1
|
Zhang W, Jin Y, Zhou FM. Chronic fluoxetine treatment desensitizes serotoninergic inhibition of GABA inputs and the intrinsic excitability of dorsal raphe serotonin neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592963. [PMID: 38766100 PMCID: PMC11100661 DOI: 10.1101/2024.05.07.592963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dorsal raphe serotonin (5-hydroxytryptamine, 5-HT) neurons are spontaneously active and release 5-HT that is critical to normal brain function such mood and emotion. Serotonin reuptake inhibitors (SSRIs) increase the synaptic and extracellular 5-HT level and are effective in treating depression. Treatment of two weeks or longer is often required for SSRIs to exert clinical benefits. The cellular mechanism underlying this delay was not fully understood. Here we show that the GABAergic inputs inhibit the spike firing of raphe 5-HT neurons; this GABAergic regulation was reduced by 5-HT, which was prevented by G-protein-activated inwardly rectifying potassium (Girk) channel inhibitor tertiapin-Q, indicating a contribution of 5-HT activation of Girk channels in GABAergic presynaptic axon terminals. Equally important, after 14 days of treatment of fluoxetine, a widely used SSRI type antidepressant, this 5-HT inhibition of GABAergic inputs was substantially downregulated. Furthermore, the chronic fluoxetine treatment substantially downregulated the 5-HT activation of the inhibitory Girk current in 5-HT neurons. Taken together, our results suggest that chronic fluoxetine administration, by blocking 5-HT reuptake and hence increasing the extracellular 5-HT level, can downregulate the function of 5-HT1B receptors on the GABAergic afferent axon terminals synapsing onto 5-HT neurons, allowing extrinsic, behaviorally important GABA neurons to more effectively influence 5-HT neurons; simultaneously, chronic fluoxetine treatment also downregulate somatic 5-HT autoreceptor-activated Girk channel-mediated hyperpolarization and decrease in input resistance and intrinsic excitability, rendering 5-HT neurons resistant to autoinhibition and leading to increased 5-HT neuron activity, potentially contributing to the antidepressant effect of SSRIs.
Collapse
|
2
|
Wang Q, Wang Y, Liao FF, Zhou FM. Dopaminergic inhibition of the inwardly rectifying potassium current in direct pathway medium spiny neurons in normal and parkinsonian striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.590632. [PMID: 38746264 PMCID: PMC11092482 DOI: 10.1101/2024.04.29.590632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel ( Kir ) being a key determinant of striatal medium spiny neuron (MSN) activity that also profoundly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Here we show that in normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently strongly increasing D1-MSN spike firing that is behavior-promoting; this DA excitation of D1-MSNs is stronger when the DA depletion is more severe. The DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl 2 ). In behaving parkinsonian mice, BaCl 2 microinjection into the dorsal striatum stimulates movement but occludes the motor stimulation of D1R agonism. Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates D1R agonistic behavioral stimulation in normal and parkinsonian animals.
Collapse
|
3
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
4
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
5
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
6
|
Zhong M, Wang Y, Lin G, Liao FF, Zhou FM. Dopamine-independent development and maintenance of mouse striatal medium spiny neuron dendritic spines. Neurobiol Dis 2023; 181:106096. [PMID: 37001611 PMCID: PMC10864017 DOI: 10.1016/j.nbd.2023.106096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Striatal medium spiny neurons (MSNs) and striatal dopamine (DA) innervation are profoundly important for brain function such as motor control and cognition. A widely accepted theory posits that striatal DA loss causes (or leads to) MSN dendritic atrophy. However, examination of the literature indicates that the data from Parkinson's disease (PD) patients and animal PD models were contradictory among studies and hard to interpret. Here we have re-examined the potential effects of DA activity on MSN morphology or lack thereof. We found that in 15-day, 4- and 12-month old Pitx3 null mutant mice that have severe DA denervation in the dorsal striatum while having substantial residual DA innervation in the ventral striatum, MSN dendrites and spine numbers were similar in dorsal and ventral striatum, and also similar to those in normal mice. In 15-day, 4- and 12-month old tyrosine hydroxylase knockout mice that cannot synthesize L-dopa and thus have no endogenous DA in the entire brain, MSN dendrites and spine numbers were also indistinguishable from age-matched wild-type (WT) mice. Furthermore, in adult WT mice, unilateral 6-OHDA lesion at 12 months of age caused an almost complete striatal DA denervation in the lesioned side, but MSN dendrites and spine numbers were similar in the lesioned and control sides. Taken together, our data indicate that in mice, the development and maintenance of MSN dendrites and spines are DA-independent such that DA depletion does not trigger MSN dendritic atrophy; our data also suggest that the reported MSN dendritic atrophy in PD may be a component of neurodegeneration in PD rather than a consequence of DA denervation.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| | - Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Geng Lin
- Teaching Center for Basic Medical Experiments, China Medical University, Shenyang 110122, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
7
|
