1
|
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 2021; 22:38-53. [PMID: 33184469 PMCID: PMC10625167 DOI: 10.1038/s41583-020-00396-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Hofmann V, Chacron MJ. Novel Functions of Feedback in Electrosensory Processing. Front Integr Neurosci 2019; 13:52. [PMID: 31572137 PMCID: PMC6753188 DOI: 10.3389/fnint.2019.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental signals act as input and are processed across successive stages in the brain to generate a meaningful behavioral output. However, a ubiquitous observation is that descending feedback projections from more central to more peripheral brain areas vastly outnumber ascending feedforward projections. Such projections generally act to modify how sensory neurons respond to afferent signals. Recent studies in the electrosensory system of weakly electric fish have revealed novel functions for feedback pathways in that their transformation of the afferent input generates neural firing rate responses to sensory signals mediating perception and behavior. In this review, we focus on summarizing these novel and recently uncovered functions and put them into context by describing the more "classical" functions of feedback in the electrosensory system. We further highlight the parallels between the electrosensory system and other systems as well as outline interesting future directions.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Dempsey C, Abbott LF, Sawtell NB. Generalization of learned responses in the mormyrid electrosensory lobe. eLife 2019; 8:e44032. [PMID: 30860480 PMCID: PMC6457893 DOI: 10.7554/elife.44032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/21/2019] [Indexed: 02/01/2023] Open
Abstract
Appropriate generalization of learned responses to new situations is vital for adaptive behavior. We provide a circuit-level account of generalization in the electrosensory lobe (ELL) of weakly electric mormyrid fish. Much is already known in this system about a form of learning in which motor corollary discharge signals cancel responses to the uninformative input evoked by the fish's own electric pulses. However, for this cancellation to be useful under natural circumstances, it must generalize accurately across behavioral regimes, specifically different electric pulse rates. We show that such generalization indeed occurs in ELL neurons, and develop a circuit-level model explaining how this may be achieved. The mechanism involves regularized synaptic plasticity and an approximate matching of the temporal dynamics of motor corollary discharge and electrosensory inputs. Recordings of motor corollary discharge signals in mossy fibers and granule cells provide direct evidence for such matching.
Collapse
Affiliation(s)
- Conor Dempsey
- Department of Neuroscience, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkUnited States
| | - LF Abbott
- Department of Neuroscience, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkUnited States
- Department of Physiology and Cellular BiophysicsColumbia UniversityNew YorkUnited States
| | - Nathaniel B Sawtell
- Department of Neuroscience, Zuckerman Mind Brain Behavior InstituteColumbia UniversityNew YorkUnited States
| |
Collapse
|
4
|
Pidoux L, Le Blanc P, Levenes C, Leblois A. A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning. eLife 2018; 7:32167. [PMID: 30044222 PMCID: PMC6112851 DOI: 10.7554/elife.32167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/24/2018] [Indexed: 01/09/2023] Open
Abstract
Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.
Collapse
Affiliation(s)
- Ludivine Pidoux
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| | - Pascale Le Blanc
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| | - Carole Levenes
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| | - Arthur Leblois
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| |
Collapse
|
5
|
Mileva GR, Kozak IJ, Lewis JE. Short-term synaptic plasticity across topographic maps in the electrosensory system. Neuroscience 2016; 318:1-11. [PMID: 26791523 DOI: 10.1016/j.neuroscience.2016.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
The early pathways underlying the active electric sense of the weakly electric fish Apteronotus leptorhynchus involve three parallel processing streams. An array of tuberous electroreceptors distributed over the skin provides inputs to the electrosensory lateral line lobe (ELL), forming the basis for three topographic maps: LS (lateral segment), CLS (centrolateral segment), and CMS (centromedial segment). In addition, each map receives topographically preserved inputs from a direct feedback pathway. How this feedback contributes to the distinct spatiotemporal filtering properties of ELL pyramidal neurons across maps is not clear. We used an in vitro approach to characterize short-term plasticity (STP) in the direct feedback synapses onto pyramidal neurons in each map. Our findings indicated that the dynamics of STP varied across maps in a manner that was consistent with the temporal filtering properties of pyramidal neurons in vivo. Using a modeling approach, we found that the STP of direct feedback synapses in CMS was best described by a simple facilitation-depression model. On the other hand, STP in LS was best described by synaptic facilitation with a use-dependent recovery rate. These results suggest that differential regulation of overlapping STP processes in feedback pathways can contribute to the functional specialization of topographic sensory maps.
