1
|
Hope JM, Zarkou A, Suri C, Field-Fote EC. Effects of Whole-Body Vibration on Ankle Control and Walking Speed in Individuals with Incomplete Spinal Cord Injury. Brain Sci 2025; 15:405. [PMID: 40309889 PMCID: PMC12025524 DOI: 10.3390/brainsci15040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES After spinal cord injury (SCI), poor dorsiflexor control and involuntary plantar-flexor contraction impair walking. As whole-body vibration (WBV) improves voluntary muscle activation and modulates reflex excitability, it may improve ankle control. In this study, the dosage effects of WBV on walking speed, dorsiflexion, and spinal reflex excitability were examined. METHODS Sixteen people with chronic motor-incomplete SCI participated in this randomized sham-control wash-in study. Two weeks of sham stimulation (wash-in phase) were followed by either 2 weeks of eight repetitions (short bout) or sixteen repetitions of WBV (long bout; intervention phase) per session. Walking speed, ankle angle at mid-swing, and low-frequency depression of the soleus H-reflex were measured before and after the wash-in phase and before and after the intervention phase. RESULTS A significant dosage effect of WBV was not observed on any of the measures of interest. There were no between-phase or within-phase differences in ankle angle during the swing phase or in low-frequency depression. When dosage groups were pooled together, there was a significant change in walking speed during the intervention phase (mean = 0.04 m/s, standard deviation = 0.06, p = 0.02). There was not a significant correlation between overall change in walking speed and dorsiflexion angle or low-frequency depression during the study. CONCLUSIONS Whole-body vibration did not have a dosage-dependent effect on dorsiflexion during the swing phase or on spinal reflex excitability. Future studies assessing the role of corticospinal tract (CST) descending drive on increased dorsiflexor ability and walking speed are warranted.
Collapse
Affiliation(s)
- Jasmine M. Hope
- Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Anastasia Zarkou
- Spinal Cord Injury Research Laboratory, Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, GA 30309, USA; (A.Z.)
| | - Cazmon Suri
- Spinal Cord Injury Research Laboratory, Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, GA 30309, USA; (A.Z.)
| | - Edelle C. Field-Fote
- Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA 30322, USA;
- Spinal Cord Injury Research Laboratory, Virginia C. Crawford Research Institute, Shepherd Center, Atlanta, GA 30309, USA; (A.Z.)
- Program in Applied Physiology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| |
Collapse
|
2
|
Sayed Ahmad AM, Raphael M, Han JF, Ahmed Y, Moustafa M, Solomon SK, Skiadopoulos A, Knikou M. Soleus H-reflex amplitude modulation during walking remains physiological during transspinal stimulation in humans. Exp Brain Res 2024; 242:1267-1276. [PMID: 38366214 DOI: 10.1007/s00221-024-06779-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
The soleus H-reflex modulation pattern was investigated during stepping following transspinal stimulation over the thoracolumbar region at 15, 30, and 50 Hz with 10 kHz carry-over frequency above and below the paresthesia threshold. The soleus H-reflex was elicited by posterior tibial nerve stimulation with a single 1 ms pulse at an intensity that the M-wave amplitudes ranged from 0 to 15% of the maximal M-wave evoked 80 ms after the test stimulus, and the soleus H-reflex was half the size of the maximal H-reflex evoked on the ascending portion of the recruitment curve. During treadmill walking, the soleus H-reflex was elicited every 2 or 3 steps, and stimuli were randomly dispersed across the step cycle which was divided in 16 equal bins. For each subject and condition, the soleus M-wave and H-reflex were normalized to the maximal M-wave. The soleus background electromyographic (EMG) activity was estimated as the linear envelope for 50 ms duration starting at 100 ms before posterior tibial nerve stimulation for each bin. The gain was determined as the slope of the relationship between the soleus H-reflex and the soleus background EMG activity. The soleus H-reflex phase-dependent amplitude modulation remained unaltered during transspinal stimulation, regardless frequency, or intensity. Similarly, the H-reflex slope and intercept remained the same for all transspinal stimulation conditions tested. Locomotor EMG activity was increased in knee extensor muscles during transspinal stimulation at 30 and 50 Hz throughout the step cycle while no effects were observed in flexor muscles. These findings suggest that transspinal stimulation above and below the paresthesia threshold at 15, 30, and 50 Hz does not block or impair spinal integration of proprioceptive inputs and increases activity of thigh muscles that affect both hip and knee joint movement. Transspinal stimulation may serve as a neurorecovery strategy to augment standing or walking ability in upper motoneuron lesions.
Collapse
Affiliation(s)
- Abdullah M Sayed Ahmad
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Meghan Raphael
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Jessy Feng Han
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Yoseph Ahmed
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Mohamed Moustafa
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Shammah K Solomon
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Andreas Skiadopoulos
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, USA.
- Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA.
- PhD Program in Biology and Collaborative Neuroscience Program, DPT Department, Graduate Center of The City University of New York and College of Staten Island, Staten Island, NY, USA.
| |
Collapse
|
3
|
Metz K, Matos IC, Hari K, Bseis O, Afsharipour B, Lin S, Singla R, Fenrich KK, Li Y, Bennett DJ, Gorassini MA. Post-activation depression from primary afferent depolarization (PAD) produces extensor H-reflex suppression following flexor afferent conditioning. J Physiol 2023; 601:1925-1956. [PMID: 36928599 PMCID: PMC11064783 DOI: 10.1113/jp283706] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Suppression of the extensor H-reflex by flexor afferent conditioning is thought to be produced by a long-lasting inhibition of extensor Ia afferent terminals via GABAA receptor-activated primary afferent depolarization (PAD). Given the recent finding that PAD does not produce presynaptic inhibition of Ia afferent terminals, we examined in 28 participants if H-reflex suppression is instead mediated by post-activation depression of the extensor Ia afferents triggered by PAD-evoked spikes and/or by a long-lasting inhibition of the extensor motoneurons. A brief conditioning vibration of the flexor tendon suppressed both the extensor soleus H-reflex and the tonic discharge of soleus motor units out to 150 ms following the vibration, suggesting that part of the H-reflex suppression during this period was mediated by postsynaptic inhibition of the extensor motoneurons. When activating the flexor afferents electrically to produce conditioning, the soleus H-reflex was also suppressed but only when a short-latency reflex was evoked in the soleus muscle by the conditioning input itself. In mice, a similar short-latency reflex was evoked when optogenetic or afferent activation of GABAergic (GAD2+ ) neurons produced a large enough PAD to evoke orthodromic spikes in the test Ia afferents, causing post-activation depression of subsequent monosynaptic EPSPs. The long duration of this post-activation depression and related H-reflex suppression (seconds) was similar to rate-dependent depression that is also due to post-activation depression. We conclude that extensor H-reflex inhibition by brief flexor afferent conditioning is produced by both post-activation depression of extensor Ia afferents and long-lasting inhibition of extensor motoneurons, rather than from PAD inhibiting Ia afferent terminals. KEY POINTS: Suppression of extensor H-reflexes by flexor afferent conditioning was thought to be mediated by GABAA receptor-mediated primary afferent depolarization (PAD) shunting action potentials in the Ia afferent terminal. In line with recent findings that PAD has a facilitatory role in Ia afferent conduction, we show here that when large enough, PAD can evoke orthodromic spikes that travel to the Ia afferent terminal to evoke EPSPs in the motoneuron. These PAD-evoked spikes also produce post-activation depression of Ia afferent terminals and may mediate the short- and long-lasting suppression of extensor H-reflexes in response to flexor afferent conditioning. Our findings highlight that we must re-examine how changes in the activation of GABAergic interneurons and PAD following nervous system injury or disease affects the regulation of Ia afferent transmission to spinal neurons and ultimately motor dysfunction in these disorders.
Collapse
Affiliation(s)
- Krista Metz
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Isabel Concha Matos
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Omayma Bseis
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Babak Afsharipour
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Monica A Gorassini
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Caron G, Bilchak J, Marie-Pascale Côté. Bumetanide increases postsynaptic inhibition after chronic SCI and decreases presynaptic inhibition with step-training. J Physiol 2023; 601:1425-1447. [PMID: 36847245 PMCID: PMC10106440 DOI: 10.1113/jp283753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Current anti-spastic medication significantly compromises motor recovery after spinal cord injury (SCI), indicating a critical need for alternative interventions. Because a shift in chloride homeostasis decreases spinal inhibition and contributes to hyperreflexia after SCI, we investigated the effect of bumetanide, an FDA-approved sodium-potassium-chloride intruder (NKCC1) antagonist, on presynaptic and postsynaptic inhibition. We compared its effect with step-training as it is known to improve spinal inhibition by restoring chloride homeostasis. In SCI rats, a prolonged bumetanide treatment increased postynaptic inhibition but not presynaptic inhibition of the plantar H-reflex evoked by posterior biceps and semitendinosus (PBSt) group I afferents. By using in vivo intracellular recordings of motoneurons, we further show that a prolonged bumetanide increased postsynaptic inhibition by hyperpolarizing the reversal potential for inhibitory postsynaptic potentials (IPSPs) after SCI. However, in step-trained SCI rats an acute delivery of bumetanide decreased presynaptic inhibition of the H-reflex, but not postsynaptic inhibition. These results suggest that bumetanide might be a viable option to improve postsynaptic inhibition after SCI, but it also decreases the recovery of presynaptic inhibition with step-training. We discuss whether the effects of bumetanide are mediated by NKCC1 or by off-target effects. KEY POINTS: After spinal cord injury (SCI), chloride homeostasis is dysregulated over time in parallel with the decrease in presynaptic inhibition of Ia afferents and postsynaptic inhibition of motoneurons, and the development of spasticity. While step-training counteracts these effects, it cannot always be implemented in the clinic because of comorbidities. An alternative intervention is to use pharmacological strategies to decrease spasticity without hindering the recovery of motor function with step-training. Here we found that, after SCI, a prolonged bumetanide (an FDA-approved antagonist of the sodium-potassium-chloride intruder, NKCC1) treatment increases postsynaptic inhibition of the H-reflex, and it hyperpolarizes the reversal potential for inhibitory postsynaptic potentials in motoneurons. However, in step-trained SCI, an acute delivery of bumetanide decreases presynaptic inhibition of the H-reflex, but not postsynaptic inhibition. Our results suggest that bumetanide has the potential to decrease spastic symptoms related to a decrease in postsynaptic but not presynaptic inhibition after SCI.
