1
|
Keifer J. Synaptic Mechanisms of Delay Eyeblink Classical Conditioning: AMPAR Trafficking and Gene Regulation in an In Vitro Model. Mol Neurobiol 2023; 60:7088-7103. [PMID: 37531025 DOI: 10.1007/s12035-023-03528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
An in vitro model of delay eyeblink classical conditioning was developed to investigate synaptic plasticity mechanisms underlying acquisition of associative learning. This was achieved by replacing real stimuli, such as an airpuff and tone, with patterned stimulation of the cranial nerves using an isolated brainstem preparation from turtle. Here, our primary findings regarding cellular and molecular mechanisms for learning acquisition using this unique approach are reviewed. The neural correlate of the in vitro eyeblink response is a replica of the actual behavior, and features of conditioned responses (CRs) resemble those observed in behavioral studies. Importantly, it was shown that acquisition of CRs did not require the intact cerebellum, but the appropriate timing did. Studies of synaptic mechanisms indicate that conditioning involves two stages of AMPA receptor (AMPAR) trafficking. Initially, GluA1-containing AMPARs are targeted to synapses followed later by replacement by GluA4 subunits that support CR expression. This two-stage process is regulated by specific signal transduction cascades involving PKA and PKC and is guided by distinct protein chaperones. The expression of the brain-derived neurotrophic factor (BDNF) protein is central to AMPAR trafficking and conditioning. BDNF gene expression is regulated by coordinated epigenetic mechanisms involving DNA methylation/demethylation and chromatin modifications that control access of promoters to transcription factors. Finally, a hypothesis is proposed that learning genes like BDNF are poised by dual chromatin features that allow rapid activation or repression in response to environmental stimuli. These in vitro studies have advanced our understanding of the cellular and molecular mechanisms that underlie associative learning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
2
|
Carpenter RE, Sabirzhanov B, Summers TR, Clark TG, Keifer J, Summers CH. Anxiolytic reversal of classically conditioned / chronic stress-induced gene expression and learning in the Stress Alternatives Model. Behav Brain Res 2023; 440:114258. [PMID: 36521572 PMCID: PMC9872777 DOI: 10.1016/j.bbr.2022.114258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.
Collapse
Affiliation(s)
- Russ E Carpenter
- University Writing Program, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Boris Sabirzhanov
- Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889, USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA
| | - Timothy G Clark
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105, USA.
| |
Collapse
|
3
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
4
|
Comparative Genomics of the BDNF Gene, Non-Canonical Modes of Transcriptional Regulation, and Neurological Disease. Mol Neurobiol 2021; 58:2851-2861. [PMID: 33517560 DOI: 10.1007/s12035-021-02306-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Alternative splicing of genes in the central nervous system is ubiquitous and utilizes many different mechanisms. Splicing generates unique transcript or protein isoforms of the primary gene that result in shortened, lengthened, or reorganized products that may have distinct functions from the parent gene. Learning and memory genes respond selectively to a variety of environmental stimuli and have evolved a number of complex mechanisms for transcriptional regulation to act rapidly and flexibly to environmental demands. Their patterns of expression, however, are incompletely understood. Many activity-inducible genes generate transcripts by alternative splicing that have an unknown physiological or behavioral function. One such gene codes for the protein brain-derived neurotrophic factor (BDNF). BDNF is a neurotrophin whose expression is essential for cellular growth, synaptogenesis, and synaptic plasticity. It is an important model gene because of its complex structure and the variety of transcriptional mechanisms it displays for expression in response to external stimuli. Some of these are unexpected, or non-canonical, transcriptional control mechanisms that require further exploration in an activity-dependent context. In this review, a comparative genomics approach is taken to highlight the different forms of BDNF gene transcription including potential autoregulatory mechanisms. Modes of BDNF control have general implications for understanding the origins of several neurological disorders that are associated with reduced BDNF function.
Collapse
|
5
|
Learning-Dependent Transcriptional Regulation of BDNF by its Truncated Protein Isoform in Turtle. J Mol Neurosci 2020; 71:999-1014. [DOI: 10.1007/s12031-020-01722-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
|
6
|
Characterization and Transcriptional Activation of the Immediate Early Gene ARC During a Neural Correlate of Classical Conditioning. J Mol Neurosci 2019; 69:380-390. [PMID: 31273643 DOI: 10.1007/s12031-019-01367-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023]
Abstract
Plasticity and learning genes require regulatory mechanisms that have the flexibility to respond to a variety of sensory stimuli to generate adaptive behavioral responses. The immediate early gene (IEG) activity-regulated cytoskeleton-associated protein (ARC) is rapidly induced not only by neuronal stimulation but also during a variety of learning tasks. How ARC is regulated in response to complex stimuli during associative learning remains to be fully detailed. Here, we characterized the structure of the ARC gene in the pond turtle and mechanisms of its transcriptional activation during a neural correlate of eyeblink classical conditioning. The tARC gene is regulated in part by the presence of paused polymerase (RNAPII) that is poised at the promoter for rapid gene induction. Conditioning induces permissive chromatin modifications in the tARC promoter that allows binding by the transcription factor cAMP response element-binding protein (CREB) within 5 min of training. During learning acquisition, the pausing factor negative elongation factor (NELF) dissociates from the promoter thereby releasing RNAPII for active transcription. Data additionally suggest that the DNA insulator protein CCCTC-binding factor (CTCF) is required for transcription by mediating a learning-induced interaction of the ARC promoter with an enhancer element. Our study suggests that the learning-inducible IEG tARC utilizes both paused RNAPII and rapid chromatin modifications that allow for dynamic gene responsiveness required when an organism is presented with a variety of environmental stimuli.
