1
|
Santos Cuevas DC, Campos Ruiz RE, Collina DD, Tierra Criollo CJ. Effective brain connectivity related to non-painful thermal stimuli using EEG. Biomed Phys Eng Express 2024; 10:045044. [PMID: 38834037 DOI: 10.1088/2057-1976/ad53ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Understanding the brain response to thermal stimuli is crucial in the sensory experience. This study focuses on non-painful thermal stimuli, which are sensations induced by temperature changes without causing discomfort. These stimuli are transmitted to the central nervous system through specific nerve fibers and are processed in various regions of the brain, including the insular cortex, the prefrontal cortex, and anterior cingulate cortex. Despite the prevalence of studies on painful stimuli, non-painful thermal stimuli have been less explored. This research aims to bridge this gap by investigating brain functional connectivity during the perception of non-painful warm and cold stimuli using electroencephalography (EEG) and the partial directed coherence technique (PDC). Our results demonstrate a clear contrast in the direction of information flow between warm and cold stimuli, particularly in the theta and alpha frequency bands, mainly in frontal and temporal regions. The use of PDC highlights the complexity of brain connectivity during these stimuli and reinforces the existence of different pathways in the brain to process different types of non-painful warm and cold stimuli.
Collapse
Affiliation(s)
| | | | - Denny Daniel Collina
- Department of Electronics and Biomedical Engineering, Federal Center for Technological Education of Minas Gerais, Belo Horizonte, 30510-000, Brazil
| | | |
Collapse
|
2
|
Catrambone V, Candia‐Rivera D, Valenza G. Intracortical brain-heart interplay: An EEG model source study of sympathovagal changes. Hum Brain Mapp 2024; 45:e26677. [PMID: 38656080 PMCID: PMC11041380 DOI: 10.1002/hbm.26677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/18/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024] Open
Abstract
The interplay between cerebral and cardiovascular activity, known as the functional brain-heart interplay (BHI), and its temporal dynamics, have been linked to a plethora of physiological and pathological processes. Various computational models of the brain-heart axis have been proposed to estimate BHI non-invasively by taking advantage of the time resolution offered by electroencephalograph (EEG) signals. However, investigations into the specific intracortical sources responsible for this interplay have been limited, which significantly hampers existing BHI studies. This study proposes an analytical modeling framework for estimating the BHI at the source-brain level. This analysis relies on the low-resolution electromagnetic tomography sources localization from scalp electrophysiological recordings. BHI is then quantified as the functional correlation between the intracortical sources and cardiovascular dynamics. Using this approach, we aimed to evaluate the reliability of BHI estimates derived from source-localized EEG signals as compared with prior findings from neuroimaging methods. The proposed approach is validated using an experimental dataset gathered from 32 healthy individuals who underwent standard sympathovagal elicitation using a cold pressor test. Additional resting state data from 34 healthy individuals has been analysed to assess robustness and reproducibility of the methodology. Experimental results not only confirmed previous findings on activation of brain structures affecting cardiac dynamics (e.g., insula, amygdala, hippocampus, and anterior and mid-cingulate cortices) but also provided insights into the anatomical bases of brain-heart axis. In particular, we show that the bidirectional activity of electrophysiological pathways of functional brain-heart communication increases during cold pressure with respect to resting state, mainly targeting neural oscillations in theδ $$ \delta $$ ,β $$ \beta $$ , andγ $$ \gamma $$ bands. The proposed approach offers new perspectives for the investigation of functional BHI that could also shed light on various pathophysiological conditions.
Collapse
Affiliation(s)
- Vincenzo Catrambone
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| | - Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP‐HP, Hôpital Pitié‐SalpêtriŕeParisFrance
| | - Gaetano Valenza
- Neurocardiovascular Intelligence Laboratory & Department of Information Engineering & Bioengineering and Robotics Research Center, E. Piaggio, School of EngineeringUniversity of PisaPisaItaly
| |
Collapse
|
3
|
Velasco E, Zaforas M, Acosta MC, Gallar J, Aguilar J. Ocular surface information seen from the somatosensory thalamus and cortex. J Physiol 2024; 602:1405-1426. [PMID: 38457332 DOI: 10.1113/jp285008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Neuroscience in Physiotherapy (NiP), Independent Research Group, Elche, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Marta Zaforas
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - M Carmen Acosta
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
| | - Juana Gallar
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- The European University of Brain and Technology, San Juan de Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, San Juan de Alicante, Spain
| | - Juan Aguilar
- Laboratorio de Neurofisiología Experimental, Unidad de Investigación, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
- Grupo de Investigación Multidisciplinar en Cuidados, Facultad de Fisioterapia y Enfermería, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
4
|
Graeme-Drury TJ, Worthen SF, Maden M, Raphael JH, Khan S, Vreugdenhil M, Duarte RV. Contact Heat in Magnetoencephalography: A Systematic Review. Can J Neurol Sci 2024; 51:179-186. [PMID: 36803520 DOI: 10.1017/cjn.2023.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Contact heat is commonly used in experimental research to evoke brain activity, most frequently acquired with electroencephalography (EEG). Although magnetoencephalography (MEG) improves spatial resolution, using some contact heat stimulators with MEG can present methodological challenges. This systematic review assesses studies that utilise contact heat in MEG, their findings and possible directions for further research. METHODS Eight electronic databases were searched for relevant studies, in addition to the selected papers' reference lists, citations and ConnectedPapers maps. Best practice recommendations for systematic reviews were followed. Papers met inclusion criteria if they used MEG to record brain activity in conjunction with contact heat, regardless of stimulator equipment or paradigm. RESULTS Of 646 search results, seven studies met the inclusion criteria. Studies demonstrated effective electromagnetic artefact removal from MEG data, the ability to elicit affective anticipation and differences in deep brain stimulation responders. We identify contact heat stimulus parameters that should be reported in publications to ensure comparisons between data outcomes are consistent. CONCLUSIONS Contact heat is a viable alternative to laser or electrical stimulation in experimental research, and methods exist to successfully mitigate any electromagnetic noise generated by PATHWAY CHEPS equipment - though there is a dearth of literature exploring the post-stimulus time window.