Collapse
Affiliation(s)
- Guillaume Caron
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| | - Jadwiga Bilchak
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA 19129
| |
Collapse
|
5
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agarwal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. Trials 2023; 24:145. [PMID: 36841773 PMCID: PMC9960224 DOI: 10.1186/s13063-023-07193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Grace O. Famodimu
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA
| | - Shammah K. Solomon
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Parul Agarwal
- grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Noam Y. Harel
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA ,grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY, USA. .,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA. .,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Manhattan & Staten Island, NY, USA.
| |
Collapse
|
6
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agrawal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. RESEARCH SQUARE 2023:rs.3.rs-2527617. [PMID: 36824823 PMCID: PMC9949167 DOI: 10.21203/rs.3.rs-2527617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.
Collapse
Affiliation(s)
| | | | | | - Parul Agrawal
- Icahn School of Medicine at Mount Sinai Department of Population Health Science and Policy
| | - Noam Y Harel
- James J Peters VAMC: James J Peters VA Medical Center
| | - Maria Knikou
- College of Staten Island School of Health Sciences
| |
Collapse
|
7
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
8
|
Pulverenti TS, Zaaya M, Grabowski E, Grabowski M, Knikou M. Brain and spinal cord paired stimulation coupled with locomotor training facilitates motor output in human spinal cord injury. Front Neurol 2022; 13:1000940. [PMID: 36313489 PMCID: PMC9612520 DOI: 10.3389/fneur.2022.1000940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Combined interventions for neuromodulation leading to neurorecovery have gained great attention by researchers to resemble clinical rehabilitation approaches. In this randomized clinical trial, we established changes in the net output of motoneurons innervating multiple leg muscles during stepping when transcranial magnetic stimulation (TMS) of the primary motor cortex was paired with transcutaneous spinal (transspinal) stimulation over the thoracolumbar region during locomotor training. TMS was delivered before (TMS-transspinal) or after (transspinal-TMS) transspinal stimulation during the stance phase of the less impaired leg. Ten individuals with chronic incomplete or complete SCI received at least 20 sessions of training. Each session consisted of 240 paired stimuli delivered over 10-min blocks for 1 h during robotic assisted step training on a motorized treadmill. Body weight support, leg guidance force and treadmill speed were adjusted based on each subject's ability to step without knee buckling or toe dragging. Most transspinal evoked potentials (TEPs) recorded before and after each intervention from ankle and knee muscles during assisted stepping were modulated in a phase-dependent pattern. Transspinal-TMS and locomotor training affected motor neuron output of knee and ankle muscles with ankle TEPs to be modulated in a phase-dependent manner. TMS-transspinal and locomotor training increased motor neuron output for knee but not for ankle muscles. Our results support that targeted brain and spinal cord stimulation alters responsiveness of neurons over multiple spinal segments in people with chronic SCI. Noninvasive stimulation of the brain and spinal cord along with locomotor training is a novel neuromodulation method that can become a promising modality for rehabilitation in humans after SCI.
Collapse
Affiliation(s)
- Timothy S. Pulverenti
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| | - Monika Grabowski
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, New York, NY, United States,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States,Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States,*Correspondence: Maria Knikou
| |
Collapse
|
9
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: A scoping review. Clin Neurophysiol 2022; 138:61-73. [PMID: 35364465 DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Surface electromyography (sEMG) is a common electrophysiological assessment used in clinical trials in individuals with spinal cord injury (SCI). This scoping review summarizes the most common sEMG techniques used to address clinically relevant neurorehabilitation questions. We focused on the role of sEMG assessments in the clinical practice and research studies on neurorehabilitation after SCI, and how sEMG reflects the changes observed with rehabilitation. Additionally, this review emphasizes the limitations and pitfalls of the sEMG assessments in the field of neurorehabilitation after SCI. METHODS A comprehensive search of Medline (Ovid), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase, Emcare, Cumulative Index to Nursing & Allied Health Literature, and PubMed was conducted to find peer-reviewed journal articles that included individuals post-SCI that participated in neurorehabilitation interventions using sEMG assessments. This is a scoping review using a systematic search (hybrid review). RESULTS Of 4522 references captured in the primary database searches, 100 references were selected and included in the scoping review. The main focus of the studies was on neurorehabilitation using sEMG biofeedback, brain stimulation, locomotor training, neuromuscular electrical stimulation (NMES), paired-pulse stimulation, pharmacology, posture and balance training, spinal cord stimulation, upper limb training, vibration, and photobiomodulation. CONCLUSIONS Most studies employed sEMG amplitude to understand the effects of neurorehabilitation on muscle activation during volitional efforts or reduction of spontaneous muscle activity (e.g., spasms, spasticity, and hypertonia). Further studies are needed to understand the long-term reliability of sEMG amplitude, to circumvent normalization issues, and to provide a deeper physiological background to the different sEMG analyses. SIGNIFICANCE This scoping review reveals the potential of sEMG in exploring promising neurorehabilitation strategies following SCI and discusses the barriers limiting its widespread use in the clinic.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada.
| | - Matheus Joner Wiest
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Guijin Li
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Canada
| | - Julio Cesar Furlan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Canada; Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Canada; Institute of Medical Sciences, University of Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Department of Physical Therapy, University of Toronto, Canada
| | - José Zariffa
- KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Canada
| |
Collapse
|
10
|
Kaneko N, Sasaki A, Yokoyama H, Masugi Y, Nakazawa K. Effects of action observation and motor imagery of walking on the corticospinal and spinal motoneuron excitability and motor imagery ability in healthy participants. PLoS One 2022; 17:e0266000. [PMID: 35436303 PMCID: PMC9015126 DOI: 10.1371/journal.pone.0266000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Action observation (AO) and motor imagery (MI) are used for the rehabilitation of patients who face difficulty walking. Rehabilitation involving AO, MI, and AO combined with MI (AO+MI) facilitates gait recovery after neurological disorders. However, the mechanism by which it positively affects gait function is unclear. We previously examined the neural mechanisms underlying AO and MI of walking, focusing on AO+MI and corticospinal and spinal motor neuron excitability, which play important roles in gait function. Herein, we investigated the effects of a short intervention using AO+MI of walking on the corticospinal and spinal motor neuron excitability and MI ability of participants. Twelve healthy individuals participated in this study, which consisted of a 20 min intervention. Before the experiment, we measured MI ability using the Vividness of Movement Imagery Questionnaire-2 (VMIQ-2). We used motor evoked potential and F-wave measurements to evaluate the corticospinal and spinal motor neuron excitability at rest, pre-intervention, 0 min, and 15 min post-intervention. We also measured corticospinal excitability during MI of walking and the participant’s ability to perform MI using a visual analog scale (VAS). There were no significant changes in corticospinal and spinal motor neuron excitability during and after the intervention using AO+MI (p>0.05). The intervention temporarily increased VAS scores, thus indicating clearer MI (p<0.05); however, it did not influence corticospinal excitability during MI of walking (p>0.05). Furthermore, there was no significant correlation between the VMIQ-2 and VAS scores and changes in corticospinal and spinal motor neuron excitability. Therefore, one short intervention using AO+MI increased MI ability in healthy individuals; however, it was insufficient to induce plastic changes at the cortical and spinal levels. Moreover, the effects of intervention using AO+MI were not associated with MI ability. Our findings provide information about intervention using AO+MI in healthy individuals and might be helpful in planning neurorehabilitation strategies.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- School of Health Sciences, Tokyo International University, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Sutor TW, Kura J, Mattingly AJ, Otzel DM, Yarrow JF. The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury. Int J Mol Sci 2022; 23:608. [PMID: 35054791 PMCID: PMC8775843 DOI: 10.3390/ijms23020608] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/04/2023] Open
Abstract
Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.g., neuromuscular or functional electrical stimulation cycling, rowing, or resistance training, as well as other standing, walking, or partial weight-bearing interventions) that reload the paralyzed limbs and promote muscle recovery and use-dependent neuroplasticity. However, only sparse and relatively inconsistent evidence supports the ability of these physical rehabilitation regimens to influence bone metabolism or to increase bone mineral density (BMD) at the most fracture-prone sites in persons with severe SCI. This review discusses the pathophysiology and cellular/molecular mechanisms that influence bone loss after SCI, describes studies evaluating bone turnover and BMD responses to ABPTs during acute versus chronic SCI, identifies factors that may impact the bone responses to ABPT, and provides recommendations to optimize ABPTs for bone recovery.