Wang P, Zhao L, Wang T, Mei W, Li J, An Y, Li L, Li Z. Comparison of Half-Effective Concentration of Propofol in Patients with Parkinson's Disease and Non-Parkinson's Disease. Clin Interv Aging 2023; 18:307-315. [PMID: 36879829 PMCID: PMC9985387 DOI: 10.2147/cia.s380416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective This study aimed to compare the half-effective concentration (EC50) of propofol required for the bispectral index (BIS) 50 in patients with Parkinson's disease (PD) and non-PD (NPD) during induction by the Dixon's improved sequential method. Methods This prospective study recruited 20 patients with PD undergoing deep brain stimulation and 20 patients with NPD accompanied by meningioma or glioma undergoing intracranial surgery from March 2018 to March 2019. The patients were induced by propofol via target-controlled infusion. The target effect-site concentration of propofol was determined by the Dixon's improved sequential method. The results of the pilot experiment showed that the target effect-site concentration for the first patient with PD and NPD was 3.5 µg/mL and 2.8 µg/mL, respectively. BIS values were recorded after achieving a constant effect-site concentration of propofol. The increment or decrement of the target effect-site concentration of the next patient was 0.1 µg/mL. Results Demographic data, general physical condition, and hemodynamic values were similar between the PD and the NPD groups. The target effect-site concentration of propofol induction doses was significantly higher in the PD group than in the NPD group. The EC50 of propofol required for BIS 50 was 3.213 µg/mL [95% confidence interval (CI), 3.085-3.287 µg/mL] in the PD group and 2.77 µg/mL (95% CI, 2.568-2.977 µg/mL) in the NPD group. Conclusion The EC50 of propofol required for BIS 50 was higher in patients with PD than in patients with NPD.
Collapse
Affiliation(s)
- Ping Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.,Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, People's Republic of China
| | - Jingsheng Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Yi An
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Lixia Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Zhongjia Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| |
Collapse
|
8
|
Wang X, Liu X, Chen L, Zhang X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front Immunol 2023; 14:1178113. [PMID: 37187752 PMCID: PMC10175669 DOI: 10.3389/fimmu.2023.1178113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Background Tourette syndrome (TS) is associated with immunological dysfunction. The DA system is closely related to TS development, or behavioral stereotypes. Previous evidence suggested that hyper-M1-polarized microglia may exist in the brains of TS individuals. However, the role of microglia in TS and their interaction with dopaminergic neurons is unclear. In this study, we applied iminodipropionitrile (IDPN) to establish a TS model and focused on the inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk. Methods Male Sprague-Dawley rats were intraperitoneally injected with IDPN for seven consecutive days. Stereotypic behavior was observed to verify the TS model. Striatal microglia activation was evaluated based on different markers and expressions of inflammatory factors. The striatal dopaminergic neurons were purified and co-cultured with different microglia groups, and dopamine-associated markers were assessed. Results First, there was pathological damage to striatal dopaminergic neurons in TS rats, as indicated by decreased expression of TH, DAT, and PITX3. Next, the TS group showed a trend of increased Iba-1 positive cells and elevated levels of inflammatory factors TNF-α and IL-6, as well as an enhanced M1-polarization marker (iNOS) and an attenuated M2-polarization marker (Arg-1). Finally, in the co-culture experiment, IL-4-treated microglia could upregulate the expression of TH, DAT, and PITX3 in striatal dopaminergic neurons vs LPS-treated microglia. Similarly, the TS group (microglia from TS rats) caused a decreased expression of TH, DAT, and PITX3 compared with the Sham group (microglia from control rats) in the dopaminergic neurons. Conclusion In the striatum of TS rats, microglia activation is M1 hyperpolarized, which transmits inflammatory injury to striatal dopaminergic neurons and disrupts normal dopamine signaling.
Collapse
Affiliation(s)
- Xueming Wang
- Plastic Surgery Department, Fujian Children’s Hospital, Fuzhou, China
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiumei Liu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Xiumei Liu,
| | - Liangliang Chen
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Developmental and Behavior Pediatrics Department, Fujian Children’s Hospital, Fuzhou, China
| | - Xiaoling Zhang
- Child Healthcare Department, Fuzhou Maternal and Child Health Hospital, Fuzhou, China
| |
Collapse
|
9
|
Evans R. Dendritic involvement in inhibition and disinhibition of vulnerable dopaminergic neurons in healthy and pathological conditions. Neurobiol Dis 2022; 172:105815. [PMID: 35820645 PMCID: PMC9851599 DOI: 10.1016/j.nbd.2022.105815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/14/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta (SNc) differentially degenerate in Parkinson's Disease, with the ventral region degenerating more severely than the dorsal region. Compared with the dorsal neurons, the ventral neurons in the SNc have distinct dendritic morphology, electrophysiological characteristics, and circuit connections with the basal ganglia. These characteristics shape information processing in the ventral SNc and structure the balance of inhibition and disinhibition in the striatonigral circuitry. In this paper, I review foundational studies and recent work comparing the circuitry of the ventral and dorsal SNc neurons and discuss how loss of the ventral neurons early in Parkinson's Disease could affect the overall balance of inhibition and disinhibition of dopamine signals.