Collapse
Affiliation(s)
| | - Siân F Worthen
- Aston Institute of Health and Neurodevelopment, Birmingham, UK
| | - Michelle Maden
- Liverpool Reviews and Implementation Group; University of Liverpool, Liverpool, UK
| | - Jon H Raphael
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | - Salim Khan
- School of Health Sciences, Birmingham City University, Birmingham, UK
| | | | - Rui V Duarte
- Liverpool Reviews and Implementation Group; University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Yano H, Takiguchi T, Nakagawa S. Magnetic cortical oscillations associated with subjective auditory coolness during paired comparison of time-varying HVAC sounds. Neuroreport 2024; 35:1-8. [PMID: 37942702 DOI: 10.1097/wnr.0000000000001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The impressions of heating, ventilation, and air conditioning (HVAC) sounds are important for the comfort people experience in their living spaces. Revealing neural substrates of the impressions induced by HVAC sounds can help to develop neurophysiological indices of the comfort of HVAC sounds. There have been numerous studies on the brain activities associated with the pleasantness of sounds, but few on the brain activities associated with the thermal impressions of HVAC sounds. Seven time-varying HVAC sounds were synthesized as stimuli using amplitude modulation. Six participants took part in subjective evaluation tests and MEG measurements. Subjective coolness of the HVAC sounds was measured using the paired comparison method. Magnetoencephalographic (MEG) measurements were carried out while participants listened to and compared the time-varying HVAC sounds. Time-frequency analysis and cluster-based analysis were performed on the MEG data. The subjective evaluation tests showed that the subjective coolness of the amplitude-modulated HVAC sounds was affected by the modulation frequency, and that there was individual difference in subjective coolness. A cluster-based analysis of the MEG data revealed that the brain activities of two participants significantly differed when they listened to cooler or less cool HVAC sounds. The frontal low-theta (4-5 Hz) and the temporal alpha (8-13 Hz) activities were observed. The frontal low-theta and the temporal alpha activities may be associated with the coolness of HVAC sound. This result suggests that the comfort level of HVAC sound can be evaluated and individually designed using neurophysiological measurements.
Collapse
Affiliation(s)
- Hajime Yano
- Graduate School of System Informatics, Kobe University, Kobe
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda
| | | | - Seiji Nakagawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Brændholt M, Kluger DS, Varga S, Heck DH, Gross J, Allen MG. Breathing in waves: Understanding respiratory-brain coupling as a gradient of predictive oscillations. Neurosci Biobehav Rev 2023; 152:105262. [PMID: 37271298 DOI: 10.1016/j.neubiorev.2023.105262] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Breathing plays a crucial role in shaping perceptual and cognitive processes by regulating the strength and synchronisation of neural oscillations. Numerous studies have demonstrated that respiratory rhythms govern a wide range of behavioural effects across cognitive, affective, and perceptual domains. Additionally, respiratory-modulated brain oscillations have been observed in various mammalian models and across diverse frequency spectra. However, a comprehensive framework to elucidate these disparate phenomena remains elusive. In this review, we synthesise existing findings to propose a neural gradient of respiratory-modulated brain oscillations and examine recent computational models of neural oscillations to map this gradient onto a hierarchical cascade of precision-weighted prediction errors. By deciphering the computational mechanisms underlying respiratory control of these processes, we can potentially uncover new pathways for understanding the link between respiratory-brain coupling and psychiatric disorders.
Collapse
Affiliation(s)
- Malthe Brændholt
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany.