Collapse
Affiliation(s)
- Tommy W. Sutor
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Jayachandra Kura
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
| | - Alex J. Mattingly
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Joshua F. Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
12
|
Iddings JA, Zarkou A, Field-Fote EC. Noninvasive neuromodulation and rehabilitation to promote functional restoration in persons with spinal cord injury. Curr Opin Neurol 2021; 34:812-818. [PMID: 34766554 PMCID: PMC8597924 DOI: 10.1097/wco.0000000000000997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This review will focus on the use of clinically accessible neuromodulatory approaches for functional restoration in persons with spinal cord injury (SCI). RECENT FINDINGS Functional restoration is a primary rehabilitation priority for individuals with SCI. High-tech neuromodulatory modalities have been used in laboratory settings to improve hand and walking function as well as to reduce spasticity and pain in persons with SCI. However, the cost, limited accessibility, and required expertise are prohibitive for clinical applicability of these high-tech modalities. Recent literature indicates that noninvasive and clinically accessible approaches targeting supraspinal, spinal, and peripheral neural structures can modulate neural excitability. Although a limited number of studies have examined the use of these approaches for functional restoration and amelioration of secondary complications in SCI, early evidence investigating their efficacy when combined with training is encouraging. SUMMARY Larger sample studies addressing both biomarker identification and dosing are crucial next steps in the field of neurorehabilitation research before novel noninvasive stimulation approaches can be incorporated into standard clinical practice.
Collapse
Affiliation(s)
- Jennifer A Iddings
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center
| | - Anastasia Zarkou
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center
| | - Edelle C Field-Fote
- Spinal Cord Injury Research Laboratory, Crawford Research Institute, Shepherd Center
- Division of Physical Therapy, School of Medicine, Emory University
- Program in Applied Physiology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Martins Â, Gouveia D, Cardoso A, Carvalho C, Coelho T, Silva C, Viegas I, Gamboa Ó, Ferreira A. A Controlled Clinical Study of Intensive Neurorehabilitation in Post-Surgical Dogs with Severe Acute Intervertebral Disc Extrusion. Animals (Basel) 2021; 11:ani11113034. [PMID: 34827767 PMCID: PMC8614363 DOI: 10.3390/ani11113034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This study explores the potential intensive neurorehabilitation plasticity effects in post-surgical paraplegic dogs with severe acute intervertebral disc extrusion aiming to achieve ambulatory status. The intensive neurorehabilitation protocol translated in 99.4% (167/168) of recovery in deep pain perception-positive dogs and 58.5% (55/94) in deep pain perception-negative dogs. There was 37.3% (22/59) spinal reflex locomotion, obtained within a maximum period of 3 months. Thus, intensive neurorehabilitation may be a useful approach for this population of dogs, avoiding future euthanasia and promoting an estimated time window of 3 months to recover. Abstract This retrospective controlled clinical study aimed to verify if intensive neurorehabilitation (INR) could improve ambulation faster than spontaneous recovery or conventional physiotherapy and provide a possible therapeutic approach in post-surgical paraplegic deep pain perception-positive (DPP+) (with absent/decreased flexor reflex) and DPP-negative (DDP−) dogs, with acute intervertebral disc extrusion. A large cohort of T10-L3 Spinal Cord Injury (SCI) dogs (n = 367) were divided into a study group (SG) (n = 262) and a control group (CG) (n = 105). The SG was based on prospective clinical cases, and the CG was created by retrospective medical records. All SG dogs performed an INR protocol by the hospitalization regime based on locomotor training, electrical stimulation, and, for DPP−, a combination with pharmacological management. All were monitored throughout the process, and measuring the outcome for DPP+ was performed by OFS and, for the DPP−, by the new Functional Neurorehabilitation Scale (FNRS-DPP−). In the SG, DPP+ dogs had an ambulation rate of 99.4% (n = 167) and, in DPP−, of 58.5% (n = 55). Moreover, in DPP+, there was a strong statistically significant difference between groups regarding ambulation (p < 0.001). The same significant difference was verified in the DPP– dogs (p = 0.007). Furthermore, a tendency toward a significant statistical difference (p = 0.058) regarding DPP recovery was demonstrated between groups. Of the 59 dogs that did not recover DPP, 22 dogs achieved spinal reflex locomotion (SRL), 37.2% within a maximum of 3 months. The progressive myelomalacia cases were 14.9% (14/94). Therefore, although it is difficult to assess the contribution of INR for recovery, the results suggested that ambulation success may be improved, mainly regarding time.
Collapse
Affiliation(s)
- Ângela Martins
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
- Correspondence:
| | - Débora Gouveia
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
| | - Ana Cardoso
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Carla Carvalho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Tiago Coelho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Cátia Silva
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Inês Viegas
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| | - António Ferreira
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| |
Collapse
|
14
|
Martins Â, Gouveia D, Cardoso A, Carvalho C, Silva C, Coelho T, Gamboa Ó, Ferreira A. Functional Neurorehabilitation in Dogs with an Incomplete Recovery 3 Months following Intervertebral Disc Surgery: A Case Series. Animals (Basel) 2021; 11:ani11082442. [PMID: 34438900 PMCID: PMC8388785 DOI: 10.3390/ani11082442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary A non-invasive neurorehabilitation multimodal protocol (NRMP) may be applicable to chronic T3-L3 dogs 3 months after undergoing surgery for acute Intervertebral Disc Disease (IVDD) Hansen type I; this protocol has been shown to be safe, feasible, and potentially effective at improving ambulation in both open field score (OFS) 0 and OFS 1 dogs. The specific sample population criteria limit the number of dogs included, mainly due to owners withdrawing over time. Thus, the present case series study aimed to demonstrate that an NRMP could contribute to a functional treatment possibly based on synaptic and anatomic reorganization of the spinal cord. Abstract This case series study aimed to evaluate the safety, feasibility, and positive outcome of the neurorehabilitation multimodal protocol (NRMP) in 16 chronic post-surgical IVDD Hansen type I dogs, with OFS 0/DPP− (n = 9) and OFS 1/DPP+ (n = 7). All were enrolled in the NRMP for a maximum of 90 days and were clinically discharged after achieving ambulation. The NRMP was based on locomotor training, functional electrical stimulation, transcutaneous electrical spinal cord stimulation, and 4-aminopyridine (4-AP) pharmacological management. In the Deep Pain Perception (DPP)+ dogs, 100% recovered ambulation within a mean period of 47 days, reaching OFS ≥11, which suggests that a longer period of time is needed for recovery. At follow-up, all dogs presented a positive evolution with voluntary micturition. Of the DPP− dogs admitted, all achieved a flexion/extension locomotor pattern within 30 days, and after starting the 4-AP, two dogs were discharged at outcome day 45, with 78% obtaining Spinal Reflex Locomotion (SRL) and automatic micturition within a mean period of 62 days. At follow-up, all dogs maintained their neurological status. After the NRMP, ambulatory status was achieved in 88% (14/16) of dogs, without concurrent events. Thus, an NRMP may be an important therapeutic option to reduce the need for euthanasia in the clinical setting.
Collapse
Affiliation(s)
- Ângela Martins
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
- Correspondence:
| | - Débora Gouveia
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
| | - Ana Cardoso
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Carla Carvalho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Cátia Silva
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Tiago Coelho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| | - António Ferreira
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| |
Collapse
|
15
|
Zaaya M, Pulverenti TS, Knikou M. Transspinal stimulation and step training alter function of spinal networks in complete spinal cord injury. Spinal Cord Ser Cases 2021; 7:55. [PMID: 34218255 DOI: 10.1038/s41394-021-00421-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
STUDY DESIGN Pilot study (case series). OBJECTIVE The objective of this study was to establish spinal neurophysiological changes following high-frequency transspinal stimulation during robot-assisted step training in individuals with chronic motor complete spinal cord injury (SCI). SETTING University research laboratory (Klab4Recovery). METHODS Four individuals with motor complete SCI received an average of 18 sessions of transspinal stimulation over the thoracolumbar region with a pulse train at 333 Hz during robotic-assisted step training. Each session lasted ~1 h, with an average of 240 stimulations delivered during each training session. Before and after the combined intervention, we evaluated the amplitude modulation of the long-latency tibialis anterior (TA) flexion reflex and transspinal evoked potentials (TEP) recorded from flexors and extensors during assisted stepping, and the TEP recruitment curves at rest. RESULTS The long-latency TA flexion reflex was depressed in all phases of the step cycle and the phase-dependent amplitude modulation of TEPs was altered during assisted stepping, while spinal motor output based on TEP recruitment curves was increased after the combined intervention. CONCLUSION This is the first study documenting noninvasive transspinal stimulation coupled with locomotor training depresses flexion reflex excitability and concomitantly increases motoneuron output over multiple spinal segments for both flexors and extensors in people with motor complete SCI. While both transspinal stimulation and locomotor training may act via similar activity-dependent neuroplasticity mechanisms, combined interventions for rehabilitation of neurological disorders has not been systematically assessed. Our current findings support locomotor training induced neuroplasticity may be augmented with transspinal stimulation.
Collapse
Affiliation(s)
- Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, New York, NY, USA
| | - Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, New York, NY, USA.
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, New York, NY, USA.,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
16
|
Martins Â, Gouveia D, Cardoso A, Gamboa Ó, Millis D, Ferreira A. Nervous system modulation through electrical stimulation in companion animals. Acta Vet Scand 2021; 63:22. [PMID: 34053462 PMCID: PMC8167506 DOI: 10.1186/s13028-021-00585-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Domestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP-), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as grade A on the American Spinal Injury Association (ASIA) impairment scale, can recover after multidisciplinary approaches that include rehabilitation modalities, such as functional electrical stimulation (FES), transcutaneous electrical spinal cord stimulation (TESCS) and transcranial direct current stimulation (TDCS). This review intends to explore the history, biophysics, neurophysiology, neuroanatomy and the parameters of FES, TESCS, and TDCS, as safe and noninvasive rehabilitation modalities applied in the veterinary field. Additional studies need to be conducted in clinical settings to successfully implement these guidelines in dogs and cats.
