1
|
Stratmann P, Schmidt A, Höppner H, van der Smagt P, Meindl T, Franklin DW, Albu-Schäffer A. Human short-latency reflexes show precise short-term gain adaptation after prior motion. J Neurophysiol 2024; 132:1680-1692. [PMID: 39475493 DOI: 10.1152/jn.00212.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The central nervous system adapts the gain of short-latency reflex loops to changing conditions. Experiments on biomimetic robots showed that reflex modulation could substantially increase energy efficiency and stability of periodic motions if, unlike known mechanisms, the reflex modulation both acted precisely on the muscles involved and lasted after the motion. This study tests the presence of such a mechanism by having participants repeatedly rotate either their right elbow or shoulder joint before perturbing either joint. The results demonstrate a mechanism that modulates short-latency reflex gains after prior motion with joint-specific precision. Enhanced gains were observed hundreds of milliseconds after movement cessation, a timescale well suited to quickly adapt overall periodic motion cycles. A serotonin antagonist significantly decreased these postmovement gains diffusely across joints. But blocking serotonin did not affect the joint specificity of the gain scaling more than a placebo, suggesting that serotonin sets the overall reflex gain across joints after movement by an effect that is modulated in a joint-specific manner by an unidentified neural circuit. These results confirm the existence of a new, joint-specific, fast, persistent adaptation of short-latency reflex loops induced by motion in human arms.NEW & NOTEWORTHY Our results expose a new spinal cord mechanism that modulates motoneuron gains, uniquely equipped to adapt movement in changing environments: it acts with joint-specific precision, reacts quickly to mechanical changes, and still persists long enough to accumulate information across movement cycles. The overall motoneuron gain across joints can be scaled down by an antagonist to serotonergic neuromodulation, whereas its joint specificity is unaffected by the antagonist and thus due to a complementary, unknown spinal mechanism.
Collapse
Affiliation(s)
- Philipp Stratmann
- Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany
| | - Annika Schmidt
- Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | | | | | - Tobias Meindl
- Department of Neurology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - David W Franklin
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Neuromuscular Diagnostics, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| | - Alin Albu-Schäffer
- Sensor Based Robotic Systems and Intelligent Assistance Systems, TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Robotics and Mechatronics, German Aerospace Center (DLR), Wessling, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Flaive A, Fougère M, van der Zouwen CI, Ryczko D. Serotonergic Modulation of Locomotor Activity From Basal Vertebrates to Mammals. Front Neural Circuits 2020; 14:590299. [PMID: 33224027 PMCID: PMC7674590 DOI: 10.3389/fncir.2020.590299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
During the last 50 years, the serotonergic (5-HT) system was reported to exert a complex modulation of locomotor activity. Here, we focus on two key factors that likely contribute to such complexity. First, locomotion is modulated directly and indirectly by 5-HT neurons. The locomotor circuitry is directly innervated by 5-HT neurons in the caudal brainstem and spinal cord. Also, indirect control of locomotor activity results from ascending projections of 5-HT cells in the rostral brainstem that innervate multiple brain centers involved in motor action planning. Second, each approach used to manipulate the 5-HT system likely engages different 5-HT-dependent mechanisms. This includes the recruitment of different 5-HT receptors, which can have excitatory or inhibitory effects on cell activity. These receptors can be located far or close to the 5-HT release sites, making their activation dependent on the level of 5-HT released. Here we review the activity of different 5-HT nuclei during locomotor activity, and the locomotor effects of 5-HT precursors, exogenous 5-HT, selective 5-HT reuptake inhibitors (SSRI), electrical or chemical stimulation of 5-HT neurons, genetic deletions, optogenetic and chemogenetic manipulations. We highlight both the coherent and controversial aspects of 5-HT modulation of locomotor activity from basal vertebrates to mammals. This mini review may hopefully inspire future studies aiming at dissecting the complex effects of 5-HT on locomotor function.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Centre des Neurosciences de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Flaive A, Cabelguen JM, Ryczko D. The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT 1A receptors. J Neurophysiol 2020; 123:2326-2342. [PMID: 32401145 DOI: 10.1152/jn.00179.