1
|
Kumbhare D, Weistroffer G, Goyanaga S, Huang ZL, Blagg J, Baron MS. Parkinsonism originates in a discrete secondary and dystonia in a primary motor cortical-basal ganglia subcircuit. J Neurosci Res 2024; 102:e25328. [PMID: 38651310 DOI: 10.1002/jnr.25328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.
Collapse
Affiliation(s)
- Deepak Kumbhare
- Department of Neurosurgery, Virginia Commonwealth University Health System, Richmond, Virginia, USA
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| | - George Weistroffer
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Department Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sofia Goyanaga
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zi Ling Huang
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jacob Blagg
- Richmond Institute for Veterans Research, Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
| | - Mark S Baron
- Southeast Parkinson's Disease Research, Education and Clinical Center (PADRECC), Richmond Veterans Affairs Medical Center, Richmond, Virginia, USA
- Department of Neurology, Virginia Commonwealth University Health System, Richmond, Virginia, USA
| |
Collapse
|
2
|
Afzal A, Thomas N, Warraich Z, Barbay S, Mocco J. Hematopoietic Endothelial Progenitor cells enhance motor function and cortical motor map integrity following cerebral ischemia. Restor Neurol Neurosci 2024; 42:139-149. [PMID: 38820024 DOI: 10.3233/rnn-231378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Background Hematopoietic stem cells (HSC) are recruited to ischemic areas in the brain and contribute to improved functional outcome in animals. However, little is known regarding the mechanisms of improvement following HSC administration post cerebral ischemia. To better understand how HSC effect post-stroke improvement, we examined the effect of HSC in ameliorating motor impairment and cortical dysfunction following cerebral ischemia. Methods Baseline motor performance of male adult rats was established on validated motor tests. Animals were assigned to one of three experimental cohorts: control, stroke, stroke + HSC. One, three and five weeks following a unilateral stroke all animals were tested on motor skills after which intracortical microstimulation was used to derive maps of forelimb movement representations within the motor cortex ipsilateral to the ischemic injury. Results Stroke + HSC animals significantly outperformed stroke animals on single pellet reaching at weeks 3 and 5 (28±3% and 33±3% versus 11±4% and 17±3%, respectively, p < 0.05 at both time points). Control animals scored 44±1% and 47±1%, respectively. Sunflower seed opening task was significantly improved in the stroke + HSC cohort versus the stroke cohort at week five-post stroke (79±4 and 48±5, respectively, p < 0.05). Furthermore, Stroke + HSC animals had significantly larger forelimb motor maps than animals in the stroke cohort. Overall infarct size did not significantly differ between the two stroked cohorts. Conclusion These data suggest that post stroke treatment of HSC enhances the functional integrity of residual cortical tissue, which in turn supports improved behavioral outcome, despite no observed reduction in infarct size.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Nagheme Thomas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | | | - Scott Barbay
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, KS, USA
| | - J Mocco
- Department of Neurological Surgery, Mount Sinai Health, New York, NY, USA
| |
Collapse
|
3
|
de Lima-Pardini AC, Mikhail Y, Dominguez-Vargas AU, Dancause N, Scott SH. Transcranial magnetic stimulation in non-human primates: A systematic review. Neurosci Biobehav Rev 2023; 152:105273. [PMID: 37315659 DOI: 10.1016/j.neubiorev.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) is widely employed as a tool to investigate and treat brain diseases. However, little is known about the direct effects of TMS on the brain. Non-human primates (NHPs) are a valuable translational model to investigate how TMS affects brain circuits given their neurophysiological similarity with humans and their capacity to perform complex tasks that approach human behavior. This systematic review aimed to identify studies using TMS in NHPs as well as to assess their methodological quality through a modified reference checklist. The results show high heterogeneity and superficiality in the studies regarding the report of the TMS parameters, which have not improved over the years. This checklist can be used for future TMS studies with NHPs to ensure transparency and critical appraisal. The use of the checklist would improve methodological soundness and interpretation of the studies, facilitating the translation of the findings to humans. The review also discusses how advancements in the field can elucidate the effects of TMS in the brain.
Collapse
Affiliation(s)
- Andrea C de Lima-Pardini
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada.
| | - Youstina Mikhail
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
| |
Collapse
|
4
|
Bonizzato M, Guay Hottin R, Côté SL, Massai E, Choinière L, Macar U, Laferrière S, Sirpal P, Quessy S, Lajoie G, Martinez M, Dancause N. Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys. Cell Rep Med 2023; 4:101008. [PMID: 37044093 PMCID: PMC10140617 DOI: 10.1016/j.xcrm.2023.101008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Neural stimulation can alleviate paralysis and sensory deficits. Novel high-density neural interfaces can enable refined and multipronged neurostimulation interventions. To achieve this, it is essential to develop algorithmic frameworks capable of handling optimization in large parameter spaces. Here, we leveraged an algorithmic class, Gaussian-process (GP)-based Bayesian optimization (BO), to solve this problem. We show that GP-BO efficiently explores the neurostimulation space, outperforming other search strategies after testing only a fraction of the possible combinations. Through a series of real-time multi-dimensional neurostimulation experiments, we demonstrate optimization across diverse biological targets (brain, spinal cord), animal models (rats, non-human primates), in healthy subjects, and in neuroprosthetic intervention after injury, for both immediate and continual learning over multiple sessions. GP-BO can embed and improve "prior" expert/clinical knowledge to dramatically enhance its performance. These results advocate for broader establishment of learning agents as structural elements of neuroprosthetic design, enabling personalization and maximization of therapeutic effectiveness.