Collapse
|
17
|
Sonkodi B, Bardoni R, Hangody L, Radák Z, Berkes I. Does Compression Sensory Axonopathy in the Proximal Tibia Contribute to Noncontact Anterior Cruciate Ligament Injury in a Causative Way?-A New Theory for the Injury Mechanism. Life (Basel) 2021; 11:443. [PMID: 34069060 PMCID: PMC8157175 DOI: 10.3390/life11050443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Anterior cruciate ligament injury occurs when the ligament fibers are stretched, partially torn, or completely torn. The authors propose a new injury mechanism for non-contact anterior cruciate ligament injury of the knee. Accordingly, non-contact anterior cruciate ligament injury could not happen without the acute compression microinjury of the entrapped peripheral proprioceptive sensory axons of the proximal tibia. This would occur under an acute stress response when concomitant microcracks-fractures in the proximal tibia evolve due to the same excessive and repetitive compression forces. The primary damage may occur during eccentric contractions of the acceleration and deceleration moments of strenuous or unaccustomed fatiguing exercise bouts. This primary damage is suggested to be an acute compression/crush axonopathy of the proprioceptive sensory neurons in the proximal tibia. As a result, impaired proprioception could lead to injury of the anterior cruciate ligament as a secondary damage, which is suggested to occur during the deceleration phase. Elevated prostaglandin E2, nitric oxide and glutamate may have a critical neuro-modulatory role in the damage signaling in this dichotomous neuronal injury hypothesis that could lead to mechano-energetic failure, lesion and a cascade of inflammatory events. The presynaptic modulation of the primary sensory axons by the fatigued and microdamaged proprioceptive sensory fibers in the proximal tibia induces the activation of N-methyl-D-aspartate receptors in the dorsal horn of the spinal cord, through a process that could have long term relevance due to its contribution to synaptic plasticity. Luteinizing hormone, through interleukin-1β, stimulates the nerve growth factor-tropomyosin receptor kinase A axis in the ovarian cells and promotes tropomyosin receptor kinase A and nerve growth factor gene expression and prostaglandin E2 release. This luteinizing hormone induced mechanism could further elevate prostaglandin E2 in excess of the levels generated by osteocytes, due to mechanical stress during strenuous athletic moments in the pre-ovulatory phase. This may explain why non-contact anterior cruciate ligament injury is at least three-times more prevalent among female athletes.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, 1123 Budapest, Hungary;
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - László Hangody
- Department of Traumatology, Semmelweis University, 1145 Budapest, Hungary;
| | - Zsolt Radák
- Research Center for Molecular Exercise Science, University of Physical Education, 1123 Budapest, Hungary;
| | - István Berkes
- Department of Health Sciences and Sport Medicine, University of Physical Education, 1123 Budapest, Hungary;
| |
Collapse
|
18
|
Pulverenti TS, Zaaya M, Grabowski M, Grabowski E, Islam MA, Li J, Murray LM, Knikou M. Neurophysiological Changes After Paired Brain and Spinal Cord Stimulation Coupled With Locomotor Training in Human Spinal Cord Injury. Front Neurol 2021; 12:627975. [PMID: 34040572 PMCID: PMC8141587 DOI: 10.3389/fneur.2021.627975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological changes that involve activity-dependent neuroplasticity mechanisms via repeated stimulation and locomotor training are not commonly employed in research even though combination of interventions is a common clinical practice. In this randomized clinical trial, we established neurophysiological changes when transcranial magnetic stimulation (TMS) of the motor cortex was paired with transcutaneous thoracolumbar spinal (transspinal) stimulation in human spinal cord injury (SCI) delivered during locomotor training. We hypothesized that TMS delivered before transspinal (TMS-transspinal) stimulation promotes functional reorganization of spinal networks during stepping. In this protocol, TMS-induced corticospinal volleys arrive at the spinal cord at a sufficient time to interact with transspinal stimulation induced depolarization of alpha motoneurons over multiple spinal segments. We further hypothesized that TMS delivered after transspinal (transspinal-TMS) stimulation induces less pronounced effects. In this protocol, transspinal stimulation is delivered at time that allows transspinal stimulation induced action potentials to arrive at the motor cortex and affect descending motor volleys at the site of their origin. Fourteen individuals with motor incomplete and complete SCI participated in at least 25 sessions. Both stimulation protocols were delivered during the stance phase of the less impaired leg. Each training session consisted of 240 paired stimuli delivered over 10-min blocks. In transspinal-TMS, the left soleus H-reflex increased during the stance-phase and the right soleus H-reflex decreased at mid-swing. In TMS-transspinal no significant changes were found. When soleus H-reflexes were grouped based on the TMS-targeted limb, transspinal-TMS and locomotor training promoted H-reflex depression at swing phase, while TMS-transspinal and locomotor training resulted in facilitation of the soleus H-reflex at stance phase of the step cycle. Furthermore, both transspinal-TMS and TMS-transspinal paired-associative stimulation (PAS) and locomotor training promoted a more physiological modulation of motor activity and thus depolarization of motoneurons during assisted stepping. Our findings support that targeted non-invasive stimulation of corticospinal and spinal neuronal pathways coupled with locomotor training produce neurophysiological changes beneficial to stepping in humans with varying deficits of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Monika Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Jeffrey Li
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Lynda M Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States.,Ph.D. Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
19
|
Islam MA, Pulverenti TS, Knikou M. Neuronal Actions of Transspinal Stimulation on Locomotor Networks and Reflex Excitability During Walking in Humans With and Without Spinal Cord Injury. Front Hum Neurosci 2021; 15:620414. [PMID: 33679347 PMCID: PMC7930001 DOI: 10.3389/fnhum.2021.620414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
This study investigated the neuromodulatory effects of transspinal stimulation on soleus H-reflex excitability and electromyographic (EMG) activity during stepping in humans with and without spinal cord injury (SCI). Thirteen able-bodied adults and 5 individuals with SCI participated in the study. EMG activity from both legs was determined for steps without, during, and after a single-pulse or pulse train transspinal stimulation delivered during stepping randomly at different phases of the step cycle. The soleus H-reflex was recorded in both subject groups under control conditions and following single-pulse transspinal stimulation at an individualized exactly similar positive and negative conditioning-test interval. The EMG activity was decreased in both subject groups at the steps during transspinal stimulation, while intralimb and interlimb coordination were altered only in SCI subjects. At the steps immediately after transspinal stimulation, the physiological phase-dependent EMG modulation pattern remained unaffected in able-bodied subjects. The conditioned soleus H-reflex was depressed throughout the step cycle in both subject groups. Transspinal stimulation modulated depolarization of motoneurons over multiple segments, limb coordination, and soleus H-reflex excitability during assisted stepping. The soleus H-reflex depression may be the result of complex spinal inhibitory interneuronal circuits activated by transspinal stimulation and collision between orthodromic and antidromic volleys in the peripheral mixed nerve. The soleus H-reflex depression by transspinal stimulation suggests a potential application for normalization of spinal reflex excitability after SCI.
Collapse
Affiliation(s)
- Md. Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Timothy S. Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, United States
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
20
|
Lalonde NR, Bui TV. Do spinal circuits still require gating of sensory information by presynaptic inhibition after spinal cord injury? CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Caron G, Bilchak JN, Côté MP. Direct evidence for decreased presynaptic inhibition evoked by PBSt group I muscle afferents after chronic SCI and recovery with step-training in rats. J Physiol 2020; 598:4621-4642. [PMID: 32721039 DOI: 10.1113/jp280070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Presynaptic inhibition is modulated by supraspinal centres and primary afferents in order to filter sensory information, adjust spinal reflex excitability, and ensure smooth movement. After spinal cord injury (SCI), the supraspinal control of primary afferent depolarization (PAD) interneurons is disengaged, suggesting an increased role for sensory afferents. While increased H-reflex excitability in spastic individuals indicates a possible decrease in presynaptic inhibition, it remains unclear whether a decrease in sensory-evoked PAD contributes to this effect. We investigated whether the PAD evoked by hindlimb afferents contributes to the change in presynaptic inhibition of the H-reflex in a decerebrated rat preparation. We found that chronic SCI decreases presynaptic inhibition of the plantar H-reflex through a reduction in PAD evoked by posterior biceps-semitendinosus (PBSt) muscle group I afferents. We further found that step-training restored presynaptic inhibition of the plantar H-reflex evoked by PBSt, suggesting the presence of activity-dependent plasticity of PAD pathways activated by flexor muscle group I afferents. ABSTRACT Spinal cord injury (SCI) results in the disruption of supraspinal control of spinal networks and an increase in the relative influence of afferent feedback to sublesional neural networks, both of which contribute to enhancing spinal reflex excitability. Hyperreflexia occurs in ∼75% of individuals with a chronic SCI and critically hinders functional recovery and quality of life. It is suggested that it results from an increase in motoneuronal excitability and a decrease in presynaptic and postsynaptic inhibitory mechanisms. In contrast, locomotor training decreases hyperreflexia by restoring presynaptic inhibition. Primary afferent depolarization (PAD) is a powerful presynaptic inhibitory mechanism that selectively gates primary afferent transmission to spinal neurons to adjust reflex excitability and ensure smooth movement. However, the effect of chronic SCI and step-training on the reorganization of presynaptic inhibition evoked by hindlimb afferents, and the contribution of PAD has never been demonstrated. The objective of this study is to directly measure changes in presynaptic inhibition through dorsal root potentials (DRPs) and its association with plantar H-reflex inhibition. We provide direct evidence that H-reflex hyperexcitability is associated with a decrease in transmission of PAD pathways activated by posterior biceps-semitendinosus (PBSt) afferents after chronic SCI. More precisely, we illustrate that the pattern of inhibition evoked by PBSt group I muscle afferents onto both L4-DRPs and plantar H-reflexes evoked by the distal tibial nerve is impaired after chronic SCI. These changes are not observed in step-trained animals, suggesting a role for activity-dependent plasticity to regulate PAD pathways activated by flexor muscle group I afferents.