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serotoninergic (5-HT) neurons are powerful modulators of spinal locomotor circuits. Most studies on 5-HT modulation focused on the effect of exogenous 5-HT and these studies provided key information about the cellular mechanisms involved. Less is known about the effects of increased release of endogenous 5-HT with selective serotonin reuptake inhibitors. In mammals, such molecules were shown to destabilize the fictive locomotor output of spinal limb networks through 5-HT1A receptors. However, in tetrapods little is known about the effects of increased 5-HT release on the locomotor output of axial networks, which are coordinated with limb circuits during locomotion from basal vertebrates to mammals. Here, we examined the effect of citalopram on fictive locomotion generated in axial segments of isolated spinal cords in salamanders, a tetrapod where raphe 5-HT reticulospinal neurons and intraspinal 5-HT neurons are present as in other vertebrates. Using electrophysiological recordings of ventral roots, we show that fictive locomotion generated by bath-applied glutamatergic agonists is destabilized by citalopram. Citalopram-induced destabilization was prevented by a 5-HT1A receptor antagonist, whereas a 5-HT1A receptor agonist destabilized fictive locomotion. Using immunofluorescence experiments, we found 5-HT-positive fibers and varicosities in proximity with motoneurons and glutamatergic interneurons that are likely involved in rhythmogenesis. Our results show that increasing 5-HT release has a deleterious effect on axial locomotor activity through 5-HT1A receptors. This is consistent with studies in limb networks of turtle and mouse, suggesting that this part of the complex 5-HT modulation of spinal locomotor circuits is common to limb and axial networks in limbed vertebrates.NEW & NOTEWORTHY Little is known about the modulation exerted by endogenous serotonin on axial locomotor circuits in tetrapods. Using axial ventral root recordings in salamanders, we found that a serotonin reuptake blocker destabilized fictive locomotor activity through 5-HT1A receptors. Our anatomical results suggest that serotonin is released on motoneurons and glutamatergic interneurons possibly involved in rhythmogenesis. Our study suggests that common serotoninergic mechanisms modulate axial motor circuits in amphibians and limb motor circuits in reptiles and mammals.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Marie Cabelguen
- Neurocentre Magendie, INSERM U 862, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre des neurosciences de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Perrin FE, Noristani HN. Serotonergic mechanisms in spinal cord injury. Exp Neurol 2019; 318:174-191. [PMID: 31085200 DOI: 10.1016/j.expneurol.2019.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) is a tragic event causing irreversible losses of sensory, motor, and autonomic functions, that may also be associated with chronic neuropathic pain. Serotonin (5-HT) neurotransmission in the spinal cord is critical for modulating sensory, motor, and autonomic functions. Following SCI, 5-HT axons caudal to the lesion site degenerate, and the degree of axonal degeneration positively correlates with lesion severity. Rostral to the lesion, 5-HT axons sprout, irrespective of the severity of the injury. Unlike callosal fibers and cholinergic projections, 5-HT axons are more resistant to an inhibitory milieu and undergo active sprouting and regeneration after central nervous system (CNS) traumatism. Numerous studies suggest that a chronic increase in serotonergic neurotransmission promotes 5-HT axon sprouting in the intact CNS. Moreover, recent studies in invertebrates suggest that 5-HT has a pro-regenerative role in injured axons. Here we present a brief description of 5-HT discovery, 5-HT innervation of the CNS, and physiological functions of 5-HT in the spinal cord, including its role in controlling bladder function. We then present a comprehensive overview of changes in serotonergic axons after CNS damage, and discuss their plasticity upon altered 5-HT neurotransmitter levels. Subsequently, we provide an in-depth review of therapeutic approaches targeting 5-HT neurotransmission, as well as other pre-clinical strategies to promote an increase in re-growth of 5-HT axons, and their functional consequences in SCI animal models. Finally, we highlight recent findings signifying the direct role of 5-HT in axon regeneration and suggest strategies to further promote robust long-distance re-growth of 5-HT axons across the lesion site and eventually achieve functional recovery following SCI.