Collapse
|
7
|
Keifer J, Zheng Z. Cold block of in vitro eyeblink reflexes: evidence supporting the use of hypothermia as an anesthetic in pond turtles. ACTA ACUST UNITED AC 2017; 220:4370-4373. [PMID: 28982970 DOI: 10.1242/jeb.168427] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023]
Abstract
Use of hypothermia as a means of anesthesia for amphibians and reptiles is prohibited by agencies that establish veterinary guidelines. This has recently been called into question by members of the scientific community based on reviews of published literature. Using pond turtles (Trachemys scripta elegans), hypothermia as a method for anesthesia to precede euthanasia by decapitation was assessed. Turtles were subjected to hypothermia using a cooling followed by freezing protocol. Body temperature measurements ranged between -1 and -2°C while core body temperature was -1°C. Ice crystal formation was never observed. A protective reflex to noxious stimuli, the eyeblink response, was recorded from in vitro brainstem preparations subjected to cold. At 5-6°C, reflex responses were suppressed, demonstrating minimal synaptic transmission in brain circuits above temperatures used for hypothermia induction. These and previous data indicate that a re-evaluation of the use of hypothermia as an anesthetic in amphibians and reptiles is warranted.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA
| | - Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, SD 57069, USA
| |
Collapse
|
8
|
Zheng Z, Ambigapathy G, Keifer J. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle. eLife 2017; 6. [PMID: 28594324 PMCID: PMC5481183 DOI: 10.7554/elife.25384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/07/2017] [Indexed: 12/13/2022] Open
Abstract
MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI:http://dx.doi.org/10.7554/eLife.25384.001
Collapse
Affiliation(s)
- Zhaoqing Zheng
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Ganesh Ambigapathy
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, United States
| | - Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota, Sanford School of Medicine, Vermillion, United States
| |
Collapse
|
9
|
Subunit-specific synaptic delivery of AMPA receptors by auxiliary chaperone proteins TARPγ8 and GSG1L in classical conditioning. Neurosci Lett 2017; 645:53-59. [PMID: 28219790 DOI: 10.1016/j.neulet.2017.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/23/2022]
Abstract
AMPA receptor (AMPAR) trafficking has emerged as a fundamental concept for understanding mechanisms of learning and memory as well as many neurological disorders. Classical conditioning is a simple and highly conserved form of associative learning. Our studies use an ex vivo brainstem preparation in which to study cellular mechanisms underlying learning during a neural correlate of eyeblink conditioning. Two stages of AMPAR synaptic delivery underlie conditioning utilizing sequential trafficking of GluA1-containing AMPARs early in conditioning followed by replacement with GluA4 subunits later. Subunit-selective trafficking of AMPARs is poorly understood. Here, we focused on identification of auxiliary chaperone proteins that traffic AMPARs. The results show that auxiliary proteins TARPγ8 and GSG1L are colocalized with AMPARs on abducens motor neurons that generate the conditioning. Significantly, TARPγ8 was observed to chaperone GluA1-containing AMPARs during synaptic delivery early in conditioning while GSG1L chaperones GluA4 subunits later in conditioning. Interestingly, TARPγ8 remains at the membrane surface as GluA1 subunits are withdrawn and associates with GluA4 when they are delivered to synapses. These data indicate that GluA1- and GluA4-containing AMPARs are selectively chaperoned by TARPγ8 and GSG1L, respectively. Therefore, sequential subunit-selective trafficking of AMPARs during conditioning is achieved through the timing of their interactions with specific auxiliary proteins.
Collapse
|
10
|
Primetime for Learning Genes. Genes (Basel) 2017; 8:genes8020069. [PMID: 28208656 PMCID: PMC5333058 DOI: 10.3390/genes8020069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/27/2017] [Accepted: 02/08/2017] [Indexed: 01/06/2023] Open
Abstract
Learning genes in mature neurons are uniquely suited to respond rapidly to specific environmental stimuli. Expression of individual learning genes, therefore, requires regulatory mechanisms that have the flexibility to respond with transcriptional activation or repression to select appropriate physiological and behavioral responses. Among the mechanisms that equip genes to respond adaptively are bivalent domains. These are specific histone modifications localized to gene promoters that are characteristic of both gene activation and repression, and have been studied primarily for developmental genes in embryonic stem cells. In this review, studies of the epigenetic regulation of learning genes in neurons, particularly the brain-derived neurotrophic factor gene (BDNF), by methylation/demethylation and chromatin modifications in the context of learning and memory will be highlighted. Because of the unique function of learning genes in the mature brain, it is proposed that bivalent domains are a characteristic feature of the chromatin landscape surrounding their promoters. This allows them to be “poised” for rapid response to activate or repress gene expression depending on environmental stimuli.
