1
|
Padmasola GP, Lignani G. Are High-Frequency Activities Reliable Biomarkers of the FCDII Lesion? Epilepsy Curr 2024; 24:364-366. [PMID: 39508009 PMCID: PMC11536417 DOI: 10.1177/15357597241280482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Mouse Model of Focal Cortical Dysplasia Type II Generates a Wide Spectrum of High-Frequency Activities Chvojka J, Prochazkova N, Rehorova M, Kudlacek J, Kylarova S, Kralikova M, Buran P, Weissova R, Balastik M, Jefferys JGR, Novak O, Jiruska P. Neurobiol Dis. 2024;190:106383. Epub 2023 Dec 17. PMID: 38114051. doi: 10.1016/j.nbd.2023.106383 High-frequency oscillations (HFOs) represent an electrographic biomarker of endogenous epileptogenicity and seizure-generating tissue that proved clinically useful in presurgical planning and delineating the resection area. In the neocortex, the clinical observations on HFOs are not sufficiently supported by experimental studies stemming from a lack of realistic neocortical epilepsy models that could provide an explanation of the pathophysiological substrates of neocortical HFOs. In this study, we explored pathological epileptiform network phenomena, particularly HFOs, in a highly realistic murine model of neocortical epilepsy due to focal cortical dysplasia type II (FCDII). FCD was induced in mice by the expression of the human pathogenic mammalian target of rapamycin (mTOR) gene mutation during embryonic stages of brain development. Electrographic recordings from multiple cortical regions in freely moving animals with FCD and epilepsy demonstrated that the FCD lesion generates HFOs from all frequency ranges, ie, gamma, ripples, and fast ripples up to 800 Hz. Gamma ripples were recorded almost exclusively in FCD animals, while fast ripples occurred in controls as well, although at a lower rate. Gamma-ripple activity is particularly valuable for localizing the FCD lesion, surpassing the utility of fast ripples that were also observed in control animals, although at significantly lower rates. Propagating HFOs occurred outside the FCD, and the contralateral cortex also generated HFOs independently of the FCD, pointing to a wider FCD network dysfunction. Optogenetic activation of neurons carrying mTOR mutation and expressing Channelrhodopsin-2 evoked fast ripple oscillations that displayed spectral and morphological profiles analogous to spontaneous oscillations. This study brings experimental evidence that FCDII generates pathological HFOs across all frequency bands and provides information about the spatiotemporal properties of each HFO subtype in FCD. The study shows that mutated neurons represent a functionally interconnected and active component of the FCD network, as they can induce interictal epileptiform phenomena and HFOs.
Collapse
Affiliation(s)
- Guru Prasad Padmasola
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London
| |
Collapse
|
2
|
Taylor JA, Smith ZZ, Barth DS. Spike-wave discharges in Sprague-Dawley rats reflect precise intra- and interhemispheric synchronization of somatosensory cortex. J Neurophysiol 2022; 128:1152-1167. [PMID: 36169203 PMCID: PMC9621715 DOI: 10.1152/jn.00303.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spike-wave discharges (SWDs) are among the most prominent electrical signals recordable from the rat cerebrum. Increased by inbreeding, SWDs have served as an animal model of human genetic absence seizures. Yet, SWDs are ubiquitous in inbred and outbred rats, suggesting they reflect normal brain function. We hypothesized that SWDs represent oscillatory neural ensemble activity underlying sensory encoding. To test this hypothesis, we simultaneously mapped SWDs from wide areas (8 × 8 mm) of both hemispheres in anesthetized rats, using 256-electrode epicortical arrays that covered primary and secondary somatosensory, auditory and visual cortex bilaterally. We also recorded the laminar pattern of SWDs with linear microelectrode arrays. We compared the spatial and temporal organization of SWDs to somatosensory-evoked potentials (SEPs), as well as auditory- and visual-evoked potentials (AEPs and VEPs) to examine similarities and/or differences between sensory-evoked and spontaneous oscillations in the same animals. We discovered that SWDs are confined to the facial representation of primary and secondary somatosensory cortex (SI and SII, respectively), areas that are preferentially engaged during environmental exploration in the rat. Furthermore, these oscillations exhibit highly synchronized bilateral traveling waves in SI and SII, simultaneously forming closely matched spread patterns in both hemispheres. We propose that SWDs could reflect a previously unappreciated capacity for rat somatosensory cortex to perform precise spatial and temporal analysis of rapidly changing sensory input at the level of large neural ensembles synchronized both within and between the cerebral hemispheres.NEW & NOTEWORTHY We simultaneously mapped electrocortical SWDs from both cerebral hemispheres of Sprague-Dawley rats and discovered that they reflect systematic activation of the facial representation of somatosensory cortex. SWDs form mirror spatiotemporal patterns in both hemispheres that are precisely aligned in both space and time. Our data suggest that SWDs may reflect a substrate by which large neural ensembles perform precise spatiotemporal processing of rapidly changing somatosensory input.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Zachary Z Smith