Collapse
Affiliation(s)
- Guillaume Caron
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| | - Jadwiga N Bilchak
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, 19129
| |
Collapse
|
22
|
Korupolu R, Stampas A, Singh M, Zhou P, Francisco G. Electrophysiological Outcome Measures in Spinal Cord Injury Clinical Trials: A Systematic Review. Top Spinal Cord Inj Rehabil 2020; 25:340-354. [PMID: 31844386 DOI: 10.1310/sci2504-340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Electrophysiological measures are being increasingly utilized due to their ability to provide objective measurements with minimal bias and to detect subtle changes with quantitative data on neural function. Heterogeneous reporting of trial outcomes limits effective interstudy comparison and optimization of treatment. Objective: The objective of this systematic review is to describe the reporting of electrophysiological outcome measures in spinal cord injury (SCI) clinical trials in order to inform a subsequent consensus study. Methods: A systematic search of PubMed and EMBASE databases was conducted according to PRISMA guidelines. Adult human SCI clinical trials published in English between January 1, 2008 and September 15, 2018 with at least one electrophysiological outcome measure were eligible. Findings were reviewed by all authors to create a synthesis narrative describing each outcome measure. Results: Sixty-four SCI clinical trials were included in this review. Identified electrophysiological outcomes included electromyography activity (44%), motor evoked potentials (33%), somatosensory evoked potentials (33%), H-reflex (20%), reflex electromyography activity (11%), nerve conduction studies (9%), silent period (3%), contact heat evoked potentials (2%), and sympathetic skin response (2%). Heterogeneity was present in regard to both methods of measurement and reporting of electrophysiological outcome measures. Conclusion: This review demonstrates need for the development of a standardized reporting set for electrophysiological outcome measures. Limitations of this review include exclusion of non-English publications, studies more than 10 years old, and an inability to assess methodological quality of primary studies due to a lack of guidelines on reporting of systematic reviews of outcome measures.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Mani Singh
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| |
Collapse
|
23
|
Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal Neurons: Essential Elements of Locomotor Control in the Intact and Possibly the Injured Spinal Cord. Front Cell Neurosci 2019; 13:512. [PMID: 31798419 PMCID: PMC6874159 DOI: 10.3389/fncel.2019.00512] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Propriospinal interneurons (INs) communicate information over short and long distances within the spinal cord. They act to coordinate different parts of the body by linking motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their role in coordinating locomotor circuits near and far may be invaluable to the recovery of locomotor function lost due to injury to the spinal cord where the flow of motor commands from the brain and brainstem to spinal motor circuits is disrupted. The formation and activation of circuits established by spared propriospinal INs may promote the re-emergence of locomotion. In light of progress made in animal models of spinal cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in the intact spinal cord and describe recent studies investigating the assembly and/or activation of propriospinal circuits to promote recovery of locomotion following SCI.
Collapse
Affiliation(s)
- Alex M Laliberte
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sara Goltash
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas R Lalonde
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Tuan Vu Bui
- Department of Biology, Faculty of Science, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Repeated transspinal stimulation decreases soleus H-reflex excitability and restores spinal inhibition in human spinal cord injury. PLoS One 2019; 14:e0223135. [PMID: 31557238 PMCID: PMC6762874 DOI: 10.1371/journal.pone.0223135] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/14/2019] [Indexed: 12/12/2022] Open
Abstract
Transcutaneous spinal cord or transspinal stimulation over the thoracolumbar enlargement, the spinal location of motoneurons innervating leg muscles, modulates neural circuits engaged in the control of movement. The extent to which daily sessions (e.g. repeated) of transspinal stimulation affects soleus H-reflex excitability in individuals with chronic spinal cord injury (SCI) remains largely unknown. In this study, we established the effects of repeated cathodal transspinal stimulation on soleus H-reflex excitability and spinal inhibition in individuals with and without chronic SCI. Ten SCI and 10 healthy control subjects received monophasic transspinal stimuli of 1-ms duration at 0.2 Hz at subthreshold and suprathreshold intensities of the right soleus transspinal evoked potential (TEP). SCI subjects received an average of 16 stimulation sessions, while healthy control subjects received an average of 10 stimulation sessions. Before and one or two days post intervention, we used the soleus H reflex to assess changes in motoneuron recruitment, homosynaptic depression following single tibial nerve stimuli delivered at 0.1, 0.125, 0.2, 0.33 and 1.0 Hz, and postactivation depression following paired tibial nerve stimuli at the interstimulus intervals of 60, 100, 300, and 500 ms. Soleus H-reflex excitability was decreased in both legs in motor incomplete and complete SCI but not in healthy control subjects. Soleus H-reflex homosynaptic and postactivation depression was present in motor incomplete and complete SCI but was of lesser strength to that observed in healthy control subjects. Repeated transspinal stimulation increased homosynaptic depression in all SCI subjects and remained unaltered in healthy controls. Postactivation depression remained unaltered in all subject groups. Lastly, transspinal stimulation decreased the severity of spasms and ankle clonus. The results indicate decreased reflex hyperexcitability and recovery of spinal inhibitory control in the injured human spinal cord with repeated transspinal stimulation. Transspinal stimulation is a noninvasive neuromodulation method for restoring spinally-mediated afferent reflex actions after SCI in humans.
Collapse
|
25
|
Mortaza N, Moussavi Z, Stecina K, Salter JE, Passmore SR, Gardiner PF, Glazebrook CM. Effects of training with a neuro-mechano stimulator rehabilitation bicycle on functional recovery and paired-reflex depression of the soleus in individuals with incomplete paralysis: a proof-of-principle study. Int J Neurosci 2019; 129:1066-1075. [PMID: 31220973 DOI: 10.1080/00207454.2019.1634068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: The present study describes the training effects of a novel motorized bicycle-like device for individuals with incomplete spinal cord injury. Methods: Participants were five individuals with motor incomplete spinal cord injury (56 ± 7 years). Four of five participants received two 30-min sessions of training: one with, and one without, mechanical stimulation on the plantar surface of the foot; soleus paired H-reflex depression was examined before and after each session. Three of five participants received 24 sessions of 30-min of training (long-training). Following the long-training, balance, walking and spasticity improvements were assessed using validated clinical outcome measures, in addition to the H-reflex assessment. Results: One cycling session with mechanical stimulation yielded 14% and 32% more reflex depression in participants with moderate spasticity (n = 2/4). The same trend was not observed in non-spastic participants (n = 2/4). All participants who participated in the long-training had spasticity and showed reduced spasticity, improved walking speed, endurance and balance. Conclusions: Overall, participants with spasticity showed increased soleus H-reflex suppression after one training session with mechanical stimulation and reduced spasticity scores after long training. We interpret this as evidence that the training influenced both presynaptic and postsynaptic inhibitory mechanisms acting on soleus motoneurons. Therefore, this training has the potential to be a non-invasive complementary therapy to reduce spasticity after incomplete spinal cord injury.
Collapse
Affiliation(s)
- Niyousha Mortaza
- Program of Biomedical Engineering, Faculty of Engineering, University of Manitoba , Winnipeg , Manitoba , Canada.,Program of Applied Health Sciences, University of Manitoba , Winnipeg , Manitoba , Canada.,Faculty of Kinesiology and Recreation Management, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Zahra Moussavi
- Program of Biomedical Engineering, Faculty of Engineering, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Katinka Stecina
- Program of Biomedical Engineering, Faculty of Engineering, University of Manitoba , Winnipeg , Manitoba , Canada.,Department of Physiology & Pathophysiology, University of Manitoba , Winnipeg , Manitoba , Canada.,Spinal cord Research Center, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Jennifer E Salter
- Faculty of Medicine, Physical Medicine and Rehabilitation, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Steven R Passmore
- Program of Applied Health Sciences, University of Manitoba , Winnipeg , Manitoba , Canada.,Faculty of Kinesiology and Recreation Management, University of Manitoba , Winnipeg , Manitoba , Canada.,Health, Leisure, and Human Performance Research Institute, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Phillip F Gardiner
- Faculty of Kinesiology and Recreation Management, University of Manitoba , Winnipeg , Manitoba , Canada.,Department of Physiology & Pathophysiology, University of Manitoba , Winnipeg , Manitoba , Canada.,Spinal cord Research Center, University of Manitoba , Winnipeg , Manitoba , Canada.,Health, Leisure, and Human Performance Research Institute, University of Manitoba , Winnipeg , Manitoba , Canada
| | - Cheryl M Glazebrook
- Program of Biomedical Engineering, Faculty of Engineering, University of Manitoba , Winnipeg , Manitoba , Canada.,Program of Applied Health Sciences, University of Manitoba , Winnipeg , Manitoba , Canada.,Faculty of Kinesiology and Recreation Management, University of Manitoba , Winnipeg , Manitoba , Canada.,Health, Leisure, and Human Performance Research Institute, University of Manitoba , Winnipeg , Manitoba , Canada
| |
Collapse
|
26
|
Zhou R, Parhizi B, Assh J, Alvarado L, Ogilvie R, Chong SL, Mushahwar VK. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury. J Neurophysiol 2018; 120:3172-3186. [DOI: 10.1152/jn.00509.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.