Collapse
Affiliation(s)
- Marco Bonizzato
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Montreal, QC H4J 1C5, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada.
| | - Rose Guay Hottin
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Electrical Engineering and Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Sandrine L Côté
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Elena Massai
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Léo Choinière
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Uzay Macar
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Samuel Laferrière
- Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada; Computer Science Department, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Parikshat Sirpal
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Stephan Quessy
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Guillaume Lajoie
- Mila - Québec AI Institute, Montreal, QC H2S 3H1, Canada; Mathematics and Statistics Department, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marina Martinez
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada; CIUSSS du Nord-de-l'Île-de-Montréal, Montreal, QC H4J 1C5, Canada
| | - Numa Dancause
- Department of Neurosciences and Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
5
|
Resta F, Montagni E, de Vito G, Scaglione A, Allegra Mascaro AL, Pavone FS. Large-scale all-optical dissection of motor cortex connectivity shows a segregated organization of mouse forelimb representations. Cell Rep 2022; 41:111627. [PMID: 36351410 PMCID: PMC10073205 DOI: 10.1016/j.celrep.2022.111627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
In rodent motor cortex, the rostral forelimb area (RFA) and the caudal forelimb area (CFA) are major actors in orchestrating the control of complex forelimb movements. However, their intrinsic connectivity and reciprocal functional organization are still unclear, limiting our understanding of how the brain coordinates and executes voluntary movements. Here, we causally probe cortical connectivity and activation patterns triggered by transcranial optogenetic stimulation of ethologically relevant complex movements exploiting a large-scale all-optical method in awake mice. Results show specific activation features for each movement class, providing evidence for a segregated functional organization of CFA and RFA. Importantly, we identify a second discrete lateral grasping representation area, namely the lateral forelimb area (LFA), with unique connectivity and activation patterns. Therefore, we propose the LFA as a distinct forelimb representation in the mouse somatotopic motor map.
Collapse
Affiliation(s)
- Francesco Resta
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Elena Montagni
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Alessandro Scaglione
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Neuroscience Institute, National Research Council, 56124 Pisa, Italy.
| | - Francesco Saverio Pavone
- European Laboratory for Non-linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy; National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Kreis SL, Luhmann HJ, Ciolac D, Groppa S, Muthuraman M. Translational Model of Cortical Premotor-Motor Networks. Cereb Cortex 2021; 32:2621-2634. [PMID: 34689188 PMCID: PMC9201593 DOI: 10.1093/cercor/bhab369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in β- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/3 and 5 compared to RFA. We found a strong functional β-band connectivity between PMC and M1 in humans and between CFA L6 and RFA L5 in mice. We observed that in both humans and mice the direction of information flow mediated by β- and γ-band oscillations was predominantly from PMC toward M1 and from RFA to CFA, respectively. Combining spectral power, functional and effective connectivity, we revealed clear similarities between human PMC-M1 connections and mice RFA-CFA network. We propose that reciprocal connectivity of mice RFA-CFA circuitry presents a suitable model for analysis of motor control and physiological PMC-M1 functioning or pathological transformations within this network.
Collapse
Affiliation(s)
- Svenja L Kreis
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - Dumitru Ciolac
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55131, Germany.,Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau MD-2001, Republic of Moldova
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55131, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz D-55131, Germany
| |
Collapse
|
7
|
Viaro R, Maggiolini E, Farina E, Canto R, Iriki A, D'Ausilio A, Fadiga L. Neurons of rat motor cortex become active during both grasping execution and grasping observation. Curr Biol 2021; 31:4405-4412.e4. [PMID: 34433079 DOI: 10.1016/j.cub.2021.07.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
In non-human primates, a subset of frontoparietal neurons (mirror neurons) respond both when an individual executes an action and when it observes another individual performing a similar action.1-8 Mirror neurons constitute an observation and execution matching system likely involved in others' actions processing3,5,9 and in a large set of complex cognitive functions.10,11 Here, we show that the forelimb motor cortex of rats contains neurons presenting mirror properties analogous to those observed in macaques. We provide this evidence by event-related potentials acquired by microelectrocorticography and intracortical single-neuron activity, recorded from the same cortical region during grasping execution and observation. Mirror responses are highly specific, because grasping-related neurons do not respond to the observation of either grooming actions or graspable food alone. These results demonstrate that mirror neurons are present already in species phylogenetically distant from primates, suggesting for them a fundamental, albeit basic, role not necessarily related to higher cognitive functions. Moreover, because murine models have long been valued for their superior experimental accessibility and rapid life cycle, the present finding opens an avenue to new empirical studies tackling questions such as the innate or acquired origin of sensorimotor representations and the effects of social and environmental deprivation on sensorimotor development and recovery.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Emma Maggiolini
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Emanuele Farina
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Rosario Canto
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, 44121 Ferrara, Italy; Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy.