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
3
|
Burkhanova G, Chernova K, Khazipov R, Sheroziya M. Effects of Cortical Cooling on Activity Across Layers of the Rat Barrel Cortex. Front Syst Neurosci 2020; 14:52. [PMID: 32848644 PMCID: PMC7417609 DOI: 10.3389/fnsys.2020.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022] Open
Abstract
Moderate cortical cooling is known to suppress slow oscillations and to evoke persistent cortical activity. However, the cooling-induced changes in electrical activity across cortical layers remain largely unknown. Here, we performed multi-channel local field potential (LFP) and multi-unit activity (MUA) recordings with linear silicone probes through the layers of single cortical barrel columns in urethane-anesthetized rats under normothermia (38°C) and during local cortical surface cooling (30°C). During cortically generated slow oscillations, moderate cortical cooling decreased delta wave amplitude, delta-wave occurrence, the duration of silent states, and delta wave-locked MUA synchronization. Moderate cortical cooling increased total time spent in the active state and decreased total time spent in the silent state. Cooling-evoked changes in the MUA firing rate in cortical layer 5 (L5) varied from increase to decrease across animals, and the polarity of changes in L5 MUA correlated with changes in total time spent in the active state. The decrease in temperature reduced MUA firing rates in all other cortical layers. Sensory-evoked MUA responses also decreased during cooling through all cortical layers. The cooling-dependent slowdown was detected at the fast time-scale with a decreased frequency of sensory-evoked high-frequency oscillations (HFO). Thus, moderate cortical cooling suppresses slow oscillations and desynchronizes neuronal activity through all cortical layers, and is associated with reduced firing across all cortical layers except L5, where cooling induces variable and non-consistent changes in neuronal firing, which are common features of the transition from slow-wave synchronization to desynchronized activity in the barrel cortex.
Collapse
Affiliation(s)
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Aix Marseille University, INSERM, INMED, Marseille, France
| | - Maxim Sheroziya
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
4
|
Watanabe N, Sasaki S, Masamoto K, Hotta H. Vascular Gap Junctions Contribute to Forepaw Stimulation-Induced Vasodilation Differentially in the Pial and Penetrating Arteries in Isoflurane-Anesthetized Rats. Front Mol Neurosci 2018; 11:446. [PMID: 30559647 PMCID: PMC6286957 DOI: 10.3389/fnmol.2018.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022] Open
Abstract
Somatosensory stimulation causes dilation of the pial and penetrating arteries and an increase in cerebral blood flow (CBF) in the representative region of the somatosensory cortex. As an underlying mechanism for such stimulation-induced increases in CBF, cerebral artery dilation has been thought to propagate in the vascular endothelium from the parenchyma to the brain surface. Vascular gap junctions may propagate vasodilation. However, the contribution of vascular gap junctions to cerebrovascular regulation induced by somatosensory stimulation is largely unknown. The aim of the present study was to investigate the contribution of vascular gap junctions to the regulation of the pial and penetrating arteries during neuronal activity attributed to somatosensory stimulation. Experiments were performed on male Wistar rats (age: 7-10 weeks) with artificial ventilation under isoflurane anesthesia. For somatosensory stimulation, the left forepaw was electrically stimulated (1.5 mA, 0.5 ms and 10 Hz, for 5 s). The artery in the forelimb area of the right somatosensory cortex was imaged through a cranial window using a two-photon microscope and the diameter was measured. Carbenoxolone (CBX) was intravenously (i.v.) administered, at a dose of 100 mg/kg, to block vascular gap junctions. The forepaw electrical stimulation increased the diameter of the pial and penetrating arteries by 7.0% and 5.0% of the pre-stimulus diameter, respectively, without changing the arterial pressure. After CBX administration, the change in pial artery diameter during forepaw stimulation was attenuated to 3.2%. However, changes in the penetrating artery were not significantly affected. CBF was measured using a laser speckle flowmeter, together with somatosensory-evoked potential (SEP) recorded in the somatosensory cortex. The extent of CBF increase (by 24.1% of the pre-stimulus level) and amplitude of SEP were not affected by CBX administration. The present results suggest that vascular gap junctions, possibly on the endothelium, contribute to pial artery dilation during neuronal activity induced by somatosensory stimulation.