Collapse
Affiliation(s)
- G R Mileva
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada.
| | - I J Kozak
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - J E Lewis
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Youssofzadeh V, Prasad G, Wong-Lin K. On self-feedback connectivity in neural mass models applied to event-related potentials. Neuroimage 2015; 108:364-76. [PMID: 25562823 DOI: 10.1016/j.neuroimage.2014.12.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 12/13/2022] Open
Abstract
Neural mass models (NMMs) applied to neuroimaging data often do not emphasise intrinsic self-feedback within a neural population. However, based on mean-field theory, any population of coupled neurons is intrinsically endowed with effective self-coupling. In this work, we examine the effectiveness of three cortical NMMs with different self-feedbacks using a dynamic causal modelling approach. Specifically, we compare the classic Jansen and Rit (1995) model (no self-feedback), a modified model by Moran et al. (2007) (only inhibitory self-feedback), and our proposed model with inhibitory and excitatory self-feedbacks. Using bifurcation analysis, we show that single-unit Jansen-Rit model is less robust in generating oscillatory behaviour than the other two models. Next, under Bayesian inversion, we simulate single-channel event-related potentials (ERPs) within a mismatch negativity auditory oddball paradigm. We found fully self-feedback model (FSM) to provide the best fit to single-channel data. By analysing the posterior covariances of model parameters, we show that self-feedback connections are less sensitive to the generated evoked responses than the other model parameters, and hence can be treated analogously to "higher-order" parameter corrections of the original Jansen-Rit model. This is further supported in the more realistic multi-area case where FSM can replicate data better than JRM and MoM in the majority of subjects by capturing the finer features of the ERP data more accurately. Our work informs how NMMs with full self-feedback connectivity are not only more consistent with the underlying neurophysiology, but can also account for more complex features in ERP data.
Collapse
Affiliation(s)
- Vahab Youssofzadeh
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Northland Road, L'Derry BT48 7JL, UK
| | - Girijesh Prasad
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Northland Road, L'Derry BT48 7JL, UK
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Northland Road, L'Derry BT48 7JL, UK.
| |
Collapse
|
7
|
Harvey-Girard E, Maler L. Dendritic SK channels convert NMDA-R-dependent LTD to burst timing-dependent plasticity. J Neurophysiol 2013; 110:2689-703. [DOI: 10.1152/jn.00506.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Feedback and descending projections from higher to lower brain centers play a prominent role in all vertebrate sensory systems. Feedback might be optimized for the specific sensory processing tasks in their target brain centers, but it has been difficult to connect the properties of feedback synapses to sensory tasks. Here, we use the electrosensory system of a gymnotiform fish ( Apteronotus leptorhynchus) to address this problem. Cerebellar feedback to pyramidal cells in the first central electrosensory processing region, the electrosensory lateral line lobe (ELL), is critical for canceling spatially and temporally redundant electrosensory input. The ELL contains four electrosensory maps, and we have previously analyzed the synaptic and network bases of the redundancy reduction mechanism in a map (centrolateral segment; CLS) believed to guide electrolocation behavior. In the CLS, only long-term depression was induced by pairing feedback presynaptic and pyramidal cell postsynaptic bursts. In this paper, we turn to an ELL map (lateral segment; LS) known to encode electrocommunication signals. We find remarkable differences in synaptic plasticity of the morphologically identical cerebellar feedback input to the LS. In the LS, pyramidal cell SK channels permit long-term potentiation (LTP) of feedback synapses when pre- and postsynaptic bursts occur at the same time. We hypothesize that LTP in this map is required for enhancing the encoding of weak electrocommunication signals. We conclude that feedback inputs that appear morphologically identical in sensory maps dedicated to different tasks, nevertheless display different synaptic plasticity rules contributing to differential sensory processing in these maps.
Collapse
Affiliation(s)
- Erik Harvey-Girard
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Leonard Maler
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
- Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Mejias JF, Marsat G, Bol K, Maler L, Longtin A. Learning contrast-invariant cancellation of redundant signals in neural systems. PLoS Comput Biol 2013; 9:e1003180. [PMID: 24068898 PMCID: PMC3772051 DOI: 10.1371/journal.pcbi.1003180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown. In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting fish.