| |
Collapse
|
8
|
Halley AC, Baldwin MKL, Cooke DF, Englund M, Krubitzer L. Distributed Motor Control of Limb Movements in Rat Motor and Somatosensory Cortex: The Sensorimotor Amalgam Revisited. Cereb Cortex 2020; 30:6296-6312. [PMID: 32691053 DOI: 10.1093/cercor/bhaa186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/26/2022] Open
Abstract
Which areas of the neocortex are involved in the control of movement, and how is motor cortex organized across species? Recent studies using long-train intracortical microstimulation demonstrate that in addition to M1, movements can be elicited from somatosensory regions in multiple species. In the rat, M1 hindlimb and forelimb movement representations have long been thought to overlap with somatosensory representations of the hindlimb and forelimb in S1, forming a partial sensorimotor amalgam. Here we use long-train intracortical microstimulation to characterize the movements elicited across frontal and parietal cortex. We found that movements of the hindlimb, forelimb, and face can be elicited from both M1 and histologically defined S1 and that representations of limb movement types are different in these two areas. Stimulation of S1 generates retraction of the contralateral forelimb, while stimulation of M1 evokes forelimb elevation movements that are often bilateral, including a rostral region of digit grasping. Hindlimb movement representations include distinct regions of hip flexion and hindlimb retraction evoked from S1 and hip extension evoked from M1. Our data indicate that both S1 and M1 are involved in the generation of movement types exhibited during natural behavior. We draw on these results to reconsider how sensorimotor cortex evolved.
Collapse
Affiliation(s)
- Andrew C Halley
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Mary K L Baldwin
- Center for Neuroscience, University of California, Davis, CA 95618, USA
| | - Dylan F Cooke
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Mackenzie Englund
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Leah Krubitzer
- Center for Neuroscience, University of California, Davis, CA 95618, USA.,Department of Psychology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Poststroke Impairment and Recovery Are Predicted by Task-Specific Regionalization of Injury. J Neurosci 2020; 40:6082-6097. [PMID: 32605940 DOI: 10.1523/jneurosci.0057-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 01/01/2023] Open
Abstract
Lesion size and location affect the magnitude of impairment and recovery following stroke, but the precise relationship between these variables and functional outcome is unknown. Herein, we systematically varied the size of strokes in motor cortex and surrounding regions to assess effects on impairment and recovery of function. Female Sprague Dawley rats (N = 64) were evaluated for skilled reaching, spontaneous limb use, and limb placement over a 7 week period after stroke. Exploration and reaching were also tested in a free ranging, more naturalistic, environment. MRI voxel-based analysis of injury volume and its likelihood of including the caudal forelimb area (CFA), rostral forelimb area (RFA), hindlimb (HL) cortex (based on intracranial microstimulation), or their bordering regions were related to both impairment and recovery. Severity of impairment on each task was best predicted by injury in unique regions: impaired reaching, by damage in voxels encompassing CFA/RFA; hindlimb placement, by damage in HL; and spontaneous forelimb use, by damage in CFA. An entirely different set of voxels predicted recovery of function: damage lateral to RFA reduced recovery of reaching, damage medial to HL reduced recovery of hindlimb placing, and damage lateral to CFA reduced recovery of spontaneous limb use. Precise lesion location is an important, but heretofore relatively neglected, prognostic factor in both preclinical and clinical stroke studies, especially those using region-specific therapies, such as transcranial magnetic stimulation.SIGNIFICANCE STATEMENT By estimating lesion location relative to cortical motor representations, we established the relationship between individualized lesion location, and functional impairment and recovery in reaching/grasping, spontaneous limb use, and hindlimb placement during walking. We confirmed that stroke results in impairments to specific motor domains linked to the damaged cortical subregion and that damage encroaching on adjacent regions reduces the ability to recover from initial lesion-induced impairments. Each motor domain encompasses unique brain regions that are most associated with recovery and likely represent targets where beneficial reorganization is taking place. Future clinical trials should use individualized therapies (e.g., transcranial magnetic stimulation, intracerebral stem/progenitor cells) that consider precise lesion location and the specific functional impairments of each subject since these variables can markedly affect therapeutic efficacy.
Collapse
|
10
|
Touvykine B, Elgbeili G, Quessy S, Dancause N. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats. J Neurophysiol 2020; 123:1355-1368. [PMID: 32130080 PMCID: PMC7191520 DOI: 10.1152/jn.00591.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, forelimb movements are evoked from two cortical regions, the caudal and rostral forelimb areas (CFA and RFA, respectively). These areas are densely interconnected and RFA induces complex and powerful modulations of CFA outputs. CFA and RFA also have interhemispheric connections, and these areas from both hemispheres send projections to common targets along the motor axis, providing multiple potential sites of interactions for movement production. Our objective was to characterize how CFA and RFA in one hemisphere can modulate motor outputs of the opposite hemisphere. To do so, we used paired-pulse protocols with intracortical microstimulation techniques (ICMS), while recording electromyographic (EMG) activity of forelimb muscles in sedated rats. A subthreshold conditioning stimulation was applied in either CFA or RFA in one hemisphere simultaneously or before a suprathreshold test stimulation in either CFA or RFA in the opposite hemisphere. Both CFA and RFA tended to facilitate motor outputs with short (0–2.5 ms) or long (20–35 ms) delays between the conditioning and test stimuli. In contrast, they tended to inhibit motor outputs with intermediate delays, in particular 10 ms. When comparing the two areas, we found that facilitatory effects from RFA were more frequent and powerful than the ones from CFA. In contrast, inhibitory effects from CFA on its homolog were more frequent and powerful than the ones from RFA. Our results demonstrate that interhemispheric modulations from CFA and RFA share some similarities but also have clear differences that could sustain specific functions these cortical areas carry for the generation of forelimb movements. NEW & NOTEWORTHY We show that caudal and rostral forelimb areas (CFA and RFA) have distinct effects on motor outputs from the opposite hemisphere, supporting that they are distinct nodes in the motor network of rats. However, the pattern of interhemispheric modulations from RFA has no clear equivalent among premotor areas in nonhuman primates, suggesting they contribute differently to the generation of ipsilateral hand movements. Understanding these interspecies differences is important given the common use of rodent models in motor control and recovery studies.
