purpose of this study was to compare endpoint accuracy during a fast goal-directed movement task in children and older adults. Ten pre-adolescent children (9.7 ± 0.67 yrs) and 19 older adults (71.95 ± 6.99 yrs) attempted to accurately match a peak displacement of the foot to a target (9° in 180 ms) with a dorsiflexion movement. We recorded electromyographic activity from the tibialis anterior (agonist) and soleus (antagonist) muscles. We quantified position error (i.e. spatial accuracy) as well as the coordination, magnitude, and variability of the antagonistic muscles. Children exhibited greater position error than older adults (36.4 ± 13.4% vs. 27.0 ± 9.8%). This age-related difference in spatial accuracy, was related to a more variable activation of the agonist muscle (R2: 0.358; P < 0.01). These results suggest that an immature neuromuscular system, compared to an aged one, affects the generation and refinement of the motor plan which increases the variability in the neural drive to the muscle and reduces spatial accuracy in children.
Collapse
Affiliation(s)
| | - Rebecca Fleeman
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Yen-Ting Chen
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - MinHyuk Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Emily J Fox
- Department of Physical Therapy, University of Florida, FL, USA.
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA.
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, FL, USA; Department of Physical Therapy, University of Florida, FL, USA.
| |
Collapse
|
11
|
Integration of visual feedback and motor learning: Corticospinal vs. corticobulbar pathway. Hum Mov Sci 2018; 58:88-96. [DOI: 10.1016/j.humov.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
|
12
|
Krehbiel LM, Kang N, Cauraugh JH. Age-related differences in bimanual movements: A systematic review and meta-analysis. Exp Gerontol 2017; 98:199-206. [PMID: 28890358 DOI: 10.1016/j.exger.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND With increasing age motor functions decline. The additional challenges of executing bimanual movements further hinder motor functions in older adults. The current systematic review and meta-analysis determined the effects of healthy aging on performance in bimanual movements as compared to younger adults. METHODS Our comprehensive search identified 27 studies that reported bimanual movement performance measures. Each study included a between groups comparison of older (mean age=68.79years) and younger adults (mean age=23.14years). The 27 qualified studies generated 40 total outcome measure comparisons: (a) accuracy: 18, (b) variability: 14, and (c) movement time: eight. RESULTS Our meta-analysis conducted on a random effects model identified a relatively large negative standardized mean difference effect (ES=-0.93). This indicates that older adults exhibited more impaired bimanual movement performance in comparison to younger adults in our group of studies. Specifically, a moderator variable analysis revealed large negative effects in both accuracy (ES=-0.94) and variability (ES=-1.00), as well as a moderate negative effect (ES=-0.71) for movement time. These findings indicate that older adults displayed reduced accuracy, greater variability, and longer execution time when executing bimanual movements. CONCLUSION These meta-analytic findings revealed that aging impairs bimanual movement performance.
Collapse
Affiliation(s)
- Lisa M Krehbiel
- Motor Behavior Laboratory, University of Florida, Gainesville, Florida, USA
| | - Nyeonju Kang
- Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, Florida, USA; Division of Sport Science, Incheon National University, Incheon, South Korea
| | - James H Cauraugh
- Motor Behavior Laboratory, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
13
|
Voluntary reduction of force variability via modulation of low-frequency oscillations. Exp Brain Res 2017; 235:2717-2727. [PMID: 28608243 DOI: 10.1007/s00221-017-5005-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P < 0.001) during the guided condition, without changing mean force (P > 0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2 = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2 = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2 = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.
Collapse
|
14
|
Casamento-Moran A, Hunter SK, Chen YT, Kwon MH, Fox EJ, Yacoubi B, Christou EA. Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults. Exp Brain Res 2017; 235:2425-2436. [DOI: 10.1007/s00221-017-4968-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022]
|
15
|
Casamento-Moran A, Chen YT, Lodha N, Yacoubi B, Christou EA. Motor plan differs for young and older adults during similar movements. J Neurophysiol 2017; 117:1483-1488. [PMID: 28077666 DOI: 10.1152/jn.00640.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/12/2016] [Accepted: 01/03/2017] [Indexed: 12/25/2022] Open
Abstract
Older adults exhibit altered activation of the agonist and antagonist muscles during goal-directed movements compared with young adults. However, it remains unclear whether the differential activation of the antagonistic muscles in older adults results from an impaired motor plan or an altered ability of the muscle to contract. The purpose of this study, therefore, was to determine whether the motor plan differs for young and older adults. Ten young (26.1 ± 4.3 yr, 4 women) and 16 older adults (71.9 ± 6.9 yr, 9 women) participated in the study. Participants performed 100 trials of fast goal directed movements with ankle dorsiflexion while we recorded the electromyographic activity of the primary agonist (tibialis anterior; TA) and antagonist (soleus; SOL) muscles. From those 100 trials we selected 5 trials in each of 3 movement end-point categories (fast, accurate, and slow). We investigated age-associated differences in the motor plan by quantifying the individual activity and coordination of the agonist and antagonist muscles. During similar movement end points, older adults exhibited similar activation of the agonist (TA) and antagonist (SOL) muscles compared with young adults. In addition, the coordination of the agonist and antagonist muscles (TA and SOL) was different between the two age groups. Specifically, older adults exhibited lower TA-SOL overlap (F1,23 = 41.2, P < 0.001) and greater TA-SOL peak EMG delay (F1,25 = 35.5, P < 0.001). This finding suggests that although subjects in both age groups displayed similar movement end points, they exhibited a different motor plan, as demonstrated by altered coordination between the agonist and antagonist muscles.NEW & NOTEWORTHY We aimed to determine whether the altered activation of muscles in older adults compared with young adults during fast goal-directed movements is related to an altered motor plan. For matched movements, there were differences in the coordination of antagonistic muscles but no differences in the individual activation of muscles. We provide novel evidence that the differential activation of muscles in older adults is related to an altered motor plan.
