1
|
Simões JLB, de Carvalho Braga G, Eichler SW, da Silva GB, Bagatini MD. Implications of COVID-19 in Parkinson's disease: the purinergic system in a therapeutic-target perspective to diminish neurodegeneration. Purinergic Signal 2024; 20:487-507. [PMID: 38460075 PMCID: PMC11377384 DOI: 10.1007/s11302-024-09998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
| | | | | | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
2
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
3
|
Delgado-Zabalza L, Mallet NP, Glangetas C, Dabee G, Garret M, Miguelez C, Baufreton J. Targeting parvalbumin-expressing neurons in the substantia nigra pars reticulata restores motor function in parkinsonian mice. Cell Rep 2023; 42:113287. [PMID: 37843977 DOI: 10.1016/j.celrep.2023.113287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.
Collapse
Affiliation(s)
- Lorena Delgado-Zabalza
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France; Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Nicolas P Mallet
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | | | - Guillaume Dabee
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France
| | - Maurice Garret
- University Bordeaux, CNRS, INCIA, UMR 5287, 33000 Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology. University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jérôme Baufreton
- University Bordeaux, CNRS, IMN, UMR 5293, 33000 Bordeaux, France.
| |
Collapse
|
4
|
López-Niño J, Padilla-Orozco M, Ortega A, Alejandra Cáceres-Chávez V, Tapia D, Laville A, Galarraga E, Bargas J. Dopaminergic Dependency of Cholinergic Pallidal Neurons. Neuroscience 2023; 528:12-25. [PMID: 37536611 DOI: 10.1016/j.neuroscience.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
We employed the whole-cell patch-clamp method and ChAT-Cre mice to study the electrophysiological attributes of cholinergic neurons in the external globus pallidus. Most neurons were inactive, although approximately 20% displayed spontaneous firing, including burst firing. The resting membrane potential, the whole neuron input resistance, the membrane time constant and the total neuron membrane capacitance were also characterized. The current-voltage relationship showed time-independent inward rectification without a "sag". Firing induced by current injections had a brief initial fast adaptation followed by tonic firing with minimal accommodation. Intensity-frequency plots exhibited maximal average firing rates of about 10 Hz. These traits are similar to those of some cholinergic neurons in the basal forebrain. Also, we examined their dopamine sensitivity by acutely blocking dopamine receptors. This action demonstrated that the membrane potential, excitability, and firing pattern of pallidal cholinergic neurons rely on the constitutive activity of dopamine receptors, primarily D2-class receptors. The blockade of these receptors induced a resting membrane potential hyperpolarization, a decrease in firing for the same stimulus, the disappearance of fast adaptation, and the emergence of a depolarization block. This shift in physiological characteristics was evident even when the hyperpolarization was corrected with D.C. current. Neither the currents that generate the action potentials nor those from synaptic inputs were responsible. Instead, our findings suggest, that subthreshold slow ion currents, that require further investigation, are the target of this novel dopaminergic signaling.