Collapse
Affiliation(s)
- Boris Touvykine
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Centre, Verdun, Québec, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
11
|
Côté SL, Elgbeili G, Quessy S, Dancause N. Modulatory effects of the supplementary motor area on primary motor cortex outputs. J Neurophysiol 2019; 123:407-419. [PMID: 31774345 DOI: 10.1152/jn.00391.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premotor areas of primates are specialized cortical regions that can contribute to hand movements by modulating the outputs of the primary motor cortex (M1). The goal of the present work was to study how the supplementary motor area (SMA) located within the same hemisphere [i.e., ipsilateral SMA (iSMA)] or the opposite hemisphere [i.e., contralateral (cSMA)] modulate the outputs of M1. We used paired-pulse protocols with intracortical stimulations in sedated capuchin monkeys. A conditioning stimulus in iSMA or cSMA was delivered simultaneously or before a test stimulus in M1 with different interstimulus intervals (ISIs) while electromyographic activity was recorded in hand and forearm muscles. The pattern of modulation from iSMA and cSMA shared some clear similarities. In particular, both areas predominantly induced facilitatory effects on M1 outputs with shorter ISIs and inhibitory effects with longer ISIs. However, the incidence and strength of facilitatory effects were greater for iSMA than cSMA. We then compared the pattern of modulatory effects from SMA to the ones from the dorsal and ventral premotor cortexes (PMd and PMv) collected in the same series of experiments. Among premotor areas, the impact of SMA on M1 outputs was always weaker than the one of either PMd or PMv, and this was regardless of the hemisphere, or the ISI, tested. These results show that SMA exerts a unique set of modulations on M1 outputs, which could support its specific function for the production of hand movements.NEW & NOTEWORTHY We unequivocally isolated stimulation to either the ipsilateral or contralateral supplementary motor area (SMA) using invasive techniques and compared their modulatory effects on the outputs of primary motor cortex (M1). Modulations from both SMAs shared many similarities. However, facilitatory effects evoked from ipsilateral SMA were more common and more powerful. This pattern differs from the ones of other premotor areas, which suggests that each premotor area makes unique contributions to the production of motor outputs.
Collapse
Affiliation(s)
- Sandrine L Côté
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Guillaume Elgbeili
- Psychosocial Research Division, Douglas Institute Research Center, Verdun, Québec, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
12
|
Bundy DT, Guggenmos DJ, Murphy MD, Nudo RJ. Chronic stability of single-channel neurophysiological correlates of gross and fine reaching movements in the rat. PLoS One 2019; 14:e0219034. [PMID: 31665145 PMCID: PMC6821068 DOI: 10.1371/journal.pone.0219034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
While substantial task-related neural activity has been observed during motor tasks in rodent primary motor cortex and premotor cortex, the long-term stability of these responses in healthy rats is uncertain, limiting the interpretability of longitudinal changes in the specific patterns of neural activity associated with learning or motor recovery following injury. This study examined the stability of task-related neural activity associated with execution of two distinct reaching tasks in healthy rodents. A novel automated rodent behavioral apparatus was constructed and rats were trained to perform a reaching task combining a ‘gross’ lever press and a ‘fine’ pellet retrieval. In each animal, two chronic microelectrode arrays were implanted in motor cortex spanning the caudal forelimb area (rodent primary motor cortex) and the rostral forelimb area (rodent premotor cortex). We recorded multiunit spiking and local field potential activity from 10 days to 7–10 weeks post-implantation to characterize the patterns of neural activity observed during each task component and analyzed the consistency of channel-specific task-related neural activity. Task-related changes in neural activity were observed on the majority of channels. While the task-related changes in multi-unit spiking and local field potential spectral power were consistent over several weeks, spectral power changes were more stable, despite the trade-off of decreased spatial and temporal resolution. These results show that neural activity in rodent primary and premotor cortex is associated with specific phases of reaching movements with stable patterns of task-related activity across time, establishing the relevance of the rodent for future studies designed to examine changes in task-related neural activity during recovery from focal cortical lesions.
Collapse
Affiliation(s)
- David T. Bundy
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Maxwell D. Murphy
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, United States of America
| | - Randolph J. Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rios A, Soma S, Yoshida J, Nonomura S, Kawabata M, Sakai Y, Isomura Y. Differential Changes in the Lateralized Activity of Identified Projection Neurons of Motor Cortex in Hemiparkinsonian Rats. eNeuro 2019; 6:ENEURO.0110-19.2019. [PMID: 31235466 PMCID: PMC6620387 DOI: 10.1523/eneuro.0110-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/24/2022] Open
Abstract
In the parkinsonian state, the motor cortex and basal ganglia (BG) undergo dynamic remodeling of movement representation. One such change is the loss of the normal contralateral lateralized activity pattern. The increase in the number of movement-related neurons responding to ipsilateral or bilateral limb movements may cause motor problems, including impaired balance, reduced bimanual coordination, and abnormal mirror movements. However, it remains unknown how individual types of motor cortical neurons organize this reconstruction. To explore the effect of dopamine depletion on lateralized activity in the parkinsonian state, we used a partial hemiparkinsonian model [6-hydroxydopamine (6-OHDA) lesion] in Long-Evans rats performing unilateral movements in a right-left pedal task, while recording from primary (M1) and secondary motor cortex (M2). The lesion decreased contralateral preferred activity in both M1 and M2. In addition, this change differed among identified intratelencephalic (IT) and pyramidal tract (PT) cortical projection neurons, depending on the cortical area. We detected a decrease in lateralized activity only in PT neurons in M1, whereas in M2, this change was observed in IT neurons, with no change in the PT population. Our results suggest a differential effect of dopamine depletion in the lateralized activity of the motor cortex, and suggest possible compensatory changes in the contralateral hemisphere.