Collapse
Affiliation(s)
- Florence Evelyne Perrin
- University of Montpellier, Montpellier, F-34095 France; INSERM, U1198, Montpellier, F-34095 France; EPHE, Paris, F-75014 France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
5
|
Stratmann P, Albu-Schäffer A, Jörntell H. Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry. Front Cell Neurosci 2018; 12:506. [PMID: 30618646 PMCID: PMC6307502 DOI: 10.3389/fncel.2018.00506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient solution to adapt the activation of individual muscle groups during locomotion to changing conditions such as ground compliance and carried load. Although it is not unconceivable that spinal ionotropic circuitry could achieve scaling by itself, neurophysiological findings emphasize that this is a unique functionality of metabotropic effects since recent recordings in sensorimotor circuitry conflict with mechanisms proposed for ionotropic scaling in other CNS areas. We substantiate that precision scaling of ionotropic subcircuits is a main functional principle for many monoaminergic projections throughout the CNS, implying that the monoaminergic circuitry forms a network within the network composed of the ionotropic circuitry. Thereby, we provide an early-level interpretation of the mechanisms of psychopharmacological drugs that interfere with the monoaminergic systems.
Collapse
Affiliation(s)
- Philipp Stratmann
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany
- German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Alin Albu-Schäffer
- Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany
- German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Jean-Xavier C, Sharples SA, Mayr KA, Lognon AP, Whelan PJ. Retracing your footsteps: developmental insights to spinal network plasticity following injury. J Neurophysiol 2017; 119:521-536. [PMID: 29070632 DOI: 10.1152/jn.00575.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During development of the spinal cord, a precise interaction occurs between descending projections and sensory afferents, with spinal networks that lead to expression of coordinated motor output. In the rodent, during the last embryonic week, motor output first occurs as regular bursts of spontaneous activity, progressing to stochastic patterns of episodes that express bouts of coordinated rhythmic activity perinatally. Locomotor activity becomes functionally mature in the 2nd postnatal wk and is heralded by the onset of weight-bearing locomotion on the 8th and 9th postnatal day. Concomitantly, there is a maturation of intrinsic properties and key conductances mediating plateau potentials. In this review, we discuss spinal neuronal excitability, descending modulation, and afferent modulation in the developing rodent spinal cord. In the adult, plastic mechanisms are much more constrained but become more permissive following neurotrauma, such as spinal cord injury. We discuss parallel mechanisms that contribute to maturation of network function during development to mechanisms of pathological plasticity that contribute to aberrant motor patterns, such as spasticity and clonus, which emerge following central injury.
Collapse
Affiliation(s)
- C Jean-Xavier
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - K A Mayr
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Neuroscience, University of Calgary , Calgary, Alberta , Canada
| | - A P Lognon
- Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
7
|
Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, Reddy CG, Gillies GT, Howard MA. Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions. Neuromodulation 2017; 20:307-321. [PMID: 28370802 DOI: 10.1111/ner.12591] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Millions of people worldwide suffer with spasticity related to irreversible damage to the brain or spinal cord. Typical antecedent events include stroke, traumatic brain injury, and spinal cord injury, although insidious onset is also common. Regardless of the cause, the resulting spasticity leads to years of disability and reduced quality of life. Many treatments are available to manage spasticity; yet each is fraught with drawbacks including incomplete response, high cost, limited duration, dose-limiting side effects, and periodic maintenance. Spinal cord stimulation (SCS), a once promising therapy for spasticity, has largely been relegated to permanent experimental status. METHODS In this review, our goal is to document and critique the history and assess the development of SCS as a treatment of lower limb spasticity. By incorporating recent discoveries with the insights gained from the early pioneers in this field, we intend to lay the groundwork needed to propose testable hypotheses for future studies. RESULTS SCS has been tested in over 25 different conditions since a potentially beneficial effect was first reported in 1973. However, the lack of a fully formed understanding of the pathophysiology of spasticity, archaic study methodology, and the early technological limitations of implantable hardware limit the validity of many studies. SCS offers a measure of control for spasticity that cannot be duplicated with other interventions. CONCLUSIONS With improved energy-source miniaturization, tailored control algorithms, novel implant design, and a clearer picture of the pathophysiology of spasticity, we are poised to reintroduce and test SCS in this population.