Collapse
Affiliation(s)
- Agostina Casamento-Moran
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Yen-Ting Chen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Neha Lodha
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and .,Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Investigating Aging-Related Changes in the Coordination of Agonist and Antagonist Muscles Using Fuzzy Entropy and Mutual Information. ENTROPY 2016. [DOI: 10.3390/e18060229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting. BIOMED RESEARCH INTERNATIONAL 2015; 2015:958450. [PMID: 26583151 PMCID: PMC4637075 DOI: 10.1155/2015/958450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 11/20/2022]
Abstract
There is a number of research work in the literature that have applied sEMG biofeedback as an instrument for muscle rehabilitation. Therefore, sEMG is a good tool for this research work and is used to record the myoelectric activity in the paraspinal muscles of those with AIS during habitual standing and sitting. After the sEMG evaluation, the root-mean-square (RMS) sEMG values of the paraspinal muscles in the habitual postures reflect the spinal curvature situation of the PUMC Type Ia and IIc subjects. Both groups have a stronger average RMS sEMG value on the convex side of the affected muscle regions. Correction to posture as instructed by the physiotherapist has helped the subjects to achieve a more balanced RMS sEMG ratio in the trapezius and latissimus dorsi regions; the erector spinae in the thoracic region and/or erector spinae in the lumbar region. It is, therefore, considered that with regular practice of the suggested positions, those with AIS can use motor learning to achieve a more balanced posture. Consequently, the findings can be used in less intrusive early orthotic intervention and provision of care to those with AIS.
Collapse
|
18
|
Processing of visual information compromises the ability of older adults to control novel fine motor tasks. Exp Brain Res 2015; 233:3475-88. [PMID: 26298044 DOI: 10.1007/s00221-015-4408-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/07/2015] [Indexed: 11/26/2022]
Abstract
We performed two experiments to determine whether amplified motor output variability and compromised processing of visual information in older adults impair short-term adaptations when learning novel fine motor tasks. In Experiment 1, 12 young and 12 older adults underwent training to learn how to accurately trace a sinusoidal position target with abduction-adduction of their index finger. They performed 48 trials, which included 8 blocks of 6 trials (the last trial of each block was performed without visual feedback). Afterward, subjects received an interference task (watched a movie) for 60 min. We tested retention by asking subjects to perform the sinusoidal task (5 trials) with and without visual feedback. In Experiment 2, 12 young and 10 older adults traced the same sinusoidal position target with their index finger and ankle at three distinct visual angles (0.25°, 1° and 5.4°). In Experiment 1, the movement error and variability were greater for older adults during the visual feedback trials when compared with young adults. In contrast, during the no-vision trials, age-associated differences in movement error and variability were ameliorated. Short-term adaptations in learning the sinusoidal task were similar for young and older adults. In Experiment 2, lower amount of visual feedback minimized the age-associated differences in movement variability for both the index finger and ankle movements. We demonstrate that although short-term adaptations are similar for young and older adults, older adults do not process visual information as well as young adults and that compromises their ability to control novel fine motor tasks during acquisition, which could influence long-term retention and transfer.
Collapse
|
19
|
Casamento-Moran A, Chen YT, Kwon M, Snyder A, Subramony SH, Vaillancourt DE, Christou EA. Force dysmetria in spinocerebellar ataxia 6 correlates with functional capacity. Front Hum Neurosci 2015; 9:184. [PMID: 25904859 PMCID: PMC4389656 DOI: 10.3389/fnhum.2015.00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is a genetic disease that causes pure cerebellar degeneration affecting walking, balance, and coordination. One of the main symptoms of SCA6 is dysmetria. The magnitude of dysmetria and its relation to functional capacity in SCA6 has not been studied. Our purpose was to quantify dysmetria and determine the relation between dysmetria and functional capacity in SCA6. Ten individuals diagnosed and genetically confirmed with SCA6 (63.7 ± 7.02 years) and nine age-matched healthy controls (65.9 ± 8.5 years) performed goal-directed isometric contractions with the ankle joint. Dysmetria was quantified as the force and time error during goal-directed contractions. SCA6 functional capacity was determined by ICARS and SARA clinical assessments. We found that SCA6 participants exhibited greater force dysmetria than healthy controls (P < 0.05), and reduced time dysmetria than healthy controls (P < 0.05). Only force dysmetria was significantly related to SCA6 functional capacity, as measured with ICARS kinetic score (R2 = 0.63), ICARS total score (R2 = 0.43), and SARA total score (R2 = 0.46). Our findings demonstrate that SCA6 exhibit force dysmetria and that force dysmetria is associated to SCA6 functional capacity. Quantifying force and time dysmetria in individuals with SCA6 could provide a more objective evaluation of the functional capacity and disease state in SCA6.
Collapse
|
20
|
McGuire J, Green LA, Gabriel DA. Task complexity and maximal isometric strength gains through motor learning. Physiol Rep 2014; 2:2/11/e12218. [PMID: 25428951 PMCID: PMC4255822 DOI: 10.14814/phy2.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. This study examines the effect of task complexity on the acquisition, retention, and transfer of increases in maximal strength and decreases in force variability, which is novel. Simple agonist‐only contractions are compared to a more complex reversal contraction pattern as used during proprioceptive neuromuscular facilitation (PNF). The goal was to determine if the more complex contraction pattern interferes with the strength gains and reduced variability by impeding the development of agonist‐antagonist coordination.
Collapse
Affiliation(s)
- Jessica McGuire
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Lara A Green
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - David A Gabriel
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|