Collapse
Affiliation(s)
- Alain Rios
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shogo Soma
- Department of Anatomy and Neurobiology. University of California, Irvine, Irvine, CA 92697
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Satoshi Nonomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masanori Kawabata
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
| | - Yoshikazu Isomura
- Brain Science Institute, Tamagawa University, Tokyo 194-8610, Japan
- Graduate School of Brain Sciences, Tamagawa University, Tokyo 194-8610, Japan
- Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
14
|
Sieveritz B, García-Muñoz M, Arbuthnott GW. Thalamic afferents to prefrontal cortices from ventral motor nuclei in decision-making. Eur J Neurosci 2018; 49:646-657. [PMID: 30346073 PMCID: PMC6587977 DOI: 10.1111/ejn.14215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/23/2023]
Abstract
The focus of this literature review is on the three interacting brain areas that participate in decision‐making: basal ganglia, ventral motor thalamic nuclei, and medial prefrontal cortex, with an emphasis on the participation of the ventromedial and ventral anterior motor thalamic nuclei in prefrontal cortical function. Apart from a defining input from the mediodorsal thalamus, the prefrontal cortex receives inputs from ventral motor thalamic nuclei that combine to mediate typical prefrontal functions such as associative learning, action selection, and decision‐making. Motor, somatosensory and medial prefrontal cortices are mainly contacted in layer 1 by the ventral motor thalamic nuclei and in layer 3 by thalamocortical input from mediodorsal thalamus. We will review anatomical, electrophysiological, and behavioral evidence for the proposed participation of ventral motor thalamic nuclei and medial prefrontal cortex in rat and mouse motor decision‐making.
Collapse
Affiliation(s)
- Bianca Sieveritz
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Marianela García-Muñoz
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
15
|
Ipsilateral-Dominant Control of Limb Movements in Rodent Posterior Parietal Cortex. J Neurosci 2018; 39:485-502. [PMID: 30478035 DOI: 10.1523/jneurosci.1584-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
It is well known that the posterior parietal cortex (PPC) and frontal motor cortices in primates preferentially control voluntary movements of contralateral limbs. The PPC of rats has been defined based on patterns of thalamic and cortical connectivity. The anatomical characteristics of this area suggest that it may be homologous to the PPC of primates. However, its functional roles in voluntary forelimb movements have not been well understood, particularly in the lateralization of motor limb representation; that is, the limb-specific activity representations for right and left forelimb movements. We examined functional spike activity of the PPC and two motor cortices, the primary motor cortex (M1) and the secondary motor cortex (M2), when head-fixed male rats performed right or left unilateral movements. Unlike primates, PPC neurons in rodents were found to preferentially represent ipsilateral forelimb movements, in contrast to the contralateral preference of M1 and M2 neurons. Consistent with these observations, optogenetic activation of PPC and motor cortices, respectively, evoked ipsilaterally and contralaterally biased forelimb movements. Finally, we examined the effects of optogenetic manipulation on task performance. PPC or M1 inhibition by optogenetic GABA release shifted the behavioral limb preference contralaterally or ipsilaterally, respectively. In addition, weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally; although similar M1 activation showed no effects on task performance. These paradoxical observations suggest that the PPC plays evolutionarily different roles in forelimb control between primates and rodents.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2, respectively) are involved in voluntary movements with contralateral preference. However, it remains unclear whether and how the posterior parietal cortex (PPC) participates in controlling multiple limb movements. We recorded functional activity from these areas using a behavioral task to monitor movements of the right and left forelimbs separately. PPC neurons preferentially represented ipsilateral forelimb movements and optogenetic PPC activation evoked ipsilaterally biased forelimb movements. Optogenetic PPC inhibition via GABA release shifted the behavioral limb preference contralaterally during task performance, whereas weak optogenetic PPC activation, which was insufficient to evoke motor responses by itself, shifted the preference ipsilaterally. Our findings suggest rodent PPC contributes to ipsilaterally biased motor response and/or planning.