| | - Somogy Varga
- School of Culture and Society, Aarhus University, Denmark; The Centre for Philosophy of Epidemiology, Medicine and Public Health, University of Johannesburg, South Africa
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | - Micah G Allen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; Cambridge Psychiatry, University of Cambridge, UK
| |
Collapse
|
7
|
Chang P, Fabrizi L, Fitzgerald M. Early Life Pain Experience Changes Adult Functional Pain Connectivity in the Rat Somatosensory and the Medial Prefrontal Cortex. J Neurosci 2022; 42:8284-8296. [PMID: 36192150 PMCID: PMC9653276 DOI: 10.1523/jneurosci.0416-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early life pain (ELP) experience alters adult pain behavior and increases injury-induced pain hypersensitivity, but the effect of ELP on adult functional brain connectivity is not known. We have performed continuous local field potential (LFP) recording in the awake adult male rats to test the effect of ELP on functional cortical connectivity related to pain behavior. Primary somatosensory cortex (S1) and medial prefrontal cortex (mPFC) LFPs evoked by mechanical hindpaw stimulation were recorded simultaneously with pain reflex behavior for 10 d after adult incision injury. We show that, after adult injury, sensory evoked S1 LFP δ and γ energy and S1 LFP δ/γ frequency coupling are significantly increased in ELP rats compared with controls. Adult injury also induces increases in S1-mPFC functional connectivity, but this is significantly prolonged in ELP rats, lasting 4 d compared with 1 d in controls. Importantly, the increases in LFP energy and connectivity in ELP rats were directly correlated with increased behavioral pain hypersensitivity. Thus, ELP alters adult brain functional connectivity, both within and between cortical areas involved in sensory and affective dimensions of pain. The results reveal altered brain connectivity as a mechanism underlying the effects of ELP on adult pain perception.SIGNIFICANCE STATEMENT Pain and stress in early life has a lasting impact on pain behavior and may increase vulnerability to chronic pain in adults. Here, we record pain-related cortical activity and simultaneous pain behavior in awake adult male rats previously exposed to pain in early life. We show that functional connectivity within and between the somatosensory cortex and the medial prefrontal cortex (mPFC) is increased in these rats and that these increases are correlated with their behavioral pain hypersensitivity. The results reveal that early life pain (ELP) alters adult brain connectivity, which may explain the impact of childhood pain on adult chronic pain vulnerability.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Candia-Rivera D, Catrambone V, Barbieri R, Valenza G. A new framework for modeling the bidirectional interplay between brain oscillations and cardiac sympathovagal activity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1957-1960. [PMID: 36083927 DOI: 10.1109/embc48229.2022.9871169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of functional brain-heart interplay (BHI) aims to describe the dynamical interactions between central and peripheral autonomic nervous systems. Here, we introduce the Sympathovagal Synthetic Data Generation Model, which constitutes a new computational framework for the assessment of functional BHI. The model estimates the bidirectional interplay with novel quantifiers of cardiac sympathovagal activity gathered from Laguerre expansions of RR series (from the ECG), as an alternative to the classical spectral analysis. The main features of the model are time-varying coupling coefficients linking Electroencephalography (EEG) oscillations and cardiac sympathetic or parasympathetic activity, for either ascending or descending direction of the information flow. In this proof-of-concept study, functional BHI is quantified in the direction from-heart-to-brain, on data from 16 human volunteers undergoing a cold-pressor test. Results show that thermal stress induces heart-to-brain functional interplay originating from sympathetic and parasympathetic activities and sustaining EEG oscillations mainly in the δ and γ bands. The proposed computational framework could provide a viable tool for the functional assessment of the causal interplay between cortical and cardiac sympathovagal dynamics.
Collapse
|
9
|
Fermin ASR, Friston K, Yamawaki S. An insula hierarchical network architecture for active interoceptive inference. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220226. [PMID: 35774133 PMCID: PMC9240682 DOI: 10.1098/rsos.220226] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 05/05/2023]
Abstract
In the brain, the insular cortex receives a vast amount of interoceptive information, ascending through deep brain structures, from multiple visceral organs. The unique hierarchical and modular architecture of the insula suggests specialization for processing interoceptive afferents. Yet, the biological significance of the insula's neuroanatomical architecture, in relation to deep brain structures, remains obscure. In this opinion piece, we propose the Insula Hierarchical Modular Adaptive Interoception Control (IMAC) model to suggest that insula modules (granular, dysgranular and agranular), forming parallel networks with the prefrontal cortex and striatum, are specialized to form higher order interoceptive representations. These interoceptive representations are recruited in a context-dependent manner to support habitual, model-based and exploratory control of visceral organs and physiological processes. We discuss how insula interoceptive representations may give rise to conscious feelings that best explain lower order deep brain interoceptive representations, and how the insula may serve to defend the body and mind against pathological depression.
Collapse
Affiliation(s)
- Alan S. R. Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, England
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Huang Y, Jiao J, Hu J, Hsing C, Lai Z, Yang Y, Li Z, Hu X. Electroencephalographic Measurement on Post-stroke Sensory Deficiency in Response to Non-painful Cold Stimulation. Front Aging Neurosci 2022; 14:866272. [PMID: 35645770 PMCID: PMC9131028 DOI: 10.3389/fnagi.2022.866272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Reduced elementary somatosensation is common after stroke. However, the measurement of elementary sensation is frequently overlooked in traditional clinical assessments, and has not been evaluated objectively at the cortical level. This study designed a new configuration for the measurement of post-stroke elementary thermal sensation by non-painful cold stimulation (NPCS). The post-stroke cortical responses were then investigated during elementary NPCS on sensory deficiency via electroencephalography (EEG) when compared with unimpaired persons. Method Twelve individuals with chronic stroke and fifteen unimpaired controls were recruited. A 64-channel EEG system was used to investigate the post-stroke cortical responses objectively during the NPCS. A subjective questionnaire of cold sensory intensity was also administered via a numeric visual analog scale (VAS). Three water samples with different temperatures (i.e., 25, 10, and 0°C) were applied to the skin surface of the ventral forearm for 3 s via glass beaker, with a randomized sequence on either the left or right forearm of a participant. EEG relative spectral power (RSP) and topography were used to evaluate the neural responses toward NPCS with respect to the independent factors of stimulation side and temperature. Results For unimpaired controls, NPCS initiated significant RSP variations, mainly located in the theta band with the highest discriminative resolution on the different temperatures (P < 0.001). For stroke participants, the distribution of significant RSP spread across all EEG frequency bands and the temperature discrimination was lower than that observed in unimpaired participants (P < 0.05). EEG topography showed that the NPCS could activate extensive and bilateral sensory cortical areas after stroke. Significant group differences on RSP intensities were obtained in each EEG band (P < 0.05). Meanwhile, significant asymmetry cortical responses in RSP toward different upper limbs were observed during the NPCS in both unimpaired controls and participants with stroke (P < 0.05). No difference was found between the groups in the VAS ratings of the different temperatures (P > 0.05). Conclusion The post-stroke cortical responses during NPCS on sensory deficiency were characterized by the wide distribution of representative RSP bands, lowered resolution toward different temperatures, and extensive activated sensory cortical areas.