Collapse
Affiliation(s)
- Jorge F. Mejias
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - Gary Marsat
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of West Virginia, Morgantown, West Virginia, United States of America
| | - Kieran Bol
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Harvey-Girard E, Giassi ACC, Ellis W, Maler L. Expression of the cannabinoid CB1 receptor in the gymnotiform fish brain and its implications for the organization of the teleost pallium. J Comp Neurol 2013; 521:949-75. [PMID: 22886386 DOI: 10.1002/cne.23212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/05/2012] [Accepted: 08/03/2012] [Indexed: 12/14/2022]
Abstract
Cannabinoid CB1 receptors (CB1R) are widely distributed in the brains of many vertebrates, but whether their functions are conserved is unknown. The weakly electric fish, Apteronotus leptorhynchus (Apt), has been well studied for its brain structure, behavior, sensory processing, and learning and memory. It therefore offers an attractive model for comparative studies of CB1R functions. We sequenced partial AptCB1R mRNAs and performed in situ hybridization to localize its expression. Partial AptCB1R protein sequence was highly conserved to zebrafish (90.7%) and mouse (81.9%) orthologs. AptCB1R mRNA was highly expressed in the telencephalon. Subpallial neurons (dorsal, central, intermediate regions and part of the ventral region, Vd/Vc/Vi, and Vv) expressed high levels of AptCB1R transcript. The central region of dorsocentral telencephalon (DC(core) ) strongly expressed CB1R mRNA; cells in DC(core) project to midbrain regions involved in electrosensory/visual function. The lateral and rostral regions of DC surrounding DC(core) (DC(shell) ) lack AptCB1R mRNA. The rostral division of the dorsomedial telencephalon (DM1) highly expresses AptCB1R mRNA. In dorsolateral division (DL) AptCB1R mRNA was expressed in a gradient that declined in a rostrocaudal manner. In diencephalon, AptCB1R RNA probe weakly stained the central-posterior (CP) and prepacemaker (PPn) nuclei. In mesencephalon, AptCB1R mRNA is expressed in deep layers of the dorsal (electrosensory) torus semicircularis (TSd). In hindbrain, AptCB1R RNA probe weakly labeled inhibitory interneurons in the electrosensory lateral line lobe (ELL). Unlike mammals, only few cerebellar granule cells expressed AptCB1R transcripts and these were located in the center of eminentia granularis pars posterior (EGp), a cerebellar region involved in feedback to ELL.
Collapse
Affiliation(s)
- Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5.
| | | | | | | |
Collapse
|
10
|
Unguez GA. Electric fish: new insights into conserved processes of adult tissue regeneration. J Exp Biol 2013; 216:2478-86. [PMID: 23761473 PMCID: PMC3680508 DOI: 10.1242/jeb.082396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/13/2012] [Indexed: 02/06/2023]
Abstract
Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates.
Collapse
Affiliation(s)
- Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
11
|
Bursts and isolated spikes code for opposite movement directions in midbrain electrosensory neurons. PLoS One 2012; 7:e40339. [PMID: 22768279 PMCID: PMC3386997 DOI: 10.1371/journal.pone.0040339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
Directional selectivity, in which neurons respond strongly to an object moving in a given direction but weakly or not at all to the same object moving in the opposite direction, is a crucial computation that is thought to provide a neural correlate of motion perception. However, directional selectivity has been traditionally quantified by using the full spike train, which does not take into account particular action potential patterns. We investigated how different action potential patterns, namely bursts (i.e. packets of action potentials followed by quiescence) and isolated spikes, contribute to movement direction coding in a mathematical model of midbrain electrosensory neurons. We found that bursts and isolated spikes could be selectively elicited when the same object moved in opposite directions. In particular, it was possible to find parameter values for which our model neuron did not display directional selectivity when the full spike train was considered but displayed strong directional selectivity when bursts or isolated spikes were instead considered. Further analysis of our model revealed that an intrinsic burst mechanism based on subthreshold T-type calcium channels was not required to observe parameter regimes for which bursts and isolated spikes code for opposite movement directions. However, this burst mechanism enhanced the range of parameter values for which such regimes were observed. Experimental recordings from midbrain neurons confirmed our modeling prediction that bursts and isolated spikes can indeed code for opposite movement directions. Finally, we quantified the performance of a plausible neural circuit and found that it could respond more or less selectively to isolated spikes for a wide range of parameter values when compared with an interspike interval threshold. Our results thus show for the first time that different action potential patterns can differentially encode movement and that traditional measures of directional selectivity need to be revised in such cases.