Collapse
|
16
|
Li B, Virtanen JP, Oeltermann A, Schwarz C, Giese MA, Ziemann U, Benali A. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. eLife 2017; 6:30552. [PMID: 29165241 PMCID: PMC5722613 DOI: 10.7554/elife.30552] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/17/2017] [Indexed: 12/23/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. Being able to tap into someone’s brain activity by holding loops of wires above their head sounds a little like the stuff of science fiction. And yet this technique, known as transcranial magnetic stimulation or TMS, is used in research and to treat many brain disorders. TMS emits a pulsed magnetic field that induces tiny electrical currents in the underlying brain tissue, activating that region of the brain. But exactly how these currents affect the individual neurons and networks within activated brain regions remains unclear. The main reason for this is that we cannot use conventional electrode-based techniques to study neuronal activity during TMS because its strong electromagnetic interferences mask the signals from the electrodes. Several groups have found ways to overcome this problem. However, their methods are technically demanding and specific to one single animal model –limitations that could present an obstacle for many laboratories. Li et al. therefore set out to develop a simple and widely accessible method to study neuronal activities under TMS. The resulting method makes it possible to measure the activity of individual neurons roughly 1/1,000th of a second after applying TMS. To show that the technique works, Li et al. induced small movements in the forelimbs of rats by applying TMS to the brain region that controls the forelimbs, while measuring the activity of neurons at the same time. This revealed, for the first time, how the neurons responsible for the forelimb movements responded to TMS. The observed TMS-triggered neuronal activity continued long after the TMS pulse had ended. The activity also varied depending on the direction of TMS-induced currents in the brain. This new method opens up the possibility to conveniently study – in rodents or other animals – how TMS procedures that are used in patients affect neuronal activity. Li et al. hope this will make it easier to develop, study and refine these procedures, and lead to advances in TMS therapies.
Collapse
Affiliation(s)
- Bingshuo Li
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Graduate Training Centre/International Max Planck Research School for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Juha P Virtanen
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Axel Oeltermann
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Martin A Giese
- Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alia Benali
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Section on Computational Sensomotorics, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
The role of forelimb motor cortex areas in goal directed action in mice. Sci Rep 2017; 7:15759. [PMID: 29150620 PMCID: PMC5693936 DOI: 10.1038/s41598-017-15835-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
Mammalian motor cortex consists of several interconnected subregions thought to play distinct roles in voluntary movements, yet their specific role in decision making and execution is not completely elucidated. Here we used transient optogenetic inactivation of the caudal forelimb area (CFA) and rostral forelimb area (RFA) in mice as they performed a directional joystick task. Based on a vibrotactile cue applied to their forepaw, mice were trained to push or pull a joystick after a delay period. We found that choice and execution are temporally segregated processes. CFA and RFA were both essential during the stimulus delivery for correct choice and during the answer period for motor execution. Fine, distal motor deficits were restricted to CFA inactivation. Surprisingly, during the delay period neither area alone, but only combined inactivation was able to affect choice. Our findings suggest transient and partially distributed neural processing of choice and execution across different subregions of the motor cortex.
Collapse
|
18
|
Distinct Laterality in Forelimb-Movement Representations of Rat Primary and Secondary Motor Cortical Neurons with Intratelencephalic and Pyramidal Tract Projections. J Neurosci 2017; 37:10904-10916. [PMID: 28972128 DOI: 10.1523/jneurosci.1188-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/30/2022] Open
Abstract
Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements.SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population.
Collapse
|
19
|
Contrasting Modulatory Effects from the Dorsal and Ventral Premotor Cortex on Primary Motor Cortex Outputs. J Neurosci 2017; 37:5960-5973. [PMID: 28536271 DOI: 10.1523/jneurosci.0462-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 11/21/2022] Open
Abstract
The dorsal and ventral premotor cortices (PMd and PMv, respectively) each take part in unique aspects for the planning and execution of hand movements. These premotor areas are components of complex anatomical networks that include the primary motor cortex (M1) of both hemispheres. One way that PMd and PMv could play distinct roles in hand movements is by modulating the outputs of M1 differently. However, patterns of effects from PMd and PMv on the outputs of M1 have not been compared systematically. Our goals were to study how PMd within the same (i.e., ipsilateral or iPMd) and in the opposite hemisphere (i.e., contralateral or cPMd) can shape M1 outputs and then compare these effects with those induced by PMv. We used paired-pulse protocols with intracortical microstimulation techniques in sedated female cebus monkeys while recording EMG signals from intrinsic hand and forearm muscles. A conditioning stimulus was delivered in iPMd or cPMd concurrently or before a test stimulus in M1. The patterns of modulatory effects from PMd were compared with those from PMv collected in the same animals. Striking differences were revealed. Conditioning stimulation in iPMd induced more frequent and powerful inhibitory effects on M1 outputs compared with iPMv. In the opposite hemisphere, cPMd conditioning induced more frequent and powerful facilitatory effects than cPMv. These contrasting patterns of modulatory effects could allow PMd and PMv to play distinct functions for the control of hand movements and predispose them to undertake different, perhaps somewhat opposite, roles in motor recovery after brain injury.SIGNIFICANCE STATEMENT The dorsal and ventral premotor cortices (PMd and PMv, respectively) are two specialized areas involved in the control of hand movements in primates. One way that PMd and PMv could participate in hand movements is by modulating or shaping the primary motor cortex (M1) outputs to hand muscles. Here, we studied the patterns of modulation from PMd within the same and in the opposite hemisphere on the outputs of M1 and compared them with those from PMv. We found that PMd and PMv have strikingly different effects on M1 outputs. These contrasting patterns of modulation provide a substrate that may allow PMd and PMv to carry distinct functions for the preparation and execution of hand movements and for recovery after brain injury.
Collapse
|
20
|
Kunori N, Takashima I. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways. Eur J Neurosci 2016; 44:2925-2934. [PMID: 27717064 DOI: 10.1111/ejn.13427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates.