Collapse
Affiliation(s)
- R. Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - B. Parhizi
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - J. Assh
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - L. Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - R. Ogilvie
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S. L. Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V. K. Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Estes S, Iddings JA, Ray S, Kirk-Sanchez NJ, Field-Fote EC. Comparison of Single-Session Dose Response Effects of Whole Body Vibration on Spasticity and Walking Speed in Persons with Spinal Cord Injury. Neurotherapeutics 2018; 15:684-696. [PMID: 29959653 PMCID: PMC6095785 DOI: 10.1007/s13311-018-0644-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Spasticity affects approximately 65% of persons with spinal cord injury (SCI) and negatively impacts function and quality of life. Whole body vibration (WBV) appears to reduce spasticity and improve walking function; however, the optimal dose (frequency/duration) is not known. We compared single-session effects of four different WBV frequency/duration dose conditions on spasticity and walking speed, in preparation for a planned multi-session study. Thirty-five participants with motor-incomplete SCI received four different doses of WBV: high frequency (50 Hz)/short duration (180 s), high frequency/long duration (360 s), low frequency (30 Hz)/short duration, and low frequency/long duration, plus a control intervention consisting of sham electrical stimulation. In all conditions, participants stood on the WBV platform for 45-s bouts with 1 min rest between bouts until the requisite duration was achieved. The frequency/duration dose order was randomized across participants; sessions were separated by at least 1 week. Quadriceps spasticity was measured using the pendulum test at four time points during each session: before, immediately after, 15 min after, and 45 min after WBV. Walking speed was quantified using the 10-m walk test at three time points during each session: baseline, immediately after, and 45 min after WBV. In the full group analysis, no frequency/duration combination was significantly different from the sham-control condition. In participants with more severe spasticity, a greater reduction in stretch reflex excitability was associated with the high frequency/long duration WBV condition. The sham-control condition was associated with effects, indicating that the activity of repeated sitting and standing may have a beneficial influence on spasticity. TRIAL REGISTRATION NCT02340910 (assigned 01/19/2015).
Collapse
Affiliation(s)
- Stephen Estes
- Shepherd Center - Crawford Research Institute, Atlanta, GA, USA
| | | | - Somu Ray
- Shepherd Center - Crawford Research Institute, Atlanta, GA, USA
| | - Neva J Kirk-Sanchez
- Department of Physical Therapy, University of Miami - Miller School of Medicine, Coral Gables, FL, USA
| | - Edelle C Field-Fote
- Shepherd Center - Crawford Research Institute, Atlanta, GA, USA.
- Division of Physical Therapy, Emory University - School of Medicine, Atlanta, GA, USA.
- Program in Applied Physiology, Georgia Institute of Technology - School ofBiological Sciences, Atlanta, GA, USA.
| |
Collapse
|
28
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:E1701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
29
|
Grasmücke D, Zieriacks A, Jansen O, Fisahn C, Sczesny-Kaiser M, Wessling M, Meindl RC, Schildhauer TA, Aach M. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg Focus 2017; 42:E15. [DOI: 10.3171/2017.2.focus171] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ObjectiveAge and lesion level are believed to represent outcome predictors in rehabilitation of patients with chronic spinal cord injury (SCI). The Hybrid Assistive Limb (HAL) exoskeleton enables patients to perform a voluntary controlled gait pattern via an electromyography-triggered neuromuscular feedback system, and has been introduced as a temporary gait training tool in patients with SCI. The aim of this prospective pre- and postintervention study was to examine functional outcomes as a function of age and lesion level in patients with chronic incomplete SCI (iSCI) or chronic complete SCI (cSCI) with zones of partial preservation (ZPP) by using the HAL as a temporary training tool.MethodsFifty-five participants with chronic iSCI or cSCI (mean time since injury 6.85 ± 5.12 years) were classified according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS) and divided by age (< 50 or ≥ 50 years), independent of lesion level, and also into 4 homogeneous groups according to lesion level. The subgroups were as follows: Subgroup 1, tetraplegic iSCI (n = 13) (C2–8, AIS C [n = 8] and AIS D [n = 5]); Subgroup 2, paraplegic iSCI with spastic motor behavior (n = 15) (T2–12, AIS C [n = 8] and AIS D [n = 7]); Subgroup 3, paraplegic cSCI with complete motor paraplegia and absence of spastic motor behavior (n = 18) (T11–L4 [AIS A], and ZPP from L-3 to S-1); and Subgroup 4, paraplegic iSCI with absence of spastic motor behavior (n = 9) (T12–L3, AIS C [n = 8] and AIS D [n = 1]). The training paradigm consisted of 12 weeks of HAL-assisted treadmill training (5 times/week). Baseline status was documented prior to intervention by using the AIS grade, Walking Index for SCI II (WISCI II) score, the 10-meter walk test (10MWT), and the 6-minute walk test (6MinWT). Training effects were assessed after 6 and 12 weeks of therapy, without HAL assistance.ResultsOverall, a time reduction of 47% in the 10MWT, self-selected speed (10MWTsss) (< 50 years = 56% vs ≥ 50 years = 37%) and an increase of 50% in the 6MinWT were documented. The WISCI II scores showed a mean gain of 1.69 levels. At the end of the study, 24 of 55 patients (43.6%) were less dependent on walking aids. Age had a nonsignificant negative influence on the 10MWTsss. Despite a few nonsignificant subgroup differences, participants improved across all tests. Namely, patients with iSCI who had spastic motor behavior improved to a nonsignificant, lesser extent in the 6MinWT.ConclusionsThe HAL-assisted treadmill training leads to functional improvements in chronic iSCI or cSCI, both in and out of the exoskeleton. An improvement of approximately 50% in the 10MWTsss and in gait endurance (6MinWT) can be expected from such training. The influences of SCI lesion level and age on functional outcome were nonsignificant in the present study. Older age (≥ 50 years) may be associated with smaller improvements in the 10MWTsss. An iSCI in paraplegic patients with spastic motor behavior may be a nonsignificant negative predictor in gait endurance improvements.Clinical trial registration no.: DRKS00010250 (https://drks-neu.uniklinik-freiburg.de/drks_web/setLocale_DE.do)
Collapse
Affiliation(s)
| | | | | | - Christian Fisahn
- 2Department of General and Trauma Surgery, and
- 3Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | | | - Martin Wessling
- 5Department of Tumour and Revision Surgery, Orthopaedic Hospital Volmarstein, Wetter, Germany; and
| | | | | | | |
Collapse
|
30
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
31
|
Lyu M, Chen W, Ding X, Wang J, Bai S, Ren H. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:104301. [PMID: 27802730 DOI: 10.1063/1.4964136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.
Collapse
Affiliation(s)
- Mingxing Lyu
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Weihai Chen
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Xilun Ding
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Jianhua Wang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| | - Shaoping Bai
- Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg 9000, Denmark
| | - Huichao Ren
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
32
|
Training-Specific Neural Plasticity in Spinal Reflexes after Incomplete Spinal Cord Injury. Neural Plast 2016; 2016:6718763. [PMID: 27725887 PMCID: PMC5048024 DOI: 10.1155/2016/6718763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
The neural plasticity of spinal reflexes after two contrasting forms of walking training was determined in individuals with chronic, motor-incomplete spinal cord injury (SCI). Endurance Training involved treadmill walking for as long as possible, and Precision Training involved walking precisely over obstacles and onto targets overground. Twenty participants started either Endurance or Precision Training for 2 months and then crossed over after a 2-month rest period to the other form of training for 2 months. Measures were taken before and after each phase of training and rest. The cutaneomuscular reflex (CMR) during walking was evoked in the soleus (SOL) and tibialis anterior muscles by stimulating the posterior tibial nerve at the ankle. Clonus was estimated from the EMG power in the SOL during unperturbed walking. The inhibitory component of the SOL CMR was enhanced after Endurance but not Precision Training. Clonus did not change after either form of training. Participants with lower reflex excitability tended to be better walkers (i.e., faster walking speeds) prior to training, and the reduction in clonus was significantly correlated with the improvement in walking speed and distance. Thus, reflex excitability responded in a training-specific way, with the reduction in reflex excitability related to improvements in walking function. Trial registration number is NCT01765153.
Collapse
|
33
|
Keller AVP, Wainwright G, Shum-Siu A, Prince D, Hoeper A, Martin E, Magnuson DSK. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats. J Neurotrauma 2016; 34:661-670. [PMID: 27196003 DOI: 10.1089/neu.2015.4227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.