Collapse
|
12
|
Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. J Neurosci 2011; 31:11028-38. [PMID: 21795551 DOI: 10.1523/jneurosci.0193-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For optimal sensory processing, neural circuits must extract novel, unpredictable signals from the redundant sensory input in which they are embedded, but the detailed cellular and network mechanisms that implement such selective cancellation are presently unknown. Using a combination of modeling and experiment, we characterize in detail a cerebellar circuit in weakly electric fish, showing how it can carry out this computation. We use a model incorporating the wide range of experimentally estimated parallel fiber feedback delays and a burst-induced LTD rule derived from in vitro experiments to explain the precise cancellation of redundant signals observed in vivo. Our model demonstrates how the backpropagation-dependent burst dynamics adjusts the temporal pairing width of the plasticity mechanism to precisely match the frequency of the redundant signal. The model also makes the prediction that this cerebellar feedback pathway must be composed of frequency-tuned channels; this prediction is subsequently verified in vivo, highlighting a novel and general capability of cerebellar circuitry.
Collapse
|
13
|
Khosravi-Hashemi N, Fortune ES, Chacron MJ. Coding movement direction by burst firing in electrosensory neurons. J Neurophysiol 2011; 106:1954-68. [PMID: 21775723 DOI: 10.1152/jn.00116.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Directional selectivity, in which neurons respond strongly to an object moving in a given direction ("preferred") but respond weakly or not at all to an object moving in the opposite direction ("null"), is a critical computation achieved in brain circuits. Previous measures of direction selectivity have compared the numbers of action potentials elicited by each direction of movement, but most sensory neurons display patterning, such as bursting, in their spike trains. To examine the contribution of patterned responses to direction selectivity, we recorded from midbrain neurons in weakly electric fish and found that most neurons responded with a combination of both bursts and isolated spikes to moving object stimuli. In these neurons, we separated bursts and isolated spikes using an interspike interval (ISI) threshold. The directional bias of bursts was significantly higher than that of either the full spike train or the isolated spike train. To examine the encoding and decoding of bursts, we built biologically plausible models that examine 1) the upstream mechanisms that generate these spiking patterns and 2) downstream decoders of bursts. Our model of upstream mechanisms uses an interaction between afferent input and subthreshold calcium channels to give rise to burst firing that occurs preferentially for one direction of movement. We tested this model in vivo by application of calcium antagonists, which reduced burst firing and eliminated the differences in direction selectivity between bursts, isolated spikes, and the full spike train. Our model of downstream decoders used strong synaptic facilitation to achieve qualitatively similar results to those obtained using the ISI threshold criterion. This model shows that direction selective information carried by bursts can be decoded by downstream neurons using biophysically plausible mechanisms.
Collapse
|
14
|
Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals. J Neurosci 2010; 30:6152-69. [PMID: 20427673 DOI: 10.1523/jneurosci.0303-10.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Weakly electric fish can enhance the detection and localization of important signals such as those of prey in part by cancellation of redundant spatially diffuse electric signals due to, e.g., their tail bending. The cancellation mechanism is based on descending input, conveyed by parallel fibers emanating from cerebellar granule cells, that produces a negative image of the global low-frequency signals in pyramidal cells within the first-order electrosensory region, the electrosensory lateral line lobe (ELL). Here we demonstrate that the parallel fiber synaptic input to ELL pyramidal cell undergoes long-term depression (LTD) whenever both parallel fiber afferents and their target cells are stimulated to produce paired burst discharges. Paired large bursts (4-4) induce robust LTD over pre-post delays of up to +/-50 ms, whereas smaller bursts (2-2) induce weaker LTD. Single spikes (either presynaptic or postsynaptic) paired with bursts did not induce LTD. Tetanic presynaptic stimulation was also ineffective in inducing LTD. Thus, we have demonstrated a form of anti-Hebbian LTD that depends on the temporal correlation of burst discharge. We then demonstrated that the burst-induced LTD is postsynaptic and requires the NR2B subunit of the NMDA receptor, elevation of postsynaptic Ca(2+), and activation of CaMKIIbeta. A model incorporating local inhibitory circuitry and previously identified short-term presynaptic potentiation of the parallel fiber synapses further suggests that the combination of burst-induced LTD, presynaptic potentiation, and local inhibition may be sufficient to explain the generation of the negative image and cancellation of redundant sensory input by ELL pyramidal cells.