Collapse
Affiliation(s)
- Janintzitzic López-Niño
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
5
|
Wilson CJ, Jones JA. Propagation of Oscillations in the Indirect Pathway of the Basal Ganglia. J Neurosci 2023; 43:6112-6125. [PMID: 37400253 PMCID: PMC10476642 DOI: 10.1523/jneurosci.0445-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oscillatory signals propagate in the basal ganglia from prototypic neurons in the external globus pallidus (GPe) to their target neurons in the substantia nigra pars reticulata (SNr), internal pallidal segment, and subthalamic nucleus. Neurons in the GPe fire spontaneously, so oscillatory input signals can be encoded as changes in timing of action potentials within an ongoing spike train. When GPe neurons were driven by an oscillatory current in male and female mice, these spike-timing changes produced spike-oscillation coherence over a range of frequencies extending at least to 100 Hz. Using the known kinetics of the GPe→SNr synapse, we calculated the postsynaptic currents that would be generated in SNr neurons from the recorded GPe spike trains. The ongoing synaptic barrage from spontaneous firing, frequency-dependent short-term depression, and stochastic fluctuations at the synapse embed the input oscillation into a noisy sequence of synaptic currents in the SNr. The oscillatory component of the resulting synaptic current must compete with the noisy spontaneous synaptic barrage for control of postsynaptic SNr neurons, which have their own frequency-dependent sensitivities. Despite this, SNr neurons subjected to synaptic conductance changes generated from recorded GPe neuron firing patterns also became coherent with oscillations over a broad range of frequencies. The presynaptic, synaptic, and postsynaptic frequency sensitivities were all dependent on the firing rates of presynaptic and postsynaptic neurons. Firing rate changes, often assumed to be the propagating signal in these circuits, do not encode most oscillation frequencies, but instead determine which signal frequencies propagate effectively and which are suppressed.SIGNIFICANCE STATEMENT Oscillations are present in all the basal ganglia nuclei, include a range of frequencies, and change over the course of learning and behavior. Exaggerated oscillations are a hallmark of basal ganglia pathologies, and each has a specific frequency range. Because of its position as a hub in the basal ganglia circuitry, the globus pallidus is a candidate origin for oscillations propagating between nuclei. We imposed low-amplitude oscillations on individual globus pallidus neurons at specific frequencies and measured the coherence between the oscillation and firing as a function of frequency. We then used these responses to measure the effectiveness of oscillatory propagation to other basal ganglia nuclei. Propagation was effective for oscillation frequencies as high as 100 Hz.
Collapse
Affiliation(s)
- Charles J Wilson
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - James A Jones
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
6
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
7
|
Szalisznyó K, Silverstein DN. Why Does Tardive Dyskinesia Have Oro-facial Predominance? A Network Analysis. Brain Topogr 2023; 36:99-105. [PMID: 36592263 PMCID: PMC9834360 DOI: 10.1007/s10548-022-00931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/27/2022] [Indexed: 01/03/2023]
Abstract
Tardive dyskinesia is a involuntary hyperkinetic disorder which usually occurs in older patients after long-term treatment with antipsychotic drugs. These dyskinesias are mostly irreversible and are frequently expressed in the tongue, cheeks, mandible, perioral area and other regions of the face. In this theoretical study we asked the question, why does tardive dyskinesia often have orofacial predominance? What might be the underlying neural network structure which contributes to this propensity? Graph analysis of high-level cortico-striato-thalamo-cortical network structure suggests a connectivity bottleneck. The number of walks of different lengths from the substantia nigra pars reticulata (SNr) to other vertices, as well as the returning cycles are the lowest in the network, which may indicate a higher damage susceptibility of this node. Analysis was also performed on published data from a recent high resolution histological study on cortico-striato-thalamo-cortical networks in rodents. Finer network partitioning and adjacency matrices demonstrated that the SNr has a heterogeneous connectivity structure and the number of local walks from nodes neighboring orofacial neural representation is higher, indicating possible early compensatory escape routes. However, with more extensive SNr damage the larger circuit compensation might be limited. This area of inquiry is important for future research, because identifying key vulnerable structures may provide more targeted therapeutical interventions.
Collapse
Affiliation(s)
- Krisztina Szalisznyó
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala University Hospital, 75185 Uppsala, Sweden
- Computational Sciences Department, Theoretical Neuroscience and Complex Systems Research Group, Wigner Research Centre for Physics, Budapest, 1121 Hungary
| | | |
Collapse
|
8
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
9
|
González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L, Kaplitt MG, López-Barneo J, Schumacker PT, Surmeier DJ. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 2021; 599:650-656. [PMID: 34732887 PMCID: PMC9189968 DOI: 10.1038/s41586-021-04059-0] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.