Collapse
Affiliation(s)
- Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Satoshi Sasaki
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Kazuto Masamoto
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
5
|
Abstract
Pathological high-frequency oscillations (HFOs) (80-800 Hz) are considered biomarkers of epileptogenic tissue, but the underlying complex neuronal events are not well understood. Here, we identify and discuss several outstanding issues or conundrums in regards to the recording, analysis, and interpretation of HFOs in the epileptic brain to critically highlight what is known and what is not about these enigmatic events. High-frequency oscillations reflect a range of neuronal processes contributing to overlapping frequencies from the lower 80 Hz to the very fast spectral frequency bands. Given their complex neuronal nature, HFOs are extremely sensitive to recording conditions and analytical approaches. We provide a list of recommendations that could help to obtain comparable HFO signals in clinical and basic epilepsy research. Adopting basic standards will facilitate data sharing and interpretation that collectively will aid in understanding the role of HFOs in health and disease for translational purpose.
Collapse
|
6
|
Krishnan GP, Filatov G, Bazhenov M. Dynamics of high-frequency synchronization during seizures. J Neurophysiol 2013; 109:2423-37. [PMID: 23427308 DOI: 10.1152/jn.00761.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathological synchronization of neuronal firing is considered to be an inherent property of epileptic seizures. However, it remains unclear whether the synchrony increases for the high-frequency multiunit activity as well as for the local field potentials (LFPs). We present spatio-temporal analysis of synchronization during epileptiform activity using wide-band (up to 2,000 Hz) spectral analysis of multielectrode array recordings at up to 60 locations throughout the mouse hippocampus in vitro. Our study revealed a prominent structure of LFP profiles during epileptiform discharges, triggered by elevated extracellular potassium, with characteristic distribution of current sinks and sources with respect to anatomical structure. The cross-coherence of high-frequency activity (500-2,000 Hz) across channels was reduced during epileptic bursts compared with baseline activity and showed the opposite trend for lower frequencies. Furthermore, the magnitude of cross-coherence during epileptiform activity was dependent on distance: electrodes closer to the epileptic foci showed increased cross-coherence and electrodes further away showed reduced cross-coherence for high-frequency activity. These experimental observations were re-created and supported in a computational model. Our study suggests that different intrinsic and synaptic processes can mediate paroxysmal synchronization at low, medium, and high frequencies.