Collapse
|
15
|
Merkel M, Lindner B. Synaptic filtering of rate-coded information. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041921. [PMID: 20481767 DOI: 10.1103/physreve.81.041921] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/26/2010] [Indexed: 05/29/2023]
Abstract
In this paper, we analytically examine the influence of synaptic short-term plasticity (STP) on the transfer of rate-coded information through synapses. STP endows each presynaptic input spike with an amplitude that depends on previous input spikes. We develop a method to calculate the spectral statistics of this amplitude modulated spike train (postsynaptic input) for the case of an inhomogeneous Poisson process. We derive in particular analytical approximations for cross-spectra, power spectra, and for the coherence function between the postsynaptic input and the time-dependent rate modulation for a specific model. We give simple expressions for the coherence in the limiting cases of pure facilitation and pure depression. Using our analytical results and extensive numerical simulations, we study the spectral coherence function for postsynaptic input resulting from a single synapse or from a group of synapses. For a single synapse, we find that the synaptic coherence function is largely independent of frequency indicating broadband information transmission. This effect is even more pronounced for a large number of synapses. However, additional noise gives rise to frequency-dependent information filtering.
Collapse
Affiliation(s)
- Matthias Merkel
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | | |
Collapse
|
16
|
Abstract
Short-term synaptic plasticity (STP) can significantly alter the amplitudes of synaptic responses in ways that depend on presynaptic history. Thus, it is widely assumed that STP acts as a filter for specific patterns of presynaptic inputs, and as a result can play key roles in neuronal information processing. To evaluate this assumption and directly quantify the effects of STP on information transmission, we consider a population of independent synaptic inputs to a model neuron. We show using standard information theoretic approaches that the changes in synaptic response amplitude resulting from STP interact with the related effects on fluctuations in membrane conductance, such that information transmission is broadband (no frequency-dependent filtering occurs), regardless of whether synaptic depression or facilitation dominates. Interestingly, this broadband transmission is preserved in the postsynaptic spike train as long as the postsynaptic neuron's baseline firing rate is relatively high; in contrast, low baseline firing rates lead to STP-dependent effects. Thus, background inputs that control the firing state of a postsynaptic neuron can gate the effects of STP on information transmission.
Collapse
|
17
|
In vitro studies of closed-loop feedback and electrosensory processing in Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2008; 102:173-80. [PMID: 18996475 DOI: 10.1016/j.jphysparis.2008.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electrosensory systems comprise extensive feedback pathways. It is also well known that these pathways exhibit synaptic plasticity on a wide-range of time scales. Recent in vitro brain slice studies have characterized synaptic plasticity in the two main feedback pathways to the electrosensory lateral line lobe (ELL), a primary electrosensory nucleus in Apteronotus leptorhynchus. Currently-used slice preparations, involving networks in open-loop conditions, allow feedback inputs to be studied in isolation, a critical step in determining their synaptic properties. However, to fully understand electrosensory processing, we must understand how dynamic feedback modulates neuronal responses under closed-loop conditions. To bridge the gap between current in vitro approaches and more complex in vivo work, we present two new in vitro approaches for studying the roles of closed-loop feedback in electrosensory processing. The first involves a hybrid-network approach using dynamic clamp, and the second involves a new slice preparation that preserves one of the feedback pathways to ELL in a closed-loop condition.