Collapse
Affiliation(s)
- Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jiao Jiao
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Junyan Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chihchia Hsing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhangqi Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Yang Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Centre for Rehabilitation Technical Aids Beijing, Beijing, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Candia-Rivera D, Catrambone V, Barbieri R, Valenza G. Functional assessment of bidirectional cortical and peripheral neural control on heartbeat dynamics: a brain-heart study on thermal stress. Neuroimage 2022; 251:119023. [PMID: 35217203 DOI: 10.1016/j.neuroimage.2022.119023] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
The study of functional brain-heart interplay (BHI) from non-invasive recordings has gained much interest in recent years. Previous endeavors aimed at understanding how the two dynamical systems exchange information, providing novel holistic biomarkers and important insights on essential cognitive aspects and neural system functioning. However, the interplay between cardiac sympathovagal and cortical oscillations still has much room for further investigation. In this study, we introduce a new computational framework for a functional BHI assessment, namely the Sympatho-Vagal Synthetic Data Generation Model, combining cortical (electroencephalography, EEG) and peripheral (cardiac sympathovagal) neural dynamics. The causal, bidirectional neural control on heartbeat dynamics was quantified on data gathered from 26 human volunteers undergoing a cold-pressor test. Results show that thermal stress induces heart-to-brain functional interplay sustained by EEG oscillations in the delta and gamma bands, primarily originating from sympathetic activity, whereas brain-to-heart interplay originates over central brain regions through sympathovagal control. The proposed methodology provides a viable computational tool for the functional assessment of the causal interplay between cortical and cardiac neural control.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy.
| | - Vincenzo Catrambone
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| | - Riccardo Barbieri
- Department of Electronics, Informatics, and Bioengineering, Politecnico di Milano, 20133, Milano, Italy
| | - Gaetano Valenza
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
12
|
Longitudinal qEEG changes correlate with clinical outcomes in patients with somatic symptom disorder. J Psychosom Res 2021; 151:110637. [PMID: 34638015 DOI: 10.1016/j.jpsychores.2021.110637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The quantitative electroencephalography (qEEG) of patients with somatic symptom disorder (SSD) was not yet thoroughly studied. This study aimed to investigate qEEG of SSD patients compared with those of normal controls (NCs), and changes therein after treatment. METHODS SSD patients currently without treatment and age- and sex-matched NCs were recruited. Spectral analysis of 64-channel EEG recording was performed and somatization, anxiety, and depression were evaluated via self-rating scales at baseline. After six months of treatment as usual, SSD patients were longitudinally followed up for assessments. RESULTS At baseline, the SSD group (n = 44) had higher alpha (p = 0.047) and lower beta 2 (p = 0.027) and gamma power (p = 0.001) compared with NCs (n = 29). After 6-month treatment, SSD patients showed improvement in symptoms, as well as increased beta 1 (p = 0.032), beta 2 (p = 0.012), and gamma power (p = 0.009) compared with baseline. A significant correlation was observed between the change in somatization score and temporal gamma power (r = -0.424, p = 0.031), and between the change in anxiety score and beta 2 power in the frontal (r = -0.420, p = 0.033) and central (r = -0.484, p = 0.012) regions. CONCLUSIONS EEG findings in this study may provide neurophysiological features of SSD. The alpha enhancement and reduced fast wave activity may reflect attentional dysfunction in patients with SSD. Decreased fast wave activity is reversible and may serve as a state marker of SSD.
Collapse
|
13
|
Oono Y, Kubo H, Takagi S, Wang K, Arendt-Nielsen L, Kohase H. Painful cold-heat segmental pulse stimulation provokes the thermal pain illusion. Somatosens Mot Res 2021; 39:1-9. [PMID: 34674603 DOI: 10.1080/08990220.2021.1986382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE/AIM The thermal grill illusion is a paradoxical pain sensation induced by simultaneous exposure to spatially separated, non-painful, cold, and warm stimuli. This study aimed to determine whether paradoxical sensations are also evoked by simultaneous exposure to painful cold-heat stimuli and whether the mechanism involves modulation by segmental and extra-segmental spatial integration. MATERIALS AND METHODS Sensory perceptions were triggered by simultaneous application of painful cold-heat pulse stimuli using a developed bedside tool equipped with quantitative thermal stimulator devices. Four conditions were investigated: (1) one device placed on the forearm (condition 1, control); (2) two devices placed on the forearm (condition 2, ipsilateral segmental integration); (3) two devices placed on the forearm and ipsilateral thigh (condition 3, extra-segmental integration); and (4) two devices placed bilaterally on the forearms (condition 4, contralateral segmental integration). The evoked perceptions of paradoxical heat sensation and the loss of cold or heat sensation were evaluated. RESULTS The aforementioned phenomena were experienced by 11(35.4%), 3(9.7%), 3(9.7%), and 0(0.0%) subjects for conditions 1-4, respectively. Fisher's exact test revealed significant differences (p=.001) among the four conditions. However, Bonferroni post hoc analysis revealed significant differences only between conditions 1 and 4 (p=.005). CONCLUSIONS Simultaneous painful cold-heat pulse stimulation can induce paradoxical sensations similar to those shown for non-painful thermal (cold and heat) stimuli. They were predominantly evoked by ipsilateral integration. Paradoxical sensations have diagnostic value, and quantifying them using a simple bedside tool may be useful in the clinical setting.