Collapse
Affiliation(s)
- Nobuo Kunori
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,RIKEN Brain Science Institute, Wako, Japan
| | - Ichiro Takashima
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, 305-8568, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Shiromoto T, Okabe N, Lu F, Maruyama-Nakamura E, Himi N, Narita K, Yagita Y, Kimura K, Miyamoto O. The Role of Endogenous Neurogenesis in Functional Recovery and Motor Map Reorganization Induced by Rehabilitative Therapy after Stroke in Rats. J Stroke Cerebrovasc Dis 2016; 26:260-272. [PMID: 27743923 DOI: 10.1016/j.jstrokecerebrovasdis.2016.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Endogenous neurogenesis is associated with functional recovery after stroke, but the roles it plays in such recovery processes are unknown. This study aims to clarify the roles of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke by using a rat model of cerebral ischemia (CI). METHODS Ischemia was induced via photothrombosis in the caudal forelimb area of the rat cortex. First, we examined the effect of rehabilitative therapy on functional recovery and motor map reorganization, using the skilled forelimb reaching test and intracortical microstimulation. Next, using the same approaches, we examined how motor map reorganization changed when endogenous neurogenesis after stroke was inhibited by cytosine-β-d-arabinofuranoside (Ara-C). RESULTS Rehabilitative therapy for 4 weeks after the induction of stroke significantly improved functional recovery and expanded the rostral forelimb area (RFA). Intraventricular Ara-C administration for 4-10 days after stroke significantly suppressed endogenous neurogenesis compared to vehicle, but did not appear to influence non-neural cells (e.g., microglia, astrocytes, and vascular endothelial cells). Suppressing endogenous neurogenesis via Ara-C administration significantly inhibited (~50% less than vehicle) functional recovery and RFA expansion (~33% of vehicle) induced by rehabilitative therapy after CI. CONCLUSIONS After CI, inhibition of endogenous neurogenesis suppressed both the functional and anatomical markers of rehabilitative therapy. These results suggest that endogenous neurogenesis contributes to functional recovery after CI related to rehabilitative therapy, possibly through its promotion of motor map reorganization, although other additional roles cannot be ruled out.
Collapse
Affiliation(s)
- Takashi Shiromoto
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan; Department of Stroke Medicine, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Naohiko Okabe
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan.
| | - Feng Lu
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Emi Maruyama-Nakamura
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Naoyuki Himi
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kazuhiko Narita
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Yoshiki Yagita
- Department of Stroke Medicine, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Osamu Miyamoto
- Second Department of Physiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| |
Collapse
|
22
|
Sykes M, Matheson NA, Brownjohn PW, Tang AD, Rodger J, Shemmell JBH, Reynolds JNJ. Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies. Front Neural Circuits 2016; 10:80. [PMID: 27766073 PMCID: PMC5052269 DOI: 10.3389/fncir.2016.00080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/26/2016] [Indexed: 11/25/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an anesthetic and in interpreting results during prolonged TMS recording.
Collapse
Affiliation(s)
- Matthew Sykes
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; Department of Anatomy, University of OtagoDunedin, New Zealand; Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western AustraliaPerth, WA, Australia
| | - Natalie A Matheson
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; Department of Anatomy, University of OtagoDunedin, New Zealand
| | - Philip W Brownjohn
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, University of OtagoDunedin, New Zealand
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia Perth, WA, Australia
| | - Jonathan B H Shemmell
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, University of OtagoDunedin, New Zealand
| | - John N J Reynolds
- Brain Health Research Centre and Brain Research New Zealand Centre of Research ExcellenceDunedin, New Zealand; Department of Anatomy, University of OtagoDunedin, New Zealand
| |
Collapse
|
23
|
Quessy S, Côté SL, Hamadjida A, Deffeyes J, Dancause N. Modulatory Effects of the Ipsi and Contralateral Ventral Premotor Cortex (PMv) on the Primary Motor Cortex (M1) Outputs to Intrinsic Hand and Forearm Muscles in Cebus apella. Cereb Cortex 2016; 26:3905-20. [PMID: 27473318 PMCID: PMC5028004 DOI: 10.1093/cercor/bhw186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ventral premotor cortex (PMv) is a key node in the neural network involved in grasping. One way PMv can carry out this function is by modulating the outputs of the primary motor cortex (M1) to intrinsic hand and forearm muscles. As many PMv neurons discharge when grasping with either arm, both PMv within the same hemisphere (ipsilateral; iPMv) and in the opposite hemisphere (contralateral; cPMv) could modulate M1 outputs. Our objective was to compare modulatory effects of iPMv and cPMv on M1 outputs to intrinsic hand and forearm muscles. We used paired-pulse protocols with intracortical microstimulations in capuchin monkeys. A conditioning stimulus was applied in either iPMv or cPMv simultaneously or prior to a test stimulus in M1 and the effects quantified in electromyographic signals. Modulatory effects from iPMv were predominantly facilitatory, and facilitation was much more common and powerful on intrinsic hand than forearm muscles. In contrast, while the conditioning of cPMv could elicit facilitatory effects, in particular to intrinsic hand muscles, it was much more likely to inhibit M1 outputs. These data show that iPMv and cPMv have very different modulatory effects on the outputs of M1 to intrinsic hand and forearm muscles.
Collapse
Affiliation(s)
- Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Sandrine L Côté
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Adjia Hamadjida
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Québec, Canada
| | - Joan Deffeyes
- Department of Physical Therapy, School of Medicine, Emory University, Atlanta, GA
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada Groupe de recherche sur le système nerveux central (GRSNC), Université de Montréal, Québec, Canada
| |
Collapse
|
24
|
Watson M, Sawan M, Dancause N. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration. PLoS One 2016; 11:e0159441. [PMID: 27442588 PMCID: PMC4956212 DOI: 10.1371/journal.pone.0159441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100–200 Hz or pulse duration from 0.18–0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.