Collapse
|
18
|
Mehaffey WH, Fernandez FR, Doiron B, Turner RW. Regulation of somatic firing dynamics by backpropagating dendritic spikes. ACTA ACUST UNITED AC 2008; 102:181-94. [PMID: 18984047 DOI: 10.1016/j.jphysparis.2008.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pyramidal cells of the apteronotid ELL have been shown to display a characteristic mechanism of burst discharge, which has been shown to play an important role in sensory coding. This form of bursting depends on a reciprocal dendro-somatic interaction, in which discharge of a somatic spike causes a dendritic spike, which in turn contributes a dendro-somatic current flow to create a depolarizing afterpotential (DAP) in the soma. We review here our recent work showing how the timing of this DAP influences the somatic firing dynamics, and how the degree of inactivation of dendritic Na(+) currents can cause an increased delay between somatic and dendritic spikes. This ultimately allows the DAP to become more effective at increasing the excitability of the somatic spike generating mechanism. Further, this delay between dendritic and somatic spiking can be regulated by strongly hyperpolarizing GABA(B) mediated dendritic inhibition, allowing the burst dynamics to fall under synaptic regulation. In contrast, a weaker, shunting inhibition due to GABA(A) mediated dendritic inhibition can regulate the dendritic spike waveform to decrease the dendro-somatic current flow and the resulting DAP. We therefore show that the qualitative behaviour of an individual cell can depend on the degree of synaptic input, and the exact timing of events across the spatial extent of the neuron. Thus, our results serve to illustrate the complex dynamics that can be observed in cells with significant dendritic arborisation, a nearly ubiquitous adaptation amongst principal neurons.
Collapse
Affiliation(s)
- W Hamish Mehaffey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
19
|
Ellis LD, Maler L, Dunn RJ. Differential distribution of SK channel subtypes in the brain of the weakly electric fish Apteronotus leptorhynchus. J Comp Neurol 2008; 507:1964-78. [PMID: 18273887 DOI: 10.1002/cne.21597] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium signals in vertebrate neurons can induce hyperpolarizing membrane responses through the activation of Ca(2+)-activated potassium channels. Of these, small conductance (SK) channels regulate neuronal responses through the generation of the medium after-hyperpolarization (mAHP). We have previously shown that an SK channel (AptSK2) contributes to signal processing in the electrosensory system of Apteronotus leptorhynchus. It was shown that for pyramidal neurons in the electrosensory lateral line lobe (ELL), AptSK2 expression selectively decreases responses to low-frequency signals. The localization of all the SK subunits throughout the brain of Apteronotus then became of substantial interest. We have now cloned two additional SK channel subunits from Apteronotus and determined the expression patterns of all three AptSK subunits throughout the brain. In situ hybridization experiments have revealed that, as in mammalian systems, the AptSK1 and 2 channels showed a partially overlapping expression pattern, whereas the AptSK3 channel was expressed in different brain areas. The AptSK1 and 2 channels were the primary subunits found in the major electrosensory processing areas. Immunohistochemistry further revealed distinct compartmentalization of the AptSK1 and 2 channels in the ELL. AptSK1 was localized to the apical dendrites of pyramidal neurons, whereas AptSK2 channels are primarily somatic. The distinct expression patterns of all three AptSK channels may reflect subtype-specific contributions to neuronal function, and the high homology between subtypes from a number of species suggests that the functional roles for each channel subtype are conserved from early vertebrate evolution.
Collapse
Affiliation(s)
- Lee D Ellis
- Department of Biology, McGill University, Montreal, QC H3G 1A4, Canada
| | | | | |
Collapse
|
20
|
Szalisznyó K, Longtin A, Maler L. Effect of synaptic plasticity on sensory coding and steady-state filtering properties in the electric sense. Biosystems 2008; 92:16-28. [PMID: 18243518 DOI: 10.1016/j.biosystems.2007.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/17/2022]
Abstract
Our modeling study examines short-term plasticity at the synapse between afferents from electroreceptors and pyramidal cells in the electrosensory lateral lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. It focusses on steady-state filtering and coherence-based coding properties. While developed for electroreception, our study exposes general functional features for different mixtures of depression and facilitation. Our computational model, constrained by the available in vivo and in vitro data, consists of a synapse onto a deterministic leaky integrate-and-fire (LIF) neuron. The synapse is either depressing (D), facilitating (F) or both (FD), and is driven by a sinusoidally or randomly modulated Poisson process. Due to nonlinearity, numerically computed input-output transfer functions are used to determine the filtering properties. The gain of the response at each sinusoidally modulated frequency is computed by dividing the fitted amplitudes of the input and output cycle histograms of the LIF models. While filtering is always low-pass for F alone, D alone exhibits a gain resonance (non-monotonicity) at a frequency that decreases with increasing recovery time constant of synaptic depression (tau(d)). This resonance is mitigated by the presence of F. For D, F and FD, coherence improves as the synaptic conductance time constant (tau(g)) increases, yet the mutual information per spike decreases. The information per spike for D and F follows opposite trends as their respective time constants increase. The broadband but non-monotonic gain and coherence functions seen in vivo suggest that D and perhaps FD dynamics are involved at this synapse. Our results further predict that the likely synaptic configuration is a slower tau(g), e.g. via a mixture of AMPA and NMDA synapses, and a relatively smaller synaptic facilitation time constant (tau(f)) and larger tau(d) (with tau(f) smaller than tau(d) and tau(g)). These results are compatible with known physiology.