Collapse
Affiliation(s)
- Anastasia V P Keller
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Physiology and Biophysics, University of Louisville , Louisville, Kentucky
| | - Grace Wainwright
- 5 Department of J.B. Speed School of Engineering, University of Louisville , Louisville, Kentucky
| | - Alice Shum-Siu
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Daniella Prince
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Alyssa Hoeper
- 5 Department of J.B. Speed School of Engineering, University of Louisville , Louisville, Kentucky
| | - Emily Martin
- 5 Department of J.B. Speed School of Engineering, University of Louisville , Louisville, Kentucky
| | - David S K Magnuson
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,3 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
34
|
Awai L, Curt A. Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance. J Neurotrauma 2016; 33:1428-35. [DOI: 10.1089/neu.2015.4154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Dixon L, Ibrahim MM, Santora D, Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J Neurophysiol 2016; 116:904-16. [PMID: 27281748 DOI: 10.1152/jn.00259.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/02/2016] [Indexed: 01/17/2023] Open
Abstract
Anatomical, physiological, and functional connectivity exists between the neurons of the primary motor cortex (M1) and spinal cord. Paired associative stimulation (PAS) produces enduring changes in M1, based on the Hebbian principle of associative plasticity. The present study aimed to establish neurophysiological changes in human cortical and spinal neuronal circuits by pairing noninvasive transspinal stimulation with transcortical stimulation via transcranial magnetic stimulation (TMS). We delivered paired transspinal and transcortical stimulation for 40 min at precise interstimulus intervals, with TMS being delivered after (transspinal-transcortical PAS) or before (transcortical-transspinal PAS) transspinal stimulation. Transspinal-transcortical PAS markedly decreased intracortical inhibition, increased intracortical facilitation and M1 excitability with concomitant decreases of motor threshold, and reduced the soleus Hoffmann's reflex (H-reflex) low frequency-mediated homosynaptic depression. Transcortical-transspinal PAS did not affect intracortical circuits, decreased M1 excitability, and reduced the soleus H-reflex-paired stimulation pulses' mediated postactivation depression. Both protocols affected the excitation threshold of group Ia afferents and motor axons. These findings clearly indicate that the pairing of transspinal with transcortical stimulation produces cortical and spinal excitability changes based on the timing interval and functional network interactions between the two associated inputs. This new PAS paradigm may constitute a significant neuromodulation method with physiological impact, because it can be used to alter concomitantly excitability of intracortical circuits, corticospinal neurons, and spinal inhibition in humans.
Collapse
Affiliation(s)
- Luke Dixon
- Department of Physical Therapy, College of Staten Island, New York, New York
| | - Mohamed M Ibrahim
- Department of Physical Therapy, College of Staten Island, New York, New York
| | - Danielle Santora
- Department of Physical Therapy, College of Staten Island, New York, New York
| | - Maria Knikou
- Graduate Center, City University of New York, New York, New York; and Department of Physical Therapy, College of Staten Island, New York, New York
| |
Collapse
|
36
|
Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast 2016; 2016:1216258. [PMID: 27293901 PMCID: PMC4879237 DOI: 10.1155/2016/1216258] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI.
Collapse
Affiliation(s)
- Andrew C. Smith
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Physical Therapy, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
37
|
Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury. Spinal Cord 2016; 54:942-946. [PMID: 27067652 PMCID: PMC5399155 DOI: 10.1038/sc.2016.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 01/16/2023]
Abstract
Study design: This is a randomized controlled prospective trial with two parallel groups. Objectives: The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. Setting: This study was conducted in SCS Research Center in Colorado, USA. Methods: A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long–Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Results: Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. Conclusion: TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.
Collapse
|
38
|
Condliffe EG, Jeffery DT, Emery DJ, Gorassini MA. Spinal inhibition and motor function in adults with spastic cerebral palsy. J Physiol 2016; 594:2691-705. [PMID: 26842905 DOI: 10.1113/jp271886] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Abnormal activation of motoneurons in the spinal cord by sensory pathways is thought to contribute to impaired movement control and spasticity in individuals with cerebral palsy. Here we use single motor unit recordings to show how individual motoneurons in the spinal cord respond to sensory inputs in a group of participants with cerebral palsy having different degrees of motor dysfunction. In participants who had problems walking independently and required assistive devices such as wheelchairs, sensory pathways only excited motoneurons in the spinal cord. In contrast, in participants with cerebral palsy who walked independently for long distances, sensory inputs both inhibited and excited motoneurons in the spinal cord, similar to what we found in uninjured control participants. These findings demonstrate that in individuals with severe cerebral palsy, inhibitory control of motoneurons from sensory pathways is reduced and may contribute to motor dysfunction and spasticity. ABSTRACT Reduced inhibition of spinal motoneurons by sensory pathways may contribute to heightened reflex activity, spasticity and impaired motor function in individuals with cerebral palsy (CP). To measure if the activation of inhibitory post-synaptic potentials (IPSPs) by sensory inputs is reduced in CP, the tonic discharge rate of single motor units from the soleus muscle was plotted time-locked to the occurrence of a sensory stimulation to produce peri-stimulus frequencygrams (PSFs). Stimulation to the medial arch of the foot was used to activate cutaneomuscular afferents in 17 adults with bilateral spastic CP and 15 neurologically intact (NI) peers. Evidence of IPSP activation from the PSF profiles, namely a marked pause or reduction in motor unit firing rates at the onset of the cutaneomuscular reflex, was found in all NI participants but in only half of participants with CP. In the other half of the participants with CP, stimulation of cutaneomuscular afferents produced a PSF profile indicative of a pure excitatory post-synaptic potential, with firing rates increasing above the mean pre-stimulus rate for 300 ms or more. The amplitude of motoneuron inhibition during the period of IPSP activation, as measured from the surface EMG, was less in participants with poor motor function as evaluated with the Gross Motor Functional Classification System (r = 0.72, P < 0.001) and the Functional Mobility Scale (r = -0.82, P < 0.001). These findings demonstrate that in individuals with CP, reduced activation of motoneuron IPSPs by sensory inputs is associated with reduced motor function and may contribute to enhanced reflexes and spasticity in CP.
Collapse
Affiliation(s)
- E G Condliffe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Alberta, Canada
| | - D T Jeffery
- Department of Radiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - D J Emery
- Department of Radiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - M A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Minassian K, Hofstoetter US. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans. CNS Neurosci Ther 2016; 22:262-70. [PMID: 26890324 DOI: 10.1111/cns.12530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
40
|
Yamaguchi T, Fujiwara T, Tsai YA, Tang SC, Kawakami M, Mizuno K, Kodama M, Masakado Y, Liu M. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res 2016; 234:1469-78. [PMID: 26790423 PMCID: PMC4851690 DOI: 10.1007/s00221-016-4561-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/20/2015] [Indexed: 11/24/2022]
Abstract
Supraspinal excitability and sensory input may play an important role for the modulation of spinal inhibitory interneurons and functional recovery among patients with incomplete spinal cord injury (SCI). Here, we investigated the effects of anodal transcranial direct current stimulation (tDCS) combined with patterned electrical stimulation (PES) on spinal inhibitory interneurons in patients with chronic incomplete SCI and in healthy individuals. Eleven patients with incomplete SCI and ten healthy adults participated in a single-masked, sham-controlled crossover study. PES involved stimulating the common peroneal nerve with a train of ten 100 Hz pulses every 2 s for 20 min. Anodal tDCS (1 mA) was simultaneously applied to the primary motor cortex that controls the tibialis anterior muscle. We measured reciprocal inhibition and presynaptic inhibition of a soleus H-reflex by stimulating the common peroneal nerve prior to tibial nerve stimulation, which elicits the H-reflex. The inhibition was assessed before, immediately after, 10 min after and 20 min after the stimulation. Compared with baseline, simultaneous application of anodal tDCS with PES significantly increased changes in disynaptic reciprocal inhibition and long-latency presynaptic inhibition in both healthy and SCI groups for at least 20 min after the stimulation (all, p < 0.001). In patients with incomplete SCI, anodal tDCS with PES significantly increased the number of ankle movements in 10 s at 20 min after the stimulation (p = 0.004). In conclusion, anodal tDCS combined with PES could induce spinal plasticity and improve ankle movement in patients with incomplete SCI.
Collapse
Affiliation(s)
- Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Yun-An Tsai
- Center for Neural Regeneration, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,National Yang Ming University, Taipei, Taiwan, ROC
| | - Shuen-Chang Tang
- Center for Neural Regeneration, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mitsuhiko Kodama
- Department of Rehabilitation Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshihisa Masakado
- Department of Rehabilitation Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
41
|
Stevenson AJ, Mrachacz-Kersting N, van Asseldonk E, Turner DL, Spaich EG. Spinal plasticity in robot-mediated therapy for the lower limbs. J Neuroeng Rehabil 2015; 12:81. [PMID: 26377324 PMCID: PMC4574007 DOI: 10.1186/s12984-015-0073-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/03/2015] [Indexed: 12/02/2022] Open
Abstract
Robot-mediated therapy can help improve walking ability in patients following injuries to the central nervous system. However, the efficacy of this treatment varies between patients, and evidence for the mechanisms underlying functional improvements in humans is poor, particularly in terms of neural changes in the spinal cord. Here, we review the recent literature on spinal plasticity induced by robotic-based training in humans and propose recommendations for the measurement of spinal plasticity using robotic devices. Evidence for spinal plasticity in humans following robotic training is limited to the lower limbs. Body weight-supported (BWS) robotic-assisted step training of patients with spinal cord injury (SCI) or stroke patients has been shown to lead to changes in the amplitude and phase modulation of spinal reflex pathways elicited by electrical stimulation or joint rotations. Of particular importance is the finding that, among other changes to the spinal reflex circuitries, BWS robotic-assisted step training in SCI patients resulted in the re-emergence of a physiological phase modulation of the soleus H-reflex during walking. Stretch reflexes elicited by joint rotations constitute a tool of interest to probe spinal circuitry since the technology necessary to produce these perturbations could be integrated as a natural part of robotic devices. Presently, ad-hoc devices with an actuator capable of producing perturbations powerful enough to elicit the reflex are available but are not part of robotic devices used for training purposes. A further development of robotic devices that include the technology to elicit stretch reflexes would allow for the spinal circuitry to be routinely tested as a part of the training and evaluation protocols.
Collapse
Affiliation(s)
- Andrew Jt Stevenson
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| | - Natalie Mrachacz-Kersting
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| | - Edwin van Asseldonk
- Biomedical Engineering, University of Twente, 7522NB, Enschede, The Netherlands.
| | - Duncan L Turner
- NeuroRehabilitation Unit, School of Health, Sport and Bioscience, University of East London, London, E15 4LZ, England.
| | - Erika G Spaich
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, DK 9220, Denmark.
| |
Collapse
|
42
|
Rozand V, Grosprêtre S, Stapley PJ, Lepers R. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation. J Vis Exp 2015. [PMID: 26436986 DOI: 10.3791/52974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.