Collapse
Affiliation(s)
- Giri P Krishnan
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
7
|
Staba RJ, Bragin A. High-frequency oscillations and other electrophysiological biomarkers of epilepsy: underlying mechanisms. Biomark Med 2012; 5:545-56. [PMID: 22003903 DOI: 10.2217/bmm.11.72] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the normal mammalian brain, neuronal synchrony occurs on a spatial scale of submillimeters to centimeters and temporal scale of submilliseconds to seconds that is reflected in the occurrence of high-frequency oscillations, physiological sharp waves and slow wave sleep oscillations referred to as Up-Down states. In the epileptic brain, the well-studied pathologic counterparts to these physiological events are pathological high-frequency oscillations and interictal spikes that could be electrophysiological biomarkers of epilepsy. Establishing these abnormal events as biomarkers of epilepsy will largely depend on a better understanding of the mechanisms underlying their generation, which will not only help distinguish pathological from physiological events, but will also determine what roles these pathological events play in epileptogenesis and epileptogenicity. This article focuses on the properties and neuronal mechanisms supporting the generation of high-frequency oscillations and interictal spikes, and introduces a new phenomenon called Up-spikes.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Neurology, 710 Westwood Plaza, Reed Neurological Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
8
|
Kamiński J, Wróbel A, Kublik E. Gap junction blockade eliminates supralinear summation of fast (> 200 Hz) oscillatory components during sensory integration in the rat barrel cortex. Brain Res Bull 2011; 85:424-8. [PMID: 21539901 DOI: 10.1016/j.brainresbull.2011.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/12/2011] [Accepted: 04/17/2011] [Indexed: 10/18/2022]
Abstract
The vibrissa-barrel system of rodents has become one of the dominant models for studying sensory information processing. Fast oscillations (>200 Hz) have been shown to play an important role in cortical integration of inputs from several whiskers. The mechanism subserving such integration remains, however, unknown. To address this issue, we examined the influence of the gap junction blocker (carbenoxolone, CBX) topically applied on the cortical surface on the high frequency component evoked by multiple-whisker stimulation. The magnitude of the fast oscillatory response to simultaneous stimulation of three whiskers was shown to be higher compared to its linear prediction (defined as the sum of corresponding single whisker responses). Application of CBX eliminated this supra-linear enhancement of fast oscillations. These results indicate that gap junctions are involved in the synchronization of cortical high frequency oscillations and integration of multiple whisker responses.
Collapse
Affiliation(s)
- Jan Kamiński
- Nencki Institute of Experimental Biology, Department of Neurophysiology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
9
|
Franceschini MA, Nissilä I, Wu W, Diamond SG, Bonmassar G, Boas DA. Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 2008; 41:189-203. [PMID: 18420425 PMCID: PMC2486435 DOI: 10.1016/j.neuroimage.2008.02.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/28/2022] Open
Abstract
We studied the relationship between somatosensory evoked potentials (SEP) recorded with scalp electroencephalography (EEG) and hemoglobin responses recorded non-invasively with diffuse optical imaging (DOI) during parametrically varied electrical forepaw stimulation in rats. Using these macroscopic techniques we verified that the hemodynamic response is not linearly coupled to the somatosensory evoked potentials, and that a power or threshold law best describes the coupling between SEP and the hemoglobin response, in agreement with the results of most invasive studies. We decompose the SEP response in three components (P1, N1, and P2) to determine which best predicts the hemoglobin response. We found that N1 and P2 predict the hemoglobin response significantly better than P1 and the input stimuli (S). Previous electrophysiology studies reported in the literature show that P1 originates in layer IV directly from thalamocortical afferents, while N1 and P2 originate in layers I and II and reflect the majority of local cortico-cortical interactions. Our results suggest that the evoked hemoglobin response is driven by the cortical synaptic activity and not by direct thalamic input. The N1 and P2 components, and not P1, need to be considered to correctly interpret neurovascular coupling.
Collapse
Affiliation(s)
- Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 13th Street Bldg. 149 (room 2301), Charlestown, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Rodgers KM, Benison AM, Barth DS. Two-Dimensional Coincidence Detection in the Vibrissa/Barrel Field. J Neurophysiol 2006; 96:1981-90. [PMID: 16790595 DOI: 10.1152/jn.00404.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coincidence detection in visual and auditory cortex may also be critical for feature analysis in somatosensory cortex. We examined its role in the rat posteromedial barrel subfield (PMBSF) using high-resolution arrays of epipial electrodes. Five vibrissae, forming an arc, row, or diagonal, were simultaneously or asynchronously stimulated to simulate contact with a straight edge of different angles at natural whisking velocities. Results indicated supralinear responses for both slow-wave and fast oscillations (FOs, about 350 Hz) at intervibrissa delays <2 ms. FO represented the earliest and most precisely tuned response to coincident vibrissa displacement. There was little difference in the spatiotemporal pattern of slow-wave or FO responses in the row, arc, or diagonal. This equivalence of function suggests that the PMBSF may be capable of working as a two-dimensional integrative array, processing spatial features based on coincidence detection despite the direction that the vibrissae pass across an object.