Collapse
Affiliation(s)
- Yuka Oono
- Department of Diagnostic and Therapeutic Sciences, Division of Dental Anesthesiology, Meikai University School of Dentistry, Sakado, Japan
| | - Hidenori Kubo
- Department of Diagnostic and Therapeutic Sciences, Division of Dental Anesthesiology, Meikai University School of Dentistry, Sakado, Japan
| | - Saori Takagi
- Department of Diagnostic and Therapeutic Sciences, Division of Dental Anesthesiology, Meikai University School of Dentistry, Sakado, Japan
| | - Kelun Wang
- Department of Health Science and Technology, School of Medicine, Center for Neuroplasticity and Pain, SMI, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, School of Medicine, Center for Neuroplasticity and Pain, SMI, Aalborg University, Aalborg, Denmark
| | - Hikaru Kohase
- Department of Diagnostic and Therapeutic Sciences, Division of Dental Anesthesiology, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
14
|
Teixeira PEP, Pacheco-Barrios K, Uygur-Kucukseymen E, Machado RM, Balbuena-Pareja A, Giannoni-Luza S, Luna-Cuadros MA, Cardenas-Rojas A, Gonzalez-Mego P, Mejia-Pando PF, Wagner T, Dipietro L, Fregni F. Electroencephalography Signatures for Conditioned Pain Modulation and Pain Perception in Non-Specific Chronic Low Back Pain-an Exploratory Study. PAIN MEDICINE 2021; 23:558-570. [PMID: 34633449 DOI: 10.1093/pm/pnab293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022]
Abstract
Conditioned pain modulation (CPM) can discriminate between healthy and chronic pain patients. However, its relationship with neurophysiological pain mechanisms is poorly understood. Brain oscillations measured by electroencephalography (EEG) might help gain insight into this complex relationship. OBJECTIVE To investigate the relationship between CPM response and self-reported pain intensity in non-specific chronic low back pain (NSCLBP) and explore respective EEG signatures associated to these mechanisms. DESIGN Cross-sectional analysis. Participants: Thirty NSCLBP patients participated. METHODS Self-reported low back pain, questionnaires, mood scales, CPM (static and dynamic quantitative sensory tests), and resting surface EEG data were collected and analyzed. Linear regression models were used for statistical analysis. RESULTS CPM was not significantly correlated with self-reported pain intensity scores. Relative power of EEG in the beta and high beta bands as recorded from the frontal, central, and parietal cortical areas were significantly associated with CPM. EEG relative power at delta and theta bands as recorded from the central area were significantly correlated with self-reported pain intensity scores while controlling for self-reported depression. CONCLUSIONS Faster EEG frequencies recorded from pain perception areas may provide a signature of a potential cortical compensation caused by chronic pain states. Slower EEG frequencies may have a critical role in abnormal pain processing.
Collapse
Affiliation(s)
- Paulo E P Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,MGH Institute of Health Professions, Boston, MA, USA.,Instituto Wilson Mello, Campinas, SP, Brazil
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, . Lima, Peru
| | - Elif Uygur-Kucukseymen
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Roberto Mathias Machado
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Ana Balbuena-Pareja
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Stefano Giannoni-Luza
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Maria Alejandra Luna-Cuadros
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Paola Gonzalez-Mego
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Piero F Mejia-Pando
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Timothy Wagner
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA.,Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Laura Dipietro
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Highland Instruments, Inc., Cambridge, MA, USA
| |
Collapse
|
15
|
Tamura K, Matsumoto S, Tseng YH, Kobayashi T, Miwa J, Miyazawa K, Hirao T, Matsumoto S, Hiramatsu S, Otake H, Okamoto T. Physiological and subjective comfort evaluation under different airflow directions in a cooling environment. PLoS One 2021; 16:e0249235. [PMID: 33852598 PMCID: PMC8046250 DOI: 10.1371/journal.pone.0249235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/04/2022] Open
Abstract
Indoor comfort is influenced by airflow direction, but subjective evaluations can differ. This study evaluates the airflow comfort with subjective assessments and physiological measurements, including skin temperature, electroencephalograms, and electrocardiograms. Nineteen participants entered a test room at 20°C after staying in a room at 32°C for acclimation. They were exposed to indirect and direct airflow conditions to their faces and performed four tasks under each condition: resting, counting to 10 s following time alerts, counting to 10 s in mind, and mental calculation. Subjective assessments showed relatively higher thermal sensation and pleasantness under indirect airflow. The psychological time calculated from counting behaviors was longer under indirect airflow, indicating suppression of negative emotions. The face temperatures significantly declined during experiments under direct airflow. The beta and gamma bands of electroencephalograms were inhibited under the indirect condition, and these amplitudes were negatively correlated with pleasant feelings. Electrocardiogram parameters indicated that sympathetic nervous activity was predominant during counting, following alerts and mental calculation in indirect airflow. This study supports the comfort of indirect airflow based on reliable evidence.