Collapse
Affiliation(s)
- Sean J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Michael D Johnson
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andre Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Leonardo Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Matthieu K Chardon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chandan G Reddy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
8
|
Quinlan KA, Lamano JB, Samuels J, Heckman CJ. Comparison of dendritic calcium transients in juvenile wild type and SOD1(G93A) mouse lumbar motoneurons. Front Cell Neurosci 2015; 9:139. [PMID: 25914627 PMCID: PMC4392694 DOI: 10.3389/fncel.2015.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022] Open
Abstract
Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na+ and Ca2+ currents, and impaired axonal transport. In this study dendritic Ca2+ entry was investigated using two photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11) motoneurons. Neurons were filled with both Ca2+ Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including (1) dye filling and laser penetration, (2) dendritic anatomy, and (3) the time elapsed from the start of recording. First, Ca2+ Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca2+ transients (area under the curve) from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 h (data thereafter was dropped). However, Ca2+ transients showed additional variability. Controlling for previous factors, significant variation was found between Ca2+ signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca2+ channels, local neuromodulation or other variations. Finally, Ca2+ transients in SOD1G93A motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca2+ transients, but these transients are smaller overall in SOD1G93A motoneurons.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Jonathan B Lamano
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Julienne Samuels
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
9
|
Perrier JF, Cotel F. Serotonergic modulation of spinal motor control. Curr Opin Neurobiol 2014; 33:1-7. [PMID: 25553359 DOI: 10.1016/j.conb.2014.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either applying 5-HT in the extracellular medium or inducing its synaptic release. They produced strikingly different results suggesting that the net effect of 5-HT depends on the identity of the activated receptors and their location. Recent findings suggest that moderate release of 5-HT facilitates locomotion and promotes the excitability of motoneurons, while stronger release inhibits rhythmic activity and motoneuron firing. This latter effect is responsible for central fatigue and secures rotation of motor units.
Collapse
Affiliation(s)
| | - Florence Cotel
- Queensland Brain Institute, University of Queensland, Australia
| |
Collapse
|
10
|
Husch A, Dietz SB, Hong DN, Harris-Warrick RM. Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability. J Neurophysiol 2014; 113:1124-34. [PMID: 25520435 DOI: 10.1152/jn.00741.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
Collapse
Affiliation(s)
- Andreas Husch
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Shelby B Dietz
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Diana N Hong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
11
|
Gackière F, Vinay L. Serotonergic modulation of post-synaptic inhibition and locomotor alternating pattern in the spinal cord. Front Neural Circuits 2014; 8:102. [PMID: 25221477 PMCID: PMC4148025 DOI: 10.3389/fncir.2014.00102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022] Open
Abstract
The central pattern generators (CPGs) for locomotion, located in the lumbar spinal cord, are functional at birth in the rat. Their maturation occurs during the last few days preceding birth, a period during which the first projections from the brainstem start to reach the lumbar enlargement of the spinal cord. Locomotor burst activity in the mature intact spinal cord alternates between flexor and extensor motoneurons through reciprocal inhibition and between left and right sides through commisural inhibitory interneurons. By contrast, all motor bursts are in phase in the fetus. The alternating pattern disappears after neonatal spinal cord transection which suppresses supraspinal influences upon the locomotor networks. This article will review the role of serotonin (5-HT), in particular 5-HT2 receptors, in shaping the alternating pattern. For instance, pharmacological activation of these receptors restores the left-right alternation after injury. Experiments aimed at either reducing the endogenous level of serotonin in the spinal cord or blocking the activation of 5-HT2 receptors. We then describe recent evidence that the action of 5-HT2 receptors is mediated, at least in part, through a modulation of chloride homeostasis. The postsynaptic action of GABA and glycine depends on the intracellular concentration of chloride ions which is regulated by a protein in the plasma membrane, the K+-Cl− cotransporter (KCC2) extruding both K+ and Cl− ions. Absence or reduction of KCC2 expression leads to a depolarizing action of GABA and glycine and a marked reduction in the strength of postsynaptic inhibition. This latter situation is observed early during development and in several pathological conditions, such as after spinal cord injury, thereby causing spasticity and chronic pain. It was recently shown that specific activation of 5-HT2A receptors is able to up-regulate KCC2, restore endogenous inhibition and reduce spasticity.