Collapse
Affiliation(s)
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kristen A Stout
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jaime N Guzman
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ema Ilijic
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ben Yang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tatiana Tkatch
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mihaela A Stavarache
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - David L Wokosin
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lin Gao
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla and CIBERNED, Seville, Spain
| | - Michael G Kaplitt
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, USA
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/ Universidad de Sevilla and CIBERNED, Seville, Spain
| | | | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
11
|
Firing Differences Between Adult Intralaminar Thalamo-striatal Neurons. Neuroscience 2021; 458:153-165. [PMID: 33428968 DOI: 10.1016/j.neuroscience.2020.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/08/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022]
Abstract
Differences in the intrinsic properties of intralaminar thalamo-striatal neurons such as expressing low-threshold-spikes (LTS) or after hyperpolarizing potentials (AHPs) of different duration have been attributed to different maturation stages. However, two morphological types: "diffuse" and "bushy" have been described. Therefore, we explored whether electrophysiological differences persist in adult mice using whole cell recordings. Some recorded neurons were identified by intracellular labeling with biocytin and double labeling with retrograde or anterograde tracings using Cre-mice. We classified these neurons by their AHPs during spontaneous firing. Neurons with long duration AHPs, with fast and slow components, were mostly found in the parafascicular (Pf) nucleus. Neurons with brief AHPs were mainly found in the central lateral (CL) nucleus. However, neurons with both AHPs were found in both nuclei in different proportions. Firing frequency adaptation differed between these neuron classes: those with prolonged AHPs exhibited firing frequency adaptation with fast and slow time constants whereas those with brief AHPs were slow adapters. Neurons with more prolonged AHPs had significant higher input resistances than neurons with brief AHPs. Both cell classes could fire in two modes: trains of single action potentials at depolarized potentials or high frequency bursts on top of LTS at more hyperpolarized potentials. LTS were probably generated by Cav3 calcium channels since they were blocked by the selective antagonist TTA-P2. About 11% of neurons with brief AHPs and 55% of neurons with prolonged AHPs do not show LTS and bursts, even when potassium currents are blocked.
Collapse
|
12
|
Faynveitz A, Lavian H, Jacob A, Korngreen A. Proliferation of Inhibitory Input to the Substantia Nigra in Experimental Parkinsonism. Front Cell Neurosci 2019; 13:417. [PMID: 31572130 PMCID: PMC6753199 DOI: 10.3389/fncel.2019.00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022] Open
Abstract
The substantia nigra pars reticulata (SNr) is one of the output nuclei of the basal ganglia (BG) and plays a vital role in movement execution. Death of dopaminergic neurons in the neighboring nucleus, the substantia nigra pars compacta (SNc), leads to Parkinson's disease. The ensuing dopamine depletion affects all BG nuclei. However, the long-term effects of dopamine depletion on BG output are less characterized. In this in vitro study, we applied electrophysiological and immunohistochemical techniques to investigate the long-term effects of dopamine depletion on GABAergic transmission to the SNr. The findings showed a reduction in firing rate and regularity in SNr neurons after unilateral dopamine depletion with 6-OHDA, which we associate with homeostatic mechanisms. The strength of the GABAergic synapses between the globus pallidus (GP) and the SNr increased but not their short-term dynamics. Consistent with this observation, there was an increase in the frequency and amplitude of spontaneous inhibitory synaptic events to SNr neurons. Immunohistochemistry revealed an increase in the density of vGAT-labeled puncta in dopamine depleted animals. Overall, these results may suggest that synaptic proliferation can explain how dopamine depletion augments GABAergic transmission in the SNr.
Collapse
Affiliation(s)
- Anna Faynveitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Hagar Lavian
- The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Alon Korngreen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
13
|
Cellular and Synaptic Dysfunctions in Parkinson's Disease: Stepping out of the Striatum. Cells 2019; 8:cells8091005. [PMID: 31470672 PMCID: PMC6769933 DOI: 10.3390/cells8091005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
The basal ganglia (BG) are a collection of interconnected subcortical nuclei that participate in a great variety of functions, ranging from motor programming and execution to procedural learning, cognition, and emotions. This network is also the region primarily affected by the degeneration of midbrain dopaminergic neurons localized in the substantia nigra pars compacta (SNc). This degeneration causes cellular and synaptic dysfunctions in the BG network, which are responsible for the appearance of the motor symptoms of Parkinson’s disease. Dopamine (DA) modulation and the consequences of its loss on the striatal microcircuit have been extensively studied, and because of the discrete nature of DA innervation of other BG nuclei, its action outside the striatum has been considered negligible. However, there is a growing body of evidence supporting functional extrastriatal DA modulation of both cellular excitability and synaptic transmission. In this review, the functional relevance of DA modulation outside the striatum in both normal and pathological conditions will be discussed.
Collapse
|