Collapse
Affiliation(s)
- Kaori Tamura
- Faculty of Arts and Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Sayaka Matsumoto
- Faculty of Arts and Science, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Yu Hsuan Tseng
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Takayuki Kobayashi
- Research and Innovation Center, Mitsubishi Heavy Industries LTD., Nagoya, Aichi, Japan
| | - Jun’ichi Miwa
- Research and Innovation Center, Mitsubishi Heavy Industries LTD., Nagoya, Aichi, Japan
| | - Ken’ichi Miyazawa
- Mitsubishi Heavy Industries Thermal Systems LTD., Kiyosu, Aichi, Japan
| | - Toyotaka Hirao
- Mitsubishi Heavy Industries Thermal Systems LTD., Kiyosu, Aichi, Japan
| | | | - Seiji Hiramatsu
- Mitsubishi Heavy Industries Thermal Systems LTD., Kiyosu, Aichi, Japan
| | - Hiroyuki Otake
- Mitsubishi Heavy Industries Thermal Systems LTD., Kiyosu, Aichi, Japan
| | - Tsuyoshi Okamoto
- Faculty of Arts and Science, Kyushu University, Nishi-ku, Fukuoka, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
16
|
Personalized Biometrics of Physical Pain Agree with Psychophysics by Participants with Sensory over Responsivity. J Pers Med 2021; 11:jpm11020093. [PMID: 33540769 PMCID: PMC7913075 DOI: 10.3390/jpm11020093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
The study of pain requires a balance between subjective methods that rely on self-reports and complementary objective biometrics that ascertain physical signals associated with subjective accounts. There are at present no objective scales that enable the personalized assessment of pain, as most work involving electrophysiology rely on summary statistics from a priori theoretical population assumptions. Along these lines, recent work has provided evidence of differences in pain sensations between participants with Sensory Over Responsivity (SOR) and controls. While these analyses are useful to understand pain across groups, there remains a need to quantify individual differences more precisely in a personalized manner. Here we offer new methods to characterize pain using the moment-by-moment standardized fluctuations in EEG brain activity centrally reflecting the person’s experiencing temperature-based stimulation at the periphery. This type of gross data is often disregarded as noise, yet here we show its utility to characterize the lingering sensation of discomfort raising to the level of pain, individually, for each participant. We show fundamental differences between the SOR group in relation to controls and provide an objective account of pain congruent with the subjective self-reported data. This offers the potential to build a standardized scale useful to profile pain levels in a personalized manner across the general population.
Collapse
|
17
|
VEGF Modulates the Neural Dynamics of Hippocampal Subregions in Chronic Global Cerebral Ischemia Rats. Neuromolecular Med 2021; 23:416-427. [PMID: 33398803 DOI: 10.1007/s12017-020-08642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Theta and gamma rhythms in hippocampus are important to cognitive performance. The cognitive impairments following cerebral ischemia is linked with the dysfunction of theta and gamma oscillations. As the primary mechanism for learning and memory, synaptic plasticity is in connection with these neural oscillations. Although vascular endothelial growth factor (VEGF) is thought to protect synaptic function in the ischemia rats to relieve cognitive impairment, little has been done on its effect of neural dynamics with this process. The present study investigated whether the alternation of neural oscillations in the hippocampus of ischemia rats is one of the potential neuroprotective mechanisms of VEGF. Rats were treated with the intranasal administration of VEGF at 72 h following chronic global cerebral ischemia procedure. Then local field potentials (LFPs) in hippocampal CA1 and CA3 regions were recorded and analyzed. Our results showed that VEGF can improve the power of theta and gamma rhythms in CA1 region after ischemia. Chronic global cerebral ischemia reduced the theta-gamma phase-amplitude coupling (PAC) not only within CA1 area but also in the pathway from CA3 to CA1, while VEGF alleviated the decreased coupling strength. Despite these notable differences, there were no obvious changes in the PAC within CA3 region. Surprisingly, the ischemia state did not affect the phase-phase interaction of hippocampus. In conclusion, our findings demonstrated that VEGF enhanced the theta-gamma PAC strength of CA3-CA1 pathway in ischemia rats, which may futher improve the information transmission within the hippocampus. These results illustrated the potential electrophysiologic mechanism of VEGF on cognitive improvement.
Collapse
|
18
|
Liberati G, Mulders D, Algoet M, van den Broeke EN, Santos SF, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Insular responses to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG. Sci Rep 2020; 10:22319. [PMID: 33339884 PMCID: PMC7749115 DOI: 10.1038/s41598-020-79371-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Brief thermo-nociceptive stimuli elicit low-frequency phase-locked local field potentials (LFPs) and high-frequency gamma-band oscillations (GBOs) in the human insula. Although neither of these responses constitute a direct correlate of pain perception, previous findings suggest that insular GBOs may be strongly related to the activation of the spinothalamic system and/or to the processing of thermal information. To disentangle these different features of the stimulation, we compared the insular responses to brief painful thermonociceptive stimuli, non-painful cool stimuli, mechano-nociceptive stimuli, and innocuous vibrotactile stimuli, recorded using intracerebral electroencephalograpic activity in 7 epileptic patients (9 depth electrodes, 58 insular contacts). All four types of stimuli elicited consistent low-frequency phase-locked LFPs throughout the insula, possibly reflecting supramodal activity. The latencies of thermo-nociceptive and cool low-frequency phase-locked LFPs were shorter in the posterior insula compared to the anterior insula, suggesting a similar processing of thermal input initiating in the posterior insula, regardless of whether the input produces pain and regardless of thermal modality. In contrast, only thermo-nociceptive stimuli elicited an enhancement of insular GBOs, suggesting that these activities are not simply related to the activation of the spinothalamic system or to the conveyance of thermal information.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Dounia Mulders
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Hao W, Liu S, Liu H, Mu X, Chen K, Xin Q, Zhang XD. In Vivo Neuroelectrophysiological Monitoring of Atomically Precise Au 25 Clusters at an Ultrahigh Injected Dose. ACS OMEGA 2020; 5:24537-24545. [PMID: 33015471 PMCID: PMC7528291 DOI: 10.1021/acsomega.0c03005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
Atomically precise Au25(SG)18 clusters have shown great promise in near-infrared II cerebrovascular imaging, X-ray imaging, and cancer radiotherapy due to their high atomic number, unique molecular-like electronic structure, and renal clearable properties. Therefore, it is important to study the in vivo toxicity of Au25 clusters. Unfortunately, previous toxicological investigations focused on low injected doses (<100 mg kg-1) and routine research methods, such as blood chemistry and biochemistry, which cannot reflect neurotoxicity or tiny changes in neural activity. In this work, in vivo neuroelectrophysiology of Au25 clusters at ultrahigh injected doses (200, 300, and 500 mg kg-1) was investigated. Local field potential showed that the Au25-treated mice showed a spike in delta rhythm and moved to lower frequency over time. The power spectrum showed a 38.3% reduction in the peak value at 10 h post-injection of Au25 clusters compared with 3 h post-injection, which gradually became close to the normal level, indicating no permanent damage to the nervous system. Moreover, no significant structural changes were found in both neurons and glial cells at the histological level. These results of in vivo neuroelectrophysiology will encourage scientists to make more exciting discoveries on nervous system diseases by employing Au25 clusters even at ultrahigh injected doses.