Collapse
Affiliation(s)
- Florian Gackière
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université Marseille, France
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, UMR 7289, CNRS, Aix Marseille Université Marseille, France
| |
Collapse
|
12
|
Remage-Healey L. Frank Beach Award Winner: Steroids as neuromodulators of brain circuits and behavior. Horm Behav 2014; 66:552-60. [PMID: 25110187 PMCID: PMC4180446 DOI: 10.1016/j.yhbeh.2014.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
Neurons communicate primarily via action potentials that transmit information on the timescale of milliseconds. Neurons also integrate information via alterations in gene transcription and protein translation that are sustained for hours to days after initiation. Positioned between these two signaling timescales are the minute-by-minute actions of neuromodulators. Over the course of minutes, the classical neuromodulators (such as serotonin, dopamine, octopamine, and norepinephrine) can alter and/or stabilize neural circuit patterning as well as behavioral states. Neuromodulators allow many flexible outputs from neural circuits and can encode information content into the firing state of neural networks. The idea that steroid molecules can operate as genuine behavioral neuromodulators - synthesized by and acting within brain circuits on a minute-by-minute timescale - has gained traction in recent years. Evidence for brain steroid synthesis at synaptic terminals has converged with evidence for the rapid actions of brain-derived steroids on neural circuits and behavior. The general principle emerging from this work is that the production of steroid hormones within brain circuits can alter their functional connectivity and shift sensory representations by enhancing their information coding. Steroids produced in the brain can therefore change the information content of neuronal networks to rapidly modulate sensory experience and sensorimotor functions.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 01003, USA.
| |
Collapse
|
13
|
Motoneuron intrinsic properties, but not their receptive fields, recover in chronic spinal injury. J Neurosci 2014; 33:18806-13. [PMID: 24285887 DOI: 10.1523/jneurosci.2609-13.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper movement execution relies on precise input processing by spinal motoneurons (MNs). Spinal MNs are activated by limb joint rotations. Typically, their movement-related receptive fields (MRRFs) are sharply focused and joint-specific. After acute spinal transection MRRFs become wide, but their manifestation is not apparent, as intrinsic excitability, primarily resulting from the loss of persistent inward currents (PICs), dramatically decreases. PICs undergo a remarkable recovery with time after injury. Here we investigate whether MRRFs undergo a recovery that parallels that of the PIC. Using the chronic spinal cat in acute terminal decerebrate preparations, we found that MRRFs remain expanded 1 month after spinal transaction, whereas PICs recovered to >80% of their preinjury amplitudes. These recovered PICs substantially amplified the expanded inputs underlying the MRRFs. As a result, we show that single joint rotations lead to the activation of muscles across the entire limb. These results provide a potential mechanism for the propagation of spasms throughout the limb.
Collapse
|
14
|
Masino MA, Abbinanti MD, Eian J, Harris-Warrick RM. TTX-resistant NMDA receptor-mediated membrane potential oscillations in neonatal mouse Hb9 interneurons. PLoS One 2012; 7:e47940. [PMID: 23094101 PMCID: PMC3475713 DOI: 10.1371/journal.pone.0047940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023] Open
Abstract
Conditional neuronal membrane potential oscillations have been identified as a potential mechanism to help support or generate rhythmogenesis in neural circuits. A genetically identified population of ventromedial interneurons, called Hb9, in the mouse spinal cord has been shown to generate TTX-resistant membrane potential oscillations in the presence of NMDA, serotonin and dopamine, but these oscillatory properties are not well characterized. Hb9 interneurons are rhythmically active during fictive locomotor-like behavior. In this study, we report that exogenous N-Methyl-D-Aspartic acid (NMDA) application is sufficient to produce membrane potential oscillations in Hb9 interneurons. In contrast, exogenous serotonin and dopamine application, alone or in combination, are not sufficient. The properties of NMDA-induced oscillations vary among the Hb9 interneuron population; their frequency and amplitude increase with increasing NMDA concentration. NMDA does not modulate the T-type calcium current (ICa(T)), which is thought to be important in generating locomotor-like activity, in Hb9 neurons. These results suggest that NMDA receptor activation is sufficient for the generation of TTX-resistant NMDA-induced membrane potential oscillations in Hb9 interneurons.