Collapse
Affiliation(s)
- R.C. Evans
- Georgetown University Medical Center, Department of Neuroscience, United States of America
| |
Collapse
|
10
|
Hattori N, Kamei T, Ishida T, Suzuki I, Nomoto M, Tsuboi Y. Long-term effects of safinamide adjunct therapy on levodopa-induced dyskinesia in Parkinson's disease: post-hoc analysis of a Japanese phase III study. J Neural Transm (Vienna) 2022; 129:1277-1287. [PMID: 36001147 PMCID: PMC9468087 DOI: 10.1007/s00702-022-02532-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
This post-hoc analysis investigated the long-term effects of safinamide on the course of dyskinesia and efficacy outcomes using data from a phase III, open-label 52-week study of safinamide 50 or 100 mg/day in Japanese patients with Parkinson’s disease (PD) with wearing-off. Patients (N = 194) were grouped using the UPDRS Part IV item 32: with and without pre-existing dyskinesia (pre-D subgroup; item 32 > 0 at baseline [n = 81], without pre-D subgroup; item 32 = 0 at baseline [n = 113]). ON-time with troublesome dyskinesia (ON-TD) increased significantly from baseline to Week 4 in the pre-D subgroup (+ 0.25 ± 0.11 h [mean ± SE], p = 0.0355) but gradually decreased up to Week 52 (change from baseline: − 0.08 ± 0.17 h, p = 0.6224); ON-TD did not change significantly in the Without pre-D subgroup. UPDRS Part IV item 32 score increased significantly at Week 52 compared with baseline in the Without pre-D subgroup, but no UPDRS Part IV dyskinesia related-domains changed in the pre-D subgroup. Both subgroups improved in ON-time without TD, UPDRS Part III, and Part II [OFF-phase] scores. The cumulative incidence of new or worsening dyskinesia (adverse drug reaction) at Week 52 was 32.5 and 5.0% in the pre-D and Without pre-D subgroups, respectively. This study suggested that safinamide led to short-term increasing dyskinesia but may be not associated with marked dyskinesia at 1-year follow-up in patients with pre-existing dyskinesia, and that it improved motor symptoms regardless of the presence or absence of dyskinesia at baseline. Further studies are warranted to investigate this association in more details. Trial registration: JapicCTI-153057 (Registered: 2015/11/02).
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Kamei
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Takayuki Ishida
- Medical Headquarters, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Ippei Suzuki
- Medicine Development, Deep Human Biology Learning, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-ku, Tokyo, 112-8088, Japan
| | - Masahiro Nomoto
- Saiseikai Imabari Center for Health and Welfare, 7-6-1 Kitamura, Imabari, Ehime, 799-1592, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| |
Collapse
|
11
|
Dopamine-induced changes to thalamic GABA concentration in impulsive Parkinson disease patients. NPJ Parkinsons Dis 2022; 8:37. [PMID: 35383185 PMCID: PMC8983736 DOI: 10.1038/s41531-022-00298-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
Impulsivity is inherent to behavioral disorders such as substance abuse and binge eating. While the role of dopamine in impulse behavior is well established, γ-aminobutyric acid (GABA) therapies have promise for the treatment of maladaptive behaviors. In Parkinson disease (PD), dopaminergic therapies can result in the development of impulsive and compulsive behaviors, and this clinical syndrome shares similar pathophysiology to that seen in addiction, substance abuse, and binge-eating disorders. We hypothesized that impulsive PD patients have a reduced thalamic GABAergic response to dopamine therapy. To test this hypothesis, we employed GABA magnetic resonance spectroscopy, D2-like receptor PET imaging, and clinical and quantitative measures of impulsivity in PD patients (n = 33), before and after dopamine agonist administration. We find a blunted thalamic GABA response to dopamine agonists in patients with elevated impulsivity (p = 0.027). These results emphasize how dopamine treatment differentially augments thalamic GABA concentrations, which may modify behavioral impulsivity.