Collapse
Affiliation(s)
- Wenting Hao
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Haile Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qi Xin
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Pathology, Tianjin Third Central Hospital, Tianjin Key Laboratory
of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin 300170, China
| | - Xiao-Dong Zhang
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
20
|
Archibald J, MacMillan EL, Enzler A, Jutzeler CR, Schweinhardt P, Kramer JL. Excitatory and inhibitory responses in the brain to experimental pain: A systematic review of MR spectroscopy studies. Neuroimage 2020; 215:116794. [DOI: 10.1016/j.neuroimage.2020.116794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023] Open
|
21
|
Fardo F, Beck B, Allen M, Finnerup NB. Beyond labeled lines: A population coding account of the thermal grill illusion. Neurosci Biobehav Rev 2020; 108:472-479. [DOI: 10.1016/j.neubiorev.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
22
|
|
23
|
Hüllemann P, Nerdal A, Sendel M, Dodurgali D, Forstenpointner J, Binder A, Baron R. Cold‐evoked potentials versus contact heat‐evoked potentials—Methodological considerations and clinical application. Eur J Pain 2019; 23:1209-1220. [DOI: 10.1002/ejp.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Annika Nerdal
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Dilara Dodurgali
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| |
Collapse
|
24
|
Rosner J, Rinert J, Ernst M, Curt A, Hubli M. Cold evoked potentials: Acquisition from cervical dermatomes. Neurophysiol Clin 2019; 49:49-57. [DOI: 10.1016/j.neucli.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
|
25
|
Liberati G, Klöcker A, Algoet M, Mulders D, Maia Safronova M, Ferrao Santos S, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Gamma-Band Oscillations Preferential for Nociception can be Recorded in the Human Insula. Cereb Cortex 2018; 28:3650-3664. [PMID: 29028955 PMCID: PMC6366557 DOI: 10.1093/cercor/bhx237] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Indexed: 12/17/2022] Open
Abstract
Transient nociceptive stimuli elicit robust phase-locked local field potentials (LFPs) in the human insula. However, these responses are not preferential for nociception, as they are also elicited by transient non-nociceptive vibrotactile, auditory, and visual stimuli. Here, we investigated whether another feature of insular activity, namely gamma-band oscillations (GBOs), is preferentially observed in response to nociceptive stimuli. Although nociception-evoked GBOs have never been explored in the insula, previous scalp electroencephalography and magnetoencephalography studies suggest that nociceptive stimuli elicit GBOs in other areas such as the primary somatosensory and prefrontal cortices, and that this activity could be closely related to pain perception. Furthermore, tracing studies showed that the insula is a primary target of spinothalamic input. Using depth electrodes implanted in 9 patients investigated for epilepsy, we acquired insular responses to brief thermonociceptive stimuli and similarly arousing non-nociceptive vibrotactile, auditory, and visual stimuli (59 insular sites). As compared with non-nociceptive stimuli, nociceptive stimuli elicited a markedly stronger enhancement of GBOs (150-300 ms poststimulus) at all insular sites, suggesting that this feature of insular activity is preferential for thermonociception. Although this activity was also present in temporal and frontal regions, its magnitude was significantly greater in the insula as compared with these other regions.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Anne Klöcker
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Dounia Mulders
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| | - Marta Maia Safronova
- Department of Radiology, Neuroradiology Clinic, Erasme Hospital,
1070 Brussels, Belgium
| | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain,
1200 Brussels, Belgium
| |
Collapse
|
26
|
Fardo F, Finnerup NB, Haggard P. Organization of the Thermal Grill Illusion by Spinal Segments. Ann Neurol 2018; 84:463-472. [PMID: 30063258 PMCID: PMC6175302 DOI: 10.1002/ana.25307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Objective A common symptom of neuropathy is the misperception of heat and pain from cold stimuli. Similar cold allodynic sensations can be experimentally induced using the thermal grill illusion (TGI) in humans. It is currently unclear whether this interaction between thermosensory and nociceptive signals depends on spinal or supraspinal integration mechanisms. To address this issue, we developed a noninvasive protocol to assess thermosensory integration across spinal segments. Methods We leveraged anatomical knowledge regarding dermatomes and their spinal projections to investigate potential contributions of spinal integration to the TGI. We simultaneously stimulated a pair of skin locations on the arm or lower back using 1 cold (∼20°C) and 1 warm thermode (∼40°C). The 2 thermodes were always separated by a fixed physical distance on the skin, but elicited neural activity across a varying number of spinal segments, depending on which dermatomal boundaries the 2 stimuli spanned. Results Participants consistently overestimated the actual cold temperature on the skin during combined cold and warm stimulation, confirming the TGI effect. The TGI was present when cold and warm stimuli were delivered within the same dermatome, or across dermatomes corresponding to adjacent spinal segments. In striking contrast, no TGI effect was found when cold and warm stimuli projected to nonadjacent spinal segments. Interpretation These results demonstrate that the strength of the illusion is modulated by the segmental distance between cold and warm afferents. This suggests that both temperature perception and thermal–nociceptive interactions depend upon low‐level convergence mechanisms operating within a single spinal segment and its immediate neighbors. Ann Neurol 2018;84:463–472