Collapse
Affiliation(s)
- Krisztina Szalisznyó
- Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.
| | | | | |
Collapse
|
21
|
Lewis JE, Lindner B, Laliberté B, Groothuis S. Control of neuronal firing by dynamic parallel fiber feedback:implications for electrosensory reafference suppression. J Exp Biol 2007; 210:4437-47. [DOI: 10.1242/jeb.010322] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The cancellation of self-generated components of sensory inputs is a key function of sensory feedback pathways. In many systems, cerebellar parallel fiber feedback mediates this cancellation through anti-Hebbian plasticity,resulting in the generation of a negative image of the reafferent inputs. Parallel fiber feedback involves direct excitation and disynaptic inhibition as well as synaptic plasticity on multiple time scales. How the dynamics of these processes interact with anti-Hebbian plasticity to shape synaptic inputs and provide a cancellation mechanism remains unclear. In the present study, we investigated the influence of parallel fiber feedback onto pyramidal neurons of the electrosensory lateral line lobe (ELL) in weakly electric fish under open loop conditions. We mimicked naturalistic parallel fiber inputs in an ELL brain slice by implementing an experimentally based model of this synaptic pathway using dynamic clamp. We showed that as parallel fiber activity increases, the effective input to ELL pyramidal neurons changes from net excitation to net inhibition, resulting in a non-monotonic firing response. Using a model neuron, we found that this robust non-monotonic response is due to a shift from balanced excitation and inhibition at low parallel fiber input rates, to dominant inhibition at high input rates. We then showed that this non-monotonic response provides a simple basis for negative image generation. Through changes in the mean activation rate of parallel fibers, the feedback can switch roles between enhancement and suppression of sensory inputs in a manner that is directly determined by the slope of the non-monotonic response curve.
Collapse
Affiliation(s)
- John E. Lewis
- Department of Biology and Center for Neural Dynamics, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Benjamin Lindner
- Max-Planck-Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Benoit Laliberté
- Department of Biology and Center for Neural Dynamics, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Sally Groothuis
- Department of Biology and Center for Neural Dynamics, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
22
|
Fujita K, Kashimori Y, Kambara T. Spatiotemporal burst coding for extracting features of spatiotemporally varying stimuli. BIOLOGICAL CYBERNETICS 2007; 97:293-305. [PMID: 17805559 DOI: 10.1007/s00422-007-0175-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 07/27/2007] [Indexed: 05/17/2023]
Abstract
Encoding features of spatiotemporally varying stimuli is quite important for understanding the neural mechanisms of various sensory coding. Temporal coding can encode features of time-varying stimulus, and population coding with temporal coding is adequate for encoding spatiotemporal correlation of stimulus features into spatiotemporal activity of neurons. However, little is known about how spatiotemporal features of stimulus are encoded by spatiotemporal property of neural activity. To address this issue, we propose here a population coding with burst spikes, called here spatiotemporal burst (STB) coding. In STB coding, the temporal variation of stimuli is encoded by the precise onset timing of burst spike, and the spatiotemporal correlation of stimuli is emphasized by one specific aspect of burst firing, or spike packet followed by silent interval. To show concretely the role of STB coding, we study the electrosensory system of a weakly electric fish. Weakly electric fish must perceive the information about an object nearby by analyzing spatiotemporal modulations of electric field around it. On the basis of well-characterized circuitry, we constructed a neural network model of the electrosensory system. Here we show that STB coding encodes well the information of object distance and size by extracting the spatiotemporal correlation of the distorted electric field. The burst activity of electrosensory neurons is also affected by feedback signals through synaptic plasticity. We show that the control of burst activity caused by the synaptic plasticity leads to extracting the stimulus features depending on the stimulus context. Our results suggest that sensory systems use burst spikes as a unit of sensory coding in order to extract spatiotemporal features of stimuli from spatially distributed stimuli.