Collapse
|
12
|
Lovinger DM, Mateo Y, Johnson KA, Engi SA, Antonazzo M, Cheer JF. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat Rev Neurosci 2022; 23:191-203. [PMID: 35228740 PMCID: PMC10709822 DOI: 10.1038/s41583-022-00561-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Central nervous system neurons communicate via fast synaptic transmission mediated by ligand-gated ion channel (LGIC) receptors and slower neuromodulation mediated by G protein-coupled receptors (GPCRs). These receptors influence many neuronal functions, including presynaptic neurotransmitter release. Presynaptic LGIC and GPCR activation by locally released neurotransmitters influences neuronal communication in ways that modify effects of somatic action potentials. Although much is known about presynaptic receptors and their mechanisms of action, less is known about when and where these receptor actions alter release, especially in vivo. This Review focuses on emerging evidence for important local presynaptic receptor actions and ideas for future studies in this area.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Yolanda Mateo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sheila A Engi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mario Antonazzo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Nishijima H, Kimura T, Mori F, Wakabayashi K, Kinoshita I, Nakamura T, Kon T, Suzuki C, Tomiyama M. Effects of Aging on Levo-Dihydroxyphenylalanine- Induced Dyskinesia in a Rat Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:650350. [PMID: 34054505 PMCID: PMC8155371 DOI: 10.3389/fnagi.2021.650350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background It remains unclear why patients with young-onset Parkinson's disease more often develop levo-dihydroxyphenylalanine (L-dopa)-induced dyskinesia (LID) and have a more severe form than patients with old-onset Parkinson's disease. Previous studies using animal models have failed to show young-onset Parkinson's disease enhances LID. Objectives To evaluate the association of age at dopaminergic denervation (onset age) and initiation of L-dopa treatment (treatment age) with LID development in model rats. Methods We established rat models of young- and old-lesioned Parkinson's disease (6-hydroxydopamine lesions at 10 and 88 weeks of age, respectively). Dopaminergic denervation was confirmed by the rotational behavior test using apomorphine. Rats in the young-lesioned group were allocated to either L-dopa treatment at a young or old age, or saline treatment. Rats in the old-lesioned group were allocated to either L-dopa treatment or saline group. We evaluated L-dopa-induced abnormal involuntary movements during the 14-day treatment period. We also examined preprodynorphin mRNA expression in the striatum (a neurochemical hallmark of LID) and the volume of the medial globus pallidus (a pathological hallmark of LID). Results LID-like behavior was enhanced in L-dopa-treated young-lesioned rats compared with L-dopa-treated old-lesioned rats. Preprodynorphin mRNA expression was higher in L-dopa-treated young-lesioned rats than in in L-dopa-treated old-lesioned rats. The volume of the medial globus pallidus was greater in L-dopa-treated young-lesioned rats than in L-dopa-treated old-lesioned rats. Treatment age did not affect LID-like behavior or the degree of medial globus pallidus hypertrophy in the young-lesioned model. Conclusion Both dopaminergic denervation and L-dopa initiation at a young age contributed to the development of LID; however, the former may be a more important factor.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tamaki Kimura
- Department of Neurology, National Hospital Organization, Aomori Hospital, Aomori, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
14
|
Wang Y, Bouabid S, Darvas M, Zhou FM. The antiparkinson drug ropinirole inhibits movement in a Parkinson's disease mouse model with residual dopamine neurons. Exp Neurol 2020; 333:113427. [PMID: 32735872 DOI: 10.1016/j.expneurol.2020.113427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022]
Abstract
The dopamine (DA) D2-like receptor (D2R) agonist ropinirole is often used for early and middle stage Parkinson's disease (PD). However, this D2-like agonism-based strategy has a complicating problem: D2-like agonism may activate D2 autoreceptors on the residual DA neurons in the PD brain, potentially inhibiting these residual DA neurons and motor function. We have examined this possibility by using systemic and local drug administration in transcription factor Pitx3 null mutant (Pitx3Null) mice that mimic the DA denervation in early and middle stage PD and in DA neuron tyrosine hydroxylase (TH) gene knockout (KO) mice that mimic the severe DA loss in late stage PD. We found that in Pitx3Null mice with residual DA neurons and normal mice with normal DA system, systemically injected ropinirole inhibited locomotion, whereas bilateral dorsal striatal-microinjected ropinirole stimulated movement in Pitx3Null mice; bilateral microinjection of ropinirole into the ventral tegmental area also inhibited movement in Pitx3Null mice; we further determined that ropinirole inhibited nigral DA neuron spike firing in WT mice. In contrast, both systemically and striatum-locally administered ropinirole increased movements in TH KO mice, but produced relatively more dyskinesia than L-dopa. Although requiring confirmation in non-human primates and PD patients, these data suggest that while activating D2-like receptors in striatal projection neurons and hence stimulating movements, D2-like agonists can inhibit residual DA neurons and cause akinesia when the residual DA neurons and motor functions are still substantial, and this motor-inhibitory effect disappears when almost all DA neurons are lost such as in late stage PD.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Safa Bouabid
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
15
|
TGF-β/Smad3 Signalling Modulates GABA Neurotransmission: Implications in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21020590. [PMID: 31963327 PMCID: PMC7013528 DOI: 10.3390/ijms21020590] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
γ-Aminobutiryc acid (GABA) is found extensively in different brain nuclei, including parts involved in Parkinson’s disease (PD), such as the basal ganglia and hippocampus. In PD and in different models of the disorder, an increase in GABA neurotransmission is observed and may promote bradykinesia or L-Dopa-induced side-effects. In addition, proteins involved in GABAA receptor (GABAAR) trafficking, such as GABARAP, Trak1 or PAELR, may participate in the aetiology of the disease. TGF-β/Smad3 signalling has been associated with several pathological features of PD, such as dopaminergic neurodegeneration; reduction of dopaminergic axons and dendrites; and α-synuclein aggregation. Moreover, TGF-β/Smad3 intracellular signalling was recently shown to modulate GABA neurotransmission in the context of parkinsonism and cognitive alterations. This review provides a summary of GABA neurotransmission and TGF-β signalling; their implications in PD; and the regulation of GABA neurotransmission by TGF-β/Smad3. There appear to be new possibilities to develop therapeutic approaches for the treatment of PD using GABA modulators.