Collapse
Affiliation(s)
- Krista M Rodgers
- Department of Psychology, University of Colorado, Boulder, CO 80309-0345, USA
| | | | | |
Collapse
|
11
|
Butovas S, Hormuzdi SG, Monyer H, Schwarz C. Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation. J Neurophysiol 2006; 96:1227-36. [PMID: 16837655 DOI: 10.1152/jn.01170.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using in vivo multielectrode electrophysiology in mice, we investigated the underpinnings of a local, long-lasting firing rate suppression evoked by intracortical microstimulation. Synaptic inhibition contributes to this suppression as it was reduced by pharmacological blockade of gamma-aminobutyric acid type B (GABAB) receptors. Blockade of GABAB receptors also abolished the known sublinear addition of inhibitory response duration after repetitive electrical stimulation. Furthermore, evoked inhibition was weaker and longer in connexin 36 knockout (KO) mice that feature decoupled cortical inhibitory networks. In supragranular layers of KO mice even an unusually long excitatory response (< or = 50 ms) appeared that was never observed in wild-type (WT) mice. Furthermore, the spread and duration of very fast oscillations (> 200 Hz) evoked by microstimulation at a short latency were strongly enhanced in KO mice. In the spatial domain, lack of connexin 36 unmasked a strong anisotropy of inhibitory spread. Although its reach along layers was almost the same as that in WT mice, the spread across cortical depth was severely hampered. In summary, the present data suggest that connexin 36-coupled networks significantly shape the electrically evoked cortical inhibitory response. Electrical coupling renders evoked cortical inhibition more precise and strong and ensures a uniform spread along the two cardinal axes of neocortical geometry.
Collapse
Affiliation(s)
- Sergejus Butovas
- Hertie-Institute for Clinical Brain Research, Department of Cognitive Neurology, University Tübingen, Otfried Müller Str. 27, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
12
|
Rojas MJ, Navas JA, Rector DM. Evoked response potential markers for anesthetic and behavioral states. Am J Physiol Regul Integr Comp Physiol 2006; 291:R189-96. [PMID: 16455771 DOI: 10.1152/ajpregu.00409.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rodent whisker sensory system is a commonly used model of cortical processing; however, anesthetics cause profound differences in the shape and timing of evoked responses. Evoked response studies, especially those that use spatial mapping techniques, such as fMRI or optical imaging, will thus show significantly different results depending on the anesthesia used. To describe the effect of behavioral states and commonly used anesthetics, we characterized the early surface-evoked response potentials (ERPs) components (first ERP peak: gamma band 25-45 Hz; fast oscillation: 200-400 Hz; and very fast oscillation: 400-600 Hz) using a 25-channel electrode array on the somatosensory cortex during whisker stimulation. We found significant differences in the ERP shape when ketamine/xylazine, urethane, propofol, isoflurane, and pentobarbital sodium were administered and during sleep and wake states. The highest ERP amplitudes were observed under propofol anesthesia and during quiet sleep. Under isoflurane, the ERP was nearly absent, except for a very late component, which was concombinant with burst synchronization. The slowest responses were seen under urethane and propofol anesthesia. Spatial mapping experiments that use electrical, NMR, or optical techniques must consider the anesthetic dependency of these signals, especially when stimulation protocols or electrical and metabolic responses are compared.
Collapse
Affiliation(s)
- Manuel J Rojas
- VCAPP Department, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
13
|
Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT. High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J Neurophysiol 2005; 94:4269-80. [PMID: 16093343 DOI: 10.1152/jn.00324.2005] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded electrophysiological responses from the left frontal and temporal cortex of awake neurosurgical patients to both repetitive background and rare deviant auditory stimuli. Prominent sensory event-related potentials (ERPs) were recorded from auditory association cortex of the temporal lobe and adjacent regions surrounding the posterior Sylvian fissure. Deviant stimuli generated an additional longer latency mismatch response, maximal at more anterior temporal lobe sites. We found low gamma (30-60 Hz) in auditory association cortex, and we also show the existence of high-frequency oscillations above the traditional gamma range (high gamma, 60-250 Hz). Sensory and mismatch potentials were not reliably observed at frontal recording sites. We suggest that the high gamma oscillations are sensory-induced neocortical ripples, similar in physiological origin to the well-studied ripples of the hippocampus.