Collapse
Affiliation(s)
- Mark A Masino
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America.
| | | | | | | |
Collapse
|
15
|
Dietz S, Husch A, Harris-Warrick RM. A comparison of serotonin neuromodulation of mouse spinal V2a interneurons using perforated patch and whole cell recording techniques. Front Cell Neurosci 2012; 6:39. [PMID: 23060747 PMCID: PMC3460530 DOI: 10.3389/fncel.2012.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Whole cell recordings (WCRs) are frequently used to study neuronal properties, but may be problematic when studying neuromodulatory responses, due to dialysis of the cell's cytoplasm. Perforated patch recordings (PPR) avoid cellular dialysis and might reveal additional modulatory effects that are lost during WCR. We have previously used WCR to characterize the responses of the V2a class of Chx10-expressing neurons to serotonin (5-HT) in the neonatal mouse spinal cord (Zhong et al., 2010). Here we directly compare multiple aspects of the responses to 5-HT using WCR and PPR in Chx10-eCFP neurons in spinal cord slices from 2 to 4 day old mice. Cellular properties recorded in PPR and WCR were similar, but high-quality PP recordings could be maintained for significantly longer. Both WCR and PPR cells could respond to 5-HT, and although neurons recorded by PPR showed a significantly greater response to 5-HT in some parameters, the absolute differences between PPR and WCR were small. We conclude that WCR is an acceptable recording method for short-term recordings of neuromodulatory effects, but the less invasive PPR is preferable for detailed analyses and is necessary for stable recordings lasting an hour or more.
Collapse
Affiliation(s)
- Shelby Dietz
- Department of Neurobiology and Behavior, Cornell University Ithaca, NY, USA
| | | | | |
Collapse
|
16
|
Abbinanti MD, Zhong G, Harris-Warrick RM. Postnatal emergence of serotonin-induced plateau potentials in commissural interneurons of the mouse spinal cord. J Neurophysiol 2012; 108:2191-202. [PMID: 22832564 PMCID: PMC3545016 DOI: 10.1152/jn.00336.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/18/2012] [Indexed: 02/07/2023] Open
Abstract
Most studies of the mouse hindlimb locomotor network have used neonatal (P0-5) mice. In this study, we examine the postnatal development of intrinsic properties and serotonergic modulation of intersegmental commissural interneurons (CINs) from the neonatal period (P0-3) to the time the animals bear weight (P8-10) and begin to show adult walking (P14-16). CINs show an increase in excitability with age, associated with a decrease in action potential halfwidth and appearance of a fast component to the afterhyperpolarization at P14-16. Serotonin (5-HT) depolarizes and increases the excitability of most CINs at all ages. The major developmental difference is that serotonin can induce plateau potential capability in P14-16 CINs, but not at younger ages. These plateau potentials are abolished by nifedipine, suggesting that they are mediated by an L-type calcium current, I(Ca(L)). Voltage-clamp analysis demonstrates that 5-HT increases a nifedipine-sensitive voltage-activated calcium current, I(Ca(V)), in P14-16 CINs but does not increase I(Ca(V)) in P8-10 CINs. These results, together with earlier work on 5-HT effects on neonatal CINs, suggest that 5-HT increases the excitability of CINs at all ages studied, but by opposite effects on calcium currents, decreasing N- and P/Q-type calcium currents and, indirectly, calcium-activated potassium current, at P0-3 but increasing I(Ca(L)) at P14-16.
Collapse
|