Collapse
Affiliation(s)
- Vianney Rozand
- INSERM U1093, Faculty of Sport Sciences, Univ. Bourgogne Franche-Comté;
| | - Sidney Grosprêtre
- INSERM U1093, Faculty of Sport Sciences, Univ. Bourgogne Franche-Comté
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong
| | - Romuald Lepers
- INSERM U1093, Faculty of Sport Sciences, Univ. Bourgogne Franche-Comté
| |
Collapse
|
43
|
Sczesny-Kaiser M, Höffken O, Aach M, Cruciger O, Grasmücke D, Meindl R, Schildhauer TA, Schwenkreis P, Tegenthoff M. HAL® exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil 2015; 12:68. [PMID: 26289818 PMCID: PMC4545929 DOI: 10.1186/s12984-015-0058-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Reorganization in the sensorimotor cortex accompanied by increased excitability and enlarged body representations is a consequence of spinal cord injury (SCI). Robotic-assisted bodyweight supported treadmill training (BWSTT) was hypothesized to induce reorganization and improve walking function. OBJECTIVE To assess whether BWSTT with hybrid assistive limb® (HAL®) exoskeleton affects cortical excitability in the primary somatosensory cortex (S1) in SCI patients, as measured by paired-pulse somatosensory evoked potentials (ppSEP) stimulated above the level of injury. METHODS Eleven SCI patients took part in HAL® assisted BWSTT for 3 months. PpSEP were conducted before and after this training period, where the amplitude ratios (SEP amplitude following double pulses - SEP amplitude following single pulses) were assessed and compared to eleven healthy control subjects. To assess improvement in walking function, we used the 10-m walk test, timed-up-and-go test, the 6-min walk test, and the lower extremity motor score. RESULTS PpSEPs were significantly increased in SCI patients as compared to controls at baseline. Following training, ppSEPs were increased from baseline and no longer significantly differed from controls. Walking parameters also showed significant improvements, yet there was no significant correlation between ppSEP measures and walking parameters. CONCLUSIONS The findings suggest that robotic-assisted BWSTT with HAL® in SCI patients is capable of inducing cortical plasticity following highly repetitive, active locomotive use of paretic legs. While there was no significant correlation of excitability with walking parameters, brain areas other than S1 might reflect improvement of walking functions. EEG and neuroimaging studies may provide further information about supraspinal plastic processes and foci in SCI rehabilitation.
Collapse
Affiliation(s)
- Matthias Sczesny-Kaiser
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Oliver Höffken
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Mirko Aach
- Department of Spinal Cord Injuries, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Oliver Cruciger
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Dennis Grasmücke
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Renate Meindl
- Department of Spinal Cord Injuries, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Thomas A Schildhauer
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Peter Schwenkreis
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil Bochum, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
| |
Collapse
|
44
|
Gossard JP, Delivet-Mongrain H, Martinez M, Kundu A, Escalona M, Rossignol S. Plastic Changes in Lumbar Locomotor Networks after a Partial Spinal Cord Injury in Cats. J Neurosci 2015; 35:9446-55. [PMID: 26109667 PMCID: PMC6605194 DOI: 10.1523/jneurosci.4502-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/17/2023] Open
Abstract
After an incomplete spinal cord injury (SCI), we know that plastic reorganization occurs in supraspinal structures with residual descending tracts. However, our knowledge about spinal plasticity is rather limited. Our recent studies point to changes within the spinal cord below the lesion. After a lateral left hemisection (T10), cats recovered stepping with both hindlimbs within 3 weeks. After a complete section (T13) in these cats, bilateral stepping was seen on the next day, a skill usually acquired after several weeks of treadmill training. This indicates that durable plastic changes occurred below the lesion. However, because sensory feedback entrains the stepping rhythm, it is difficult to reveal central pattern generator (CPG) adaptation. Here, we investigated whether lumbar segments of cats with a chronic hemisection were able to generate fictive locomotion-that is, without phasic sensory feedback as monitored by five muscle nerves in each hindlimb. With a chronic left hemisection, the number of muscle nerves displaying locomotor bursts was larger on the left than on the right. In addition, transmission of cutaneous reflexes was relatively facilitated on the left. Later during the acute experiment, a complete spinalization (T13) was performed and clonidine was injected to induce rhythmic activities. There were still more muscle nerves displaying locomotor bursts on the left. The results demonstrate that spinal networks were indeed modified after a hemisection with a clear asymmetry between left and right in the capacity to generate locomotion. Plastic changes in CPG and reflex transmission below the lesion are thus involved in the stepping recovery after an incomplete SCI.
Collapse
Affiliation(s)
- Jean-Pierre Gossard
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Hugo Delivet-Mongrain
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Marina Martinez
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Aritra Kundu
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Manuel Escalona
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| |
Collapse
|
45
|
Abstract
In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as “neurons that fire together, wire together.” This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.
Collapse
Affiliation(s)
- Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
46
|
Takeoka A, Vollenweider I, Courtine G, Arber S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 2015; 159:1626-39. [PMID: 25525880 DOI: 10.1016/j.cell.2014.11.019] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.
Collapse
Affiliation(s)
- Aya Takeoka
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Isabel Vollenweider
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Grégoire Courtine
- Brain Mind Institute and Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, 4056 Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
47
|
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol 2015; 113:2447-60. [PMID: 25609110 DOI: 10.1152/jn.00872.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs.
Collapse
Affiliation(s)
- Maria Knikou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg Medical School, Chicago, Illinois; Graduate Center/The City University of New York, New York, New York; and Department of Physical Therapy, College of Staten Island, Staten Island, New York
| | - Andrew C Smith
- Northwestern University Interdepartmental Neuroscience Program, Chicago, Illinois
| | | |
Collapse
|
48
|
Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:127-55. [DOI: 10.1016/bs.pbr.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Shin JC, Kim JY, Park HK, Kim NY. Effect of robotic-assisted gait training in patients with incomplete spinal cord injury. Ann Rehabil Med 2014; 38:719-25. [PMID: 25566469 PMCID: PMC4280366 DOI: 10.5535/arm.2014.38.6.719] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
Objective To determine the effect of robotic-assisted gait training (RAGT) compared to conventional overground training. Methods Sixty patients with motor incomplete spinal cord injury (SCI) were included in a prospective, randomized clinical trial by comparing RAGT to conventional overground training. The RAGT group received RAGT three sessions per week at duration of 40 minutes with regular physiotherapy in 4 weeks. The conventional group underwent regular physiotherapy twice a day, 5 times a week. Main outcomes were lower extremity motor score of American Spinal Injury Association impairment scale (LEMS), ambulatory motor index (AMI), Spinal Cord Independence Measure III mobility section (SCIM3-M), and walking index for spinal cord injury version II (WISCI-II) scale. Results At the end of rehabilitation, both groups showed significant improvement in LEMS, AMI, SCIM3-M, and WISCI-II. Based on WISCI-II, statistically significant improvement was observed in the RAGT group. For the remaining variables, no difference was found. Conclusion RAGT combined with conventional physiotherapy could yield more improvement in ambulatory function than conventional therapy alone. RAGT should be considered as one additional tool to provide neuromuscular reeducation in patient with incomplete SCI.
Collapse
Affiliation(s)
- Ji Cheol Shin
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Yong Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Han Kyul Park
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Na Young Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Smith AC, Rymer WZ, Knikou M. Locomotor training modifies soleus monosynaptic motoneuron responses in human spinal cord injury. Exp Brain Res 2014; 233:89-103. [PMID: 25205562 DOI: 10.1007/s00221-014-4094-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/29/2014] [Indexed: 01/15/2023]
Abstract
The objective of this study was to assess changes in monosynaptic motoneuron responses to stimulation of Ia afferents after locomotor training in individuals with chronic spinal cord injury (SCI). We hypothesized that locomotor training modifies the amplitude of the soleus monosynaptic motoneuron responses in a body position-dependent manner. Fifteen individuals with chronic clinical motor complete or incomplete SCI received an average of 45 locomotor training sessions. The soleus H-reflex and M-wave recruitment curves were assembled using data collected in both the right and left legs, with subjects seated and standing, before and after training. The soleus H-reflexes and M-waves, measured as peak-to-peak amplitudes, were normalized to the maximal M-wave (M(max)). Stimulation intensities were normalized to 50% M(max) stimulus intensity. A sigmoid function was also fitted to the normalized soleus H-reflexes on the ascending limb of the recruitment curve. After training, soleus H-reflex excitability was increased in both legs in AIS C subjects, and remained unchanged in AIS A-B and AIS D subjects during standing. When subjects were seated, soleus H-reflex excitability was decreased after training in many AIS C and D subjects. Changes in reflex excitability coincided with changes in stimulation intensities at H-threshold, 50% maximal H-reflex, and at maximal H-reflex, while an interaction between leg side and AIS scale for the H-reflex slope was also found. Adaptations of the intrinsic properties of soleus motoneurons and Ia afferents, the excitability profile of the soleus motoneuron pool, oligosynaptic inputs, and corticospinal inputs may all contribute to these changes. The findings of this study demonstrate that locomotor training impacts the amplitude of the monosynaptic motoneuron responses based on the demands of the motor task in people with chronic SCI.
Collapse
Affiliation(s)
- Andrew C Smith
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, 60611, USA
| | | | | |
Collapse
|