Collapse
|
11
|
Ambigapathy G, Zheng Z, Keifer J. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning. Epigenetics 2016; 10:981-93. [PMID: 26336984 DOI: 10.1080/15592294.2015.1090072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- a Neuroscience Group; Basic Biomedical Sciences; University of South Dakota; Sanford School of Medicine ; Vermillion , SD USA
| | - Zhaoqing Zheng
- a Neuroscience Group; Basic Biomedical Sciences; University of South Dakota; Sanford School of Medicine ; Vermillion , SD USA
| | - Joyce Keifer
- a Neuroscience Group; Basic Biomedical Sciences; University of South Dakota; Sanford School of Medicine ; Vermillion , SD USA
| |
Collapse
|
12
|
Keifer J, Zheng Z. Coincidence detection in a neural correlate of classical conditioning is initiated by bidirectional 3-phosphoinositide-dependent kinase-1 signalling and modulated by adenosine receptors. J Physiol 2015; 593:1581-95. [PMID: 25639253 DOI: 10.1113/jphysiol.2014.282947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/07/2015] [Indexed: 01/24/2023] Open
Abstract
How the neural substrates for detection of paired stimuli are distinct from unpaired stimuli is poorly understood and a fundamental question for understanding the signalling mechanisms for coincidence detection during associative learning. To address this question, we used a neural correlate of eyeblink classical conditioning in an isolated brainstem from the turtle, in which the cranial nerves are directly stimulated in place of using a tone or airpuff. A bidirectional response is activated in <5 min of training, in which phosphorylated 3-phosphoinositide-dependent kinase-1 (p-PDK1) is increased in response to paired and decreased in response to unpaired nerve stimulation and is mediated by the opposing actions of neurotrophin receptors TrkB and p75(NTR) . Surprisingly, blockade of adenosine 2A (A2A ) receptors inhibits both of these responses. Pairing also induces substantially increased surface expression of TrkB that is inhibited by Src family tyrosine kinase and A2A receptor antagonists. Finally, the acquisition of conditioning is blocked by a PDK1 inhibitor. The unique action of A2A receptors to function directly as G proteins and in receptor transactivation to control distinct TrkB and p75(NTR) signalling pathways allows for convergent activation of PDK1 and protein kinase A during paired stimulation to initiate classical conditioning.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, 57010, USA
| | | |
Collapse
|
13
|
Zheng Z, Keifer J. Sequential delivery of synaptic GluA1- and GluA4-containing AMPA receptors (AMPARs) by SAP97 anchored protein complexes in classical conditioning. J Biol Chem 2014; 289:10540-10550. [PMID: 24567325 DOI: 10.1074/jbc.m113.535179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple signaling pathways are involved in AMPAR trafficking to synapses during synaptic plasticity and learning. The mechanisms for how these pathways are coordinated in parallel but maintain their functional specificity involves subcellular compartmentalization of kinase function by scaffolding proteins, but how this is accomplished is not well understood. Here, we focused on characterizing the molecular machinery that functions in the sequential synaptic delivery of GluA1- and GluA4-containing AMPARs using an in vitro model of eyeblink classical conditioning. We show that conditioning induces the interaction of selective protein complexes with the key structural protein SAP97, which tightly regulates the synaptic delivery of GluA1 and GluA4 AMPAR subunits. The results demonstrate that in the early stages of conditioning the initial activation of PKA stimulates the formation of a SAP97-AKAP/PKA-GluA1 protein complex leading to synaptic delivery of GluA1-containing AMPARs through a SAP97-PSD95 interaction. This is followed shortly thereafter by generation of a SAP97-KSR1/PKC-GluA4 complex for GluA4 AMPAR subunit delivery again through a SAP97-PSD95 interaction. These data suggest that SAP97 forms the molecular backbone of a protein scaffold critical for delivery of AMPARs to the PSD during conditioning. Together, the findings reveal a cooperative interaction of multiple scaffolding proteins for appropriately timed delivery of subunit-specific AMPARs to synapses and support a sequential two-stage model of AMPAR synaptic delivery during classical conditioning.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences University of South Dakota Sanford School of Medicine, Vermillion, South Dakota 57010
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences University of South Dakota Sanford School of Medicine, Vermillion, South Dakota 57010.
| |
Collapse
|
14
|
Ambigapathy G, Zheng Z, Li W, Keifer J. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans. PLoS One 2013; 8:e67141. [PMID: 23825634 PMCID: PMC3692439 DOI: 10.1371/journal.pone.0067141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/14/2013] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.
Collapse
Affiliation(s)
- Ganesh Ambigapathy
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States of America
| | - Zhaoqing Zheng
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States of America
| | - Wei Li
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States of America
| | - Joyce Keifer
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, United States of America
- * E-mail:
| |
Collapse
|