Collapse
Affiliation(s)
- Francesca Fardo
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Interacting Minds Center, Aarhus University, Aarhus, Denmark
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
27
|
Archibald J, Warner FM, Ortiz O, Todd M, Jutzeler CR. Recent advances in objectifying pain using neuroimaging techniques. J Neurophysiol 2018; 120:387-390. [PMID: 29766766 DOI: 10.1152/jn.00171.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pursuit of a physiological indicator of noxious stimulation is desirable as it has the potential to provide mechanistic information regarding acute pain and may ultimately improve pain management strategies. Currently, there are no specific neurophysiological markers of pain to evaluate treatments. Recent attempts to identify neural correlates of pain have focused on different neuroimaging modalities. The purpose of this review is to discuss common neuroimaging techniques and findings thus far.
Collapse
Affiliation(s)
- J Archibald
- ICORD, University of British Columbia , Vancouver, British Columbia , Canada.,Department of Kinesiology University of British Columbia , Vancouver, British Columbia , Canada
| | - F M Warner
- ICORD, University of British Columbia , Vancouver, British Columbia , Canada.,Department of Kinesiology University of British Columbia , Vancouver, British Columbia , Canada
| | - O Ortiz
- ICORD, University of British Columbia , Vancouver, British Columbia , Canada.,Department of Kinesiology University of British Columbia , Vancouver, British Columbia , Canada
| | - M Todd
- ICORD, University of British Columbia , Vancouver, British Columbia , Canada
| | - C R Jutzeler
- ICORD, University of British Columbia , Vancouver, British Columbia , Canada.,Department of Kinesiology University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
28
|
Bud Craig AD. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:317-338. [PMID: 30454598 DOI: 10.1016/b978-0-444-63912-7.00019-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A phylogenetically novel pathway that emerged with primate encephalization is described, which conveys high-fidelity cutaneous thermosensory activity in "labeled lines" to a somatotopic map in the dorsal posterior insular cortex. It originates in lamina I of the superficial dorsal horn and ascends by way of the lateral spinothalamic tract and a distinct region in posterolateral thalamus. It evolved from the homeostatic sensory activity that represents the physiologic (interoceptive) condition of the body and drives the central autonomic network, which underlies all affective feelings from the body. Accordingly, human discriminative thermal sensations are accompanied by thermally motivated behaviors and thermal feelings of comfort or discomfort (unless neutral), which evidence suggests are associated with activity in the insular, cingulate, and orbitofrontal cortices, respectively. Yet, the substrates for thermoregulatory behavior have not been established, and several strong candidates (including the hypothalamus and the bed nucleus of the stria terminalis) are discussed. Finally, the neural underpinnings for relationships between thermal affect and social feelings (warm-positive/cold-negative) are addressed, including the association of hyperthermia with clinical depression.
Collapse
Affiliation(s)
- Arthur D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
29
|
Thermosensory Perceptual Learning Is Associated with Structural Brain Changes in Parietal-Opercular (SII) Cortex. J Neurosci 2017; 37:9380-9388. [PMID: 28847806 PMCID: PMC5618259 DOI: 10.1523/jneurosci.1316-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/30/2017] [Accepted: 07/31/2017] [Indexed: 01/07/2023] Open
Abstract
The location of a sensory cortex for temperature perception remains a topic of substantial debate. Both the parietal–opercular (SII) and posterior insula have been consistently implicated in thermosensory processing, but neither region has yet been identified as the locus of fine temperature discrimination. Using a perceptual learning paradigm in male and female humans, we show improvement in discrimination accuracy for subdegree changes in both warmth and cool detection over 5 d of repetitive training. We found that increases in discriminative accuracy were specific to the temperature (cold or warm) being trained. Using structural imaging to look for plastic changes associated with perceptual learning, we identified symmetrical increases in gray matter volume in the SII cortex. Furthermore, we observed distinct, adjacent regions for cold and warm discrimination, with cold discrimination having a more anterior locus than warm. The results suggest that thermosensory discrimination is supported by functionally and anatomically distinct temperature-specific modules in the SII cortex. SIGNIFICANCE STATEMENT We provide behavioral and neuroanatomical evidence that perceptual learning is possible within the temperature system. We show that structural plasticity localizes to parietal–opercular (SII), and not posterior insula, providing the best evidence to date resolving a longstanding debate about the location of putative “temperature cortex.” Furthermore, we show that cold and warm pathways are behaviorally and anatomically dissociable, suggesting that the temperature system has distinct temperature-dependent processing modules.
Collapse
|