Collapse
|
16
|
Simmons DV, Higgs MH, Lebby S, Wilson CJ. Indirect pathway control of firing rate and pattern in the substantia nigra pars reticulata. J Neurophysiol 2020; 123:800-814. [PMID: 31940230 DOI: 10.1152/jn.00678.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unitary pallido-nigral synaptic currents were measured using optogenetic stimulation, which activated up to three unitary synaptic inputs to each substantia nigra pars reticulata (SNr) cell. Episodic barrages of synaptic conductances were generated based on in vivo firing patterns of globus pallidus pars externa (GPe) cells and applied to SNr cells using conductance clamp. Barrage inputs were compared to continuous step conductances with the same mean. Barrage inputs and steps both slowed SNr neuron firing and produced disinhibition responses seen in peristimulus histograms. Barrages were less effective than steps at producing inhibition and disinhibition responses. Barrages, but not steps, produced irregular firing during the inhibitory response. Phase models of SNr neurons were constructed from their phase-resetting curves. The phase models reproduced the inhibition and disinhibition responses to the same inputs applied to the neurons. The disinhibition response did not require rebound currents but arose from reset of the cells' oscillation. The differences in firing rate and irregularity in response to barrage and step inhibition resulted from the high sensitivity of SNr neurons to inhibition at late phases in their intrinsic oscillation. During step inhibition, cells continued rhythmic firing at a reduced rate. During barrages, brief bouts of intense inhibition stalled the cells' phase evolution late in their cycle, close to firing, and even very brief respites from inhibition rapidly released single action potentials. The SNr cell firing pattern reflected the fine structure of the synaptic barrage from GPe, as well as its onset and offset.NEW & NOTEWORTHY The pallido-nigral pathway connects the striatum to spontaneously active basal ganglia output neurons in the substantia nigra. Each substantia nigra neuron receives powerful inhibitory synaptic connections from a small group of globus pallidus cells and may fire during pauses in pallidal activity. Despite lacking any hyperpolarization-activated rebound currents, they fire quickly to even brief pauses in the pallido-nigral inhibition. The mechanism of their rapid disinhibitory response is explained by features of their phase-resetting curves.
Collapse
Affiliation(s)
- DeNard V Simmons
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Sharmon Lebby
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
17
|
Blockade of the dopaminergic neurotransmission with AMPT and reserpine induces a differential expression of genes of the dopaminergic phenotype in substantia nigra. Neuropharmacology 2019; 166:107920. [PMID: 31870855 DOI: 10.1016/j.neuropharm.2019.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/28/2019] [Accepted: 12/20/2019] [Indexed: 11/23/2022]
Abstract
Dopaminergic neurons have the ability to release Dopamine from their axons as well as from their soma and dendrites. This somatodendritically-released Dopamine induces an autoinhibition of Dopaminergic neurons mediated by D2 autoreceptors, and the stimulation of neighbor GABAergic neurons mediated by D1 receptors (D1r). Here, our results suggest that the somatodendritic release of Dopamine in the substantia nigra (SN) may stimulate GABAergic neurons that project their axons into the hippocampus. Using semiquantitative multiplex RT-PCR we show that chronic blockade of the Dopaminergic neurotransmission with both AMPT and reserpine specifically decreases the expression levels of D1r, remarkably this may be the result of an antagonistic effect between AMPT and reserpine, as they induced the expression of a different set of genes when treated by separate. Furthermore, using anterograde and retrograde tracing techniques, we found that the GABAergic neurons that express D1r also project their axons in to the CA1 region of the hippocampus. Finally, we also found that the same treatment that decreases the expression levels of D1r in SN, also induces an impairment in the performance in an appetitive learning task that requires the coding of reward as well as navigational skills. Overall, our findings show the presence of a GABAergic interconnection between the SNr and the hippocampus mediated by D1r.
Collapse
|
18
|
Cao X, Xiao H, Yang M, Chen X. RETRACTED ARTICLE: The Neuroprotective Effect of Histamine H4 Receptor Antagonist on Dopaminergic Neurons in Parkinson's Disease. J Mol Neurosci 2019; 68:319. [PMID: 30798471 DOI: 10.1007/s12031-018-1242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xu Cao
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China. .,Department of Neurology, Shenzhen People's Hospital, Jinan University, Shenzhen, China.