Collapse
Affiliation(s)
- Meghan Watson
- Polystim Neurotechnologies, Institute of Biomedical Engineering, Polytechnique, Montreal, Quebec, Canada
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| | - Mohamad Sawan
- Polystim Neurotechnologies, Institute of Biomedical Engineering, Polytechnique, Montreal, Quebec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Vallone F, Lai S, Spalletti C, Panarese A, Alia C, Micera S, Caleo M, Di Garbo A. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex. PLoS One 2016; 11:e0146858. [PMID: 26752066 PMCID: PMC4709093 DOI: 10.1371/journal.pone.0146858] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/21/2015] [Indexed: 11/19/2022] Open
Abstract
Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance pattern. These reorganizations may underlie vicariation of lost functions following stroke.
Collapse
Affiliation(s)
- Fabio Vallone
- Institute of Biophysics, CNR, Pisa, Italy
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Stefano Lai
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Cristina Spalletti
- Neuroscience Institute, CNR, Pisa, Italy
- Life Science Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Alessandro Panarese
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Silvestro Micera
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering School of Engineering Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | |
Collapse
|
26
|
Combs HL, Jones TA, Kozlowski DA, Adkins DL. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats. J Neurotrauma 2015; 33:741-7. [PMID: 26421759 DOI: 10.1089/neu.2015.4136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.
Collapse
Affiliation(s)
- Hannah L Combs
- 1 Department of Psychology, University of Texas at Austin , Austin, Texas
| | - Theresa A Jones
- 1 Department of Psychology, University of Texas at Austin , Austin, Texas.,2 Institute for Neuroscience, University of Texas at Austin , Austin, Texas
| | | | - DeAnna L Adkins
- 4 Department of Neuroscience, Department of Health Sciences and Research, and Center for Biomedical Imaging, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
27
|
Garcia-Munoz M, Arbuthnott GW. Basal ganglia-thalamus and the "crowning enigma". Front Neural Circuits 2015; 9:71. [PMID: 26582979 PMCID: PMC4631818 DOI: 10.3389/fncir.2015.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/22/2015] [Indexed: 11/13/2022] Open
Abstract
When Hubel (1982) referred to layer 1 of primary visual cortex as "… a 'crowning mystery' to keep area-17 physiologists busy for years to come …" he could have been talking about any cortical area. In the 80's and 90's there were no methods to examine this neuropile on the surface of the cortex: a tangled web of axons and dendrites from a variety of different places with unknown specificities and doubtful connections to the cortical output neurons some hundreds of microns below. Recently, three changes have made the crowning enigma less of an impossible mission: the clear presence of neurons in layer 1 (L1), the active conduction of voltage along apical dendrites and optogenetic methods that might allow us to look at one source of input at a time. For all of those reasons alone, it seems it is time to take seriously the function of L1. The functional properties of this layer will need to wait for more experiments but already L1 cells are GAD67 positive, i.e., inhibitory! They could reverse the sign of the thalamic glutamate (GLU) input for the entire cortex. It is at least possible that in the near future normal activity of individual sources of L1 could be detected using genetic tools. We are at the outset of important times in the exploration of thalamic functions and perhaps the solution to the crowning enigma is within sight. Our review looks forward to that solution from the solid basis of the anatomy of the basal ganglia output to motor thalamus. We will focus on L1, its afferents, intrinsic neurons and its influence on responses of pyramidal neurons in layers 2/3 and 5. Since L1 is present in the whole cortex we will provide a general overview considering evidence mainly from the somatosensory (S1) cortex before focusing on motor cortex.
Collapse
Affiliation(s)
| | - Gordon W Arbuthnott
- Okinawa Institute of Science and Technology Graduate University Okinawa, Japan
| |
Collapse
|
28
|
Caleo M. Rehabilitation and plasticity following stroke: Insights from rodent models. Neuroscience 2015; 311:180-94. [PMID: 26493858 DOI: 10.1016/j.neuroscience.2015.10.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
Ischemic injuries within the motor cortex result in functional deficits that may profoundly impact activities of daily living in patients. Current rehabilitation protocols achieve only limited recovery of motor abilities. The brain reorganizes spontaneously after injury, and it is believed that appropriately boosting these neuroplastic processes may restore function via recruitment of spared areas and pathways. Here I review studies on circuit reorganization, neuronal and glial plasticity and axonal sprouting following ischemic damage to the forelimb motor cortex, with a particular focus on rodent models. I discuss evidence pointing to compensatory take-over of lost functions by adjacent peri-lesional areas and the role of the contralesional hemisphere in recovery. One key issue is the need to distinguish "true" recovery (i.e. re-establishment of original movement patterns) from compensation in the assessment of post-stroke functional gains. I also consider the effects of physical rehabilitation, including robot-assisted therapy, and the potential mechanisms by which motor training induces recovery. Finally, I describe experimental approaches in which training is coupled with delivery of plasticizing drugs that render the remaining, undamaged pathways more sensitive to experience-dependent modifications. These combinatorial strategies hold promise for the definition of more effective rehabilitation paradigms that can be translated into clinical practice.
Collapse
Affiliation(s)
- M Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy; The BioRobotics Institute, Scuola Superiore Sant'Anna, P.zza Martiri della Libertà 33, 56127 Pisa, Italy.
| |
Collapse
|