Collapse
Affiliation(s)
- Kazuhisa Fujita
- Department of Information Network Science, Graduate School of Information Systems, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
| | | | | |
Collapse
|
23
|
Baxter DA, Byrne JH. Short-Term Plasticity in a Computational Model of the Tail-Withdrawal Circuit in Aplysia. Neurocomputing 2007; 70:1993-1999. [PMID: 17957237 PMCID: PMC2040302 DOI: 10.1016/j.neucom.2006.10.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tail-withdrawal circuit of Aplysia provides a useful model system for investigating synaptic dynamics. Sensory neurons within the circuit manifest several forms of synaptic plasticity. Here, we developed a model of the circuit and investigated the ways in which depression (DEP) and potentiation (POT) contributed to information processing. DEP limited the amount of motor neuron activity that could be elicited by the monosynaptic pathway alone. POT within the monosynaptic pathway did not compensate for DEP. There was, however, a synergistic interaction between POT and the polysynaptic pathway. This synergism extended the dynamic range of the network, and the interplay between DEP and POT made the circuit responded preferentially to long-duration, low-frequency inputs.
Collapse
Affiliation(s)
- Douglas A Baxter
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX 77025
| | | |
Collapse
|
24
|
Abstract
The electrosensory system is used for both spatial navigation tasks and communication. An electric organ generates a sinusoidal electric field and cutaneous electroreceptors respond to this field. Objects such as prey or rocks cause a local low-frequency modulation of the electric field; this cue is used by electric fish for navigation and prey capture. The interference of the electric fields of conspecifics produces beats, often with high frequencies, that are also sensed by the electroreceptors; furthermore, these electric fish can transiently modulate their electric discharge as a communication signal. Thus these fish must therefore detect a variety of low-intensity signals that differ greatly in their spatial extent, frequency, and duration. Behavioral studies suggest that they are highly adapted to these tasks. Experimental and theoretical analyses of the neural circuitry for the electrosense has demonstrated many commonalities with the more common senses, e.g., topographic mapping and receptive fields with On or Off centers and surround inhibition. The integration of computational and experimental analyses has demonstrated novel mechanisms that appear to optimize weak signal detection in the electrosense including: noise shaping by correlations within single spike trains, induction of oscillations by delayed feedback inhibition, the requirement for maps with differing receptive field sizes tuned for different stimulus parameters, and the role of non-plastic feedback for adaptive cancellation of redundant signals. It is likely that these mechanisms will also be operative in other sensory systems.
Collapse
Affiliation(s)
- Leonard Maler
- Department of Cell and Molecular Medicine and Center for Neural Dynamics, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
25
|
Harvey-Girard E, Dunn RJ, Maler L. Regulated expression of N-methyl-D-aspartate receptors and associated proteins in teleost electrosensory system and telencephalon. J Comp Neurol 2007; 505:644-68. [DOI: 10.1002/cne.21521] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Bastian J, Chacron MJ, Maler L. Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 2004; 41:767-79. [PMID: 15003176 DOI: 10.1016/s0896-6273(04)00071-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 11/25/2003] [Accepted: 01/20/2004] [Indexed: 11/25/2022]
Abstract
Pyramidal cells show marked variation in their morphology, including dendritic structure, which is correlated with physiological diversity; however, it is not known how this variation is related to a cell's role within neural networks. In this report, we describe correlations among electrosensory lateral line lobe (ELL) pyramidal cells' highly variable dendritic morphology and their ability to adaptively cancel redundant inputs via an anti-Hebbian form of synaptic plasticity. A subset of cells, those with the largest apical dendrites, are plastic, but those with the smallest dendrites are not. A model of the network's connectivity predicts that efficient redundancy reduction requires that nonplastic cells provide feedback input to those that are plastic. Anatomical results confirm the model's prediction of optimal network architecture. These results provide a demonstration of different roles for morphological/physiological variants of a single cell type within a neural network performing a well-defined function.
Collapse
Affiliation(s)
- Joseph Bastian
- Department of Zoology, University of Oklahoma, Norman, OK 73019 USA.
| | | | | |
Collapse
|