| | - Haibing Xiao
- Department of Neurology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Miaojuan Yang
- Department of Neurology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Xiaowu Chen
- Department of Neurology, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
19
|
Sagot B, Li L, Zhou FM. Hyperactive Response of Direct Pathway Striatal Projection Neurons to L-dopa and D1 Agonism in Freely Moving Parkinsonian Mice. Front Neural Circuits 2018; 12:57. [PMID: 30104963 PMCID: PMC6077202 DOI: 10.3389/fncir.2018.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Abstract
Dopamine (DA) profoundly stimulates motor function as demonstrated by the hypokinetic motor symptoms in Parkinson's disease (PD) and by the hyperkinetic motor side effects during dopaminergic treatment of PD. Dopamine (DA) receptor-bypassing, optogenetics- and chemogenetics-induced spike firing of striatal DA D1 receptor (D1R)-expressing, direct pathway medium spiny neurons (dSPNs or dMSNs) promotes movements. However, the endogenous D1R-mediated effects, let alone those of DA replacement, on dSPN spike activity in freely-moving animals is not established. Here we show that using transcription factor Pitx3 null mutant (Pitx3Null) mice as a model for severe and consistent DA denervation in the dorsal striatum in Parkinson's disease, antidromically identified striatonigral neurons (D1R-expressing dSPNs) had a lower baseline spike firing rate than that in DA-intact normal mice, and these neurons increased their spike firing more strongly in Pitx3Null mice than in WT mice in response to injection of L-dopa or the D1R agonist, SKF81297; the increase in spike firing temporally coincided with the motor-stimulating effects of L-dopa and SKF81297. Taken together, these results provide the first evidence from freely moving animals that in parkinsonian striatum, identified behavior-promoting dSPNs become hyperactive upon the administration of L-dopa or a D1 agonist, likely contributing to the profound dopaminergic motor stimulation in parkinsonian animals and PD patients.
Collapse
Affiliation(s)
- Ben Sagot
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Li Li
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fu-Ming Zhou
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
20
|
Examining alterations in GABA concentrations in the basal ganglia of patients with Parkinson's disease using MEGA-PRESS MRS. Jpn J Radiol 2017; 36:194-199. [PMID: 29280067 DOI: 10.1007/s11604-017-0714-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/11/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to compare the gamma-amino butyric acid (GABA) levels in the left basal ganglia (BG) of patients with Parkinson's disease (PD) to those of healthy control (HC) volunteers using proton magnetic resonance spectroscopy (1H MRS). MATERIALS AND METHODS The GABA+ signal-the composite signal from GABA, macromolecules (MMs), and homocarnosine-was detected. GABA+ levels were examined in 21 PD patients and 15 age- and sex-matched HCs. 3T-1H-MRS using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence was performed in order to detect GABA+ levels in the left BG, and the spectra were processed using the Gannet software. Differences in GABA+ levels between the two groups were analyzed using independent t-test analysis. RESULTS The GABA+ levels were significantly lower (P < 0.001) in the left BG of the patients with PD (1.31 ± 0.21 i.u.) than in the left BG of the HCs (1.62 ± 0.26 i.u.). CONCLUSION The lower GABA+ levels in the left BG of the PD patients suggest that GABA plays an important role in the pathogenesis of PD. The reduced GABA+ levels in the PD patients may be associated with GABAergic dysfunction.
Collapse
|
21
|
Wang Y, Zhou FM. Striatal But Not Extrastriatal Dopamine Receptors Are Critical to Dopaminergic Motor Stimulation. Front Pharmacol 2017; 8:935. [PMID: 29311936 PMCID: PMC5742616 DOI: 10.3389/fphar.2017.00935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Dopamine (DA) is required for motor function in vertebrate animals including humans. The striatum, a key motor control center, receives a dense DA innervation and express high levels of DA D1 receptors (D1Rs) and D2 receptors (D2Rs). Other brain areas involved in motor function such as the globus pallidus external segment (GPe) and the substantia nigra pars reticulata (SNr) and the motor cortex (MC) also receive DA innervation and express DA receptors. Thus, the relative contribution of the striatal and extrastriatal DA systems to the motor function has been an important question critical for understanding the functional operation of the motor control circuits and also for therapeutic targeting. We have now experimentally addressed this question in the transcription factor Pitx3 null mutant (Pitx3Null) mice that have an autogenic and parkinsonian-like striatal DA denervation and hence supersensitive motor response to DA stimulation. Using DA agonist unilateral microinjection-induced rotation as a reliable readout of motor stimulation, our results show that L-dopa microinjection into the dorsal striatum (DS) induced 5–10 times more rotations than that induced by L-dopa microinjection into GPe and SNr, while L-dopa microinjection into the primary MC induced the least number of rotations. Furthermore, our results show that separate microinjection of the D1R-like agonist SKF81297 and the D2R-like agonist ropinirole into the DS each induced only modest numbers of rotation, whereas concurrent injection of the two agonists triggered more rotations than the sum of the rotations induced by each of these two agonists separately, indicating D1R–D2R synergy. These results suggest that the striatum, not GPe, SNr or MC, is the primary site for D1Rs and D2Rs to synergistically stimulate motor function in L-dopa treatment of Parkinson’s disease (PD). Our results also predict that non-selective, broad spectrum DA agonists activating both D1Rs and D2Rs are more efficacious anti-PD drugs than the current D2R agonists.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
22
|
Synaptic plasticity may underlie l-DOPA induced dyskinesia. Curr Opin Neurobiol 2017; 48:71-78. [PMID: 29125979 DOI: 10.1016/j.conb.2017.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022]
Abstract
l-DOPA provides highly effective treatment for Parkinson's disease, but l-DOPA induced dyskinesia (LID) is a very debilitating response that eventually is presented by a majority of patients. A central issue in understanding the basis of LID is whether it is due to a response to chronic l-DOPA over years of therapy, and/or due to synaptic changes that follow the loss of dopaminergic neurotransmission and then triggered by acute l-DOPA administration. We review recent work that suggests that specific synaptic changes in the D1 dopamine receptor-expressing direct pathway striatal projection neurons due to loss of dopamine in Parkinson's disease are responsible for LID. Chronic l-DOPA may nevertheless modulate LID through priming mechanisms.
Collapse
|
23
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
24
|
Abstract
The basal ganglia (BG) are the major subcortical nuclei in the brain. Disorders implicating the BG are characterized by diverse symptoms, but it remains unclear what these symptoms have in common or how they can be explained by changes in the BG circuits. This review summarizes recent findings that not only question traditional assumptions about the role of the BG in movement but also elucidate general computations performed by these circuits. To explain these findings, a new conceptual framework is introduced for understanding the role of the BG in behavior. According to this framework, the cortico-BG networks implement transition control in an extended hierarchy of closed loop negative feedback control systems. The transition control model provides a solution to the posture/movement problem, by postulating that BG outputs send descending signals to alter the reference states of downstream position control systems for orientation and body configuration. It also explains major neurological symptoms associated with BG pathology as a result of changes in system parameters such as multiplicative gain and damping.
Collapse
Affiliation(s)
- Henry H Yin
- 1 Department of Psychology and Neuroscience and Department of Neurobiology, Center for Cognitive Neuroscience, Duke University, NC, USA
| |
Collapse
|
25
|
Faggiani E, Benazzouz A. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: From history to the interaction with the monoaminergic systems. Prog Neurobiol 2017; 151:139-156. [DOI: 10.1016/j.pneurobio.2016.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
|
26
|
Zhou FM, Li L, Yue J, Dani JA. Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11515-016-1429-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Wei W, Ding S, Zhou FM. Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum. J Neurophysiol 2016; 117:987-999. [PMID: 27927785 DOI: 10.1152/jn.00683.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
The striatal medium spiny neurons (MSNs) are critical to both motor and cognitive functions. A potential regulator of MSN activity is the GABAergic collateral axonal input from neighboring MSNs. These collateral axon terminals are further under the regulation of presynaptic dopamine (DA) receptors that may become dysfunctional when the intense striatal DA innervation is lost in Parkinson's disease (PD). We show that DA D1 receptor-expressing MSNs (D1-MSNs) and D2 receptor-expressing MSNs (D2-MSNs) each formed high-rate, one-way collateral connections with a homotypic preference in both normal and DA-denervated mouse striatum. Furthermore, whereas the homotypic preference, one-way directionality and the basal inhibitory strength were preserved, DA inhibited GABA release at the D2-MSN→D2-MSN collateral synapse in a supersensitive manner in the DA-denervated striatum. In contrast, for D1-MSN-originated collateral connections, whereas D1 agonism facilitated D1-MSN→D1-MSN collateral inhibition in the normal striatum, this presynaptic D1R facilitation of GABA release was lost in the parkinsonian striatum. These results indicate that in the parkinsonian striatum, dopaminergic treatment can presynaptically weaken the D2-MSN→D2-MSN collateral inhibition and disinhibit the surrounding D2-MSNs, whereas the D1-MSN→D1-MSN collateral inhibition is weakened by the loss of the presynaptic D1 receptor facilitation, disinhibiting the surrounding D1-MSNs. Together, these newly discovered effects can disrupt the MSN circuits in the parkinsonian striatum and may contribute to dopaminergic treatment-induced aberrant motor and nonmotor behaviors in PD.NEW & NOTEWORTHY With the use of a large database, this study establishes that neighboring homotypic striatal spiny projection neurons have a 50% chance to form one-way collateral inhibitory connection, a substantially higher rate than previous estimates. This study also shows that dopamine denervation may alter presynaptic dopamine receptor function such that dopaminergic treatment of Parkinson's disease can weaken the surround inhibition and may reduce the contrast of the striatal outputs, potentially contributing to dopamine's profound motor and nonmotor behavioral effects.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| |
Collapse
|
28
|
Hilario WF, Herlinger AL, Areal LB, de Moraes LS, Ferreira TAA, Andrade TES, Martins-Silva C, Pires RGW. Cholinergic and Dopaminergic Alterations in Nigrostriatal Neurons Are Involved in Environmental Enrichment Motor Protection in a Mouse Model of Parkinson's Disease. J Mol Neurosci 2016; 60:453-464. [PMID: 27660217 DOI: 10.1007/s12031-016-0831-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/30/2016] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, being characterized by dopaminergic neurodegeneration of substantia nigra pars compacta. PD pharmacotherapy has been based on dopamine replacement in the striatum with the dopaminergic precursor 3,4-dihydroxyphenylalanine (L-DOPA) and/or with dopaminergic agonists, alongside anticholinergic drugs in order to mitigate the motor abnormalities. However, these practices neither prevent nor stop the progression of the disease. Environmental enrichment (EE) has effectively prevented several neurodegenerative processes, mainly in preclinical trials. Several studies have demonstrated that EE induces biological changes, bearing on cognitive enhancement, neuroprotection, and on the attenuation of the effects of stress, anxiety, and depression. Herein, we investigated whether EE could prevent the motor, biochemical, and molecular abnormalities in a murine model of PD induced by 1-methyl-4-phenyl-2,3-dihydropyridine (MPTP). Our results show that EE does not prevent the dopaminergic striatal depletion induced by MPTP, despite having averted the MPTP-induced hyperlocomotion. However, it was able to slow down and avoid, respectively, the 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) depletion. Analysis of dopaminergic mRNA alterations in the midbrain showed that D1R expression was increased by MPTP, while the normal expression level of this receptor was restored by EE. As for the cholinergic system, MPTP led to a decrease in the ChAT gene expression while increasing the expression of both AChE and M1R. EE attenuated and prevented-respectively-ChAT and M1R gene expression alterations triggered by MPTP in the midbrain. Overall, our data brings new evidence supporting the neuroprotective potential of EE in PD, focusing on the interaction between dopaminergic and cholinergic systems.
Collapse
Affiliation(s)
- Willyan Franco Hilario
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil
| | - Alice Laschuk Herlinger
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil
| | - Lorena Bianchine Areal
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil.,Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil
| | - Lívia Silveira de Moraes
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil
| | - Tamara Andrea Alarcon Ferreira
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil
| | - Tassiane Emanuelle Servane Andrade
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil
| | - Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil.,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil
| | - Rita Gomes Wanderley Pires
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29043-910, Brazil. .,Laboratory of Molecular and Behavioral Neurobiology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, 29.043-910, Brazil. .,Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|
29
|
Rico AJ, Dopeso-Reyes IG, Martínez-Pinilla E, Sucunza D, Pignataro D, Roda E, Marín-Ramos D, Labandeira-García JL, George SR, Franco R, Lanciego JL. Neurochemical evidence supporting dopamine D1-D2 receptor heteromers in the striatum of the long-tailed macaque: changes following dopaminergic manipulation. Brain Struct Funct 2016; 222:1767-1784. [PMID: 27612857 PMCID: PMC5406426 DOI: 10.1007/s00429-016-1306-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022]
Abstract
Although it has long been widely accepted that dopamine receptor types D1 and D2 form GPCR heteromers in the striatum, the presence of D1–D2 receptor heteromers has been recently challenged. In an attempt to properly characterize D1–D2 receptor heteromers, here we have used the in situ proximity ligation assay (PLA) in striatal sections comprising the caudate nucleus, the putamen and the core and shell territories of the nucleus accumbens. Experiments were carried out in control macaques as well as in MPTP-treated animals (with and without dyskinesia). Obtained data support the presence of D1–D2 receptor heteromers within all the striatal subdivisions, with the highest abundance in the accumbens shell. Dopamine depletion by MPTP resulted in an increase of D1–D2 density in caudate and putamen which was normalized by levodopa treatment. Two different sizes of heteromers were consistently found, thus suggesting that besides individual heteromers, D1–D2 receptor heteromers are sometimes organized in macromolecular complexes made of a number of D1–D2 heteromers. Furthermore, the PLA technique was combined with different neuronal markers to properly characterize the identities of striatal neurons expressing D1–D2 heteromers. We have found that striatal projection neurons giving rise to either the direct or the indirect basal ganglia pathways expressed D1–D2 heteromers. Interestingly, macromolecular complexes of D1–D2 heteromers were only found within cholinergic interneurons. In summary, here we provide overwhelming proof that D1 and D2 receptors form heteromeric complexes in the macaque striatum, thus representing a very appealing target for a number of brain diseases involving dopamine dysfunction.
Collapse
Affiliation(s)
- Alberto J Rico
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iria G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Martínez-Pinilla
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Sucunza
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diego Pignataro
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elvira Roda
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Marín-Ramos
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain
| | - José L Labandeira-García
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Morphological Sciences, University of Santiago de Compostela, Santiago De Compostela, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Medicine and Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Avenue 55, 31008, Pamplona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
30
|
Li L, Sagot B, Zhou FM. Similar l -dopa-stimulated motor activity in mice with adult-onset 6-hydroxydopamine-induced symmetric dopamine denervation and in transcription factor Pitx3 null mice with perinatal-onset symmetric dopamine denervation. Brain Res 2015; 1615:12-21. [DOI: 10.1016/j.brainres.2015.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
31
|
Ding S, Li L, Zhou FM. Robust presynaptic serotonin 5-HT(1B) receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment. J Neurophysiol 2015; 113:3397-409. [PMID: 25787955 DOI: 10.1152/jn.00831.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/12/2015] [Indexed: 11/22/2022] Open
Abstract
The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT(1B)Rs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT(1B)Rs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT(1B)R agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT(1B)R-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT(1B)Rs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT(1B)R-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Li Li
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| |
Collapse
|