Collapse
Affiliation(s)
- Erik Edwards
- Department of Psychology, University of California, Berkeley, 94720, USA.
| | | | | | | | | |
Collapse
|
14
|
Staba RJ, Ard TD, Benison AM, Barth DS. Intracortical Pathways Mediate Nonlinear Fast Oscillation (>200 Hz) Interactions Within Rat Barrel Cortex. J Neurophysiol 2005; 93:2934-9. [PMID: 15590723 DOI: 10.1152/jn.01101.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whisker evoked fast oscillations (FOs; >200 Hz) within the rodent posteromedial barrel subfield are thought to reflect very rapid integration of multiwhisker stimuli, yet the pathways mediating FO interactions remain unclear and may involve interactions within thalamus and/or cortex. In the present study using anesthetized rats, a cortical incision was made between sites representing the stimulated whiskers to determine how intracortical networks contributed to patterns of FOs. With cortex intact, simultaneous stimulation of a pair of whiskers aligned in a row evoked supralinear responses between sites separated by several millimeters. In contrast, stimulation of a nonadjacent pair of whiskers within an arc evoked FOs with no evidence for nonlinear interactions. However, stimulation of an adjacent pair of whiskers in an arc did evoke supralinear responses. After a cortical cut, supralinear interactions associated with FOs within a row were lost. These data indicate a distinct bias for stronger long-range connectivity that extends along barrel rows and that horizontal intracortical pathways exclusively mediate FO-related integration of tactile information.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Psychology, University of Colorado, UCB 345, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
15
|
Staba RJ, Bergmann PC, Barth DS. Dissociation of slow waves and fast oscillations above 200 Hz during GABA application in rat somatosensory cortex. J Physiol 2004; 561:205-14. [PMID: 15550468 PMCID: PMC1665326 DOI: 10.1113/jphysiol.2004.075325] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fast electrical oscillations (FOs; > 200 Hz), superimposed on vibrissa-evoked slow potentials, may support rapid sensory integration in neocortex. Yet, while it is well established that the positive/negative (P1/N1) slow wave of the somatosensory evoked potential primarily reflects sequential activation of supragranular and infragranular pyramidal cells mediated chiefly via excitatory chemical synaptic pathways, little is known about the generation of FOs. In this study, laminar current source-density analysis and principal component analysis indicated that FOs are generated by two dipolar current sources situated in the supra- and infragranular layers, similar in laminar location to the two current dipoles associated with the slow wave. However, exogenous GABA application reversibly abolished the N1 slow wave, leaving the P1 intact, while the FO was unaffected by GABA. Furthermore, reductions in both supra- and infragranular cortical unit discharge during application of GABA suggests that FO generation is not dependent on the same intracortical synaptic circuits that are associated with the N1 slow wave. These data suggest a marked functional dissociation between neural mechanisms underlying the slow and fast components of the vibrissa-evoked response.
Collapse
Affiliation(s)
- Richard J Staba
- Department of Psychology, University of Colorado, Boulder, CO 80309-0345, USA.
| | | | | |
Collapse
|
16
|
Abstract
The vibrissa sensory system is a key model for investigating principles of sensory processing. Specific frequency ranges of vibrissa motion, generated by rodent sensory behaviors (e.g., active exploration or resting) and by stimulus features, characterize perception by this system. During active exploration, rats typically sweep their vibrissae at approximately 4-12 Hz against and over tactual surfaces, and during rest or quiescence, their vibrissae are typically still (<1 Hz). When a vibrissa is swept over an object, microgeometric surface features (e.g., grains on sandpaper) likely create higher frequency vibrissa vibrations that are greater than or equal to several hundred Hertz. In this article, I first review thalamic and cortical neural responses to vibrissa stimulation at 1-40 Hz. I then propose that neural dynamics optimize the detection of stimuli in low-frequency contexts (e.g., 1 Hz) and the discrimination of stimuli in the whisking frequency range. In the third section, I describe how the intrinsic biomechanical properties of vibrissae, their ability to resonate when stimulated at specific frequencies, may promote detection and discrimination of high-frequency inputs, including textured surfaces. In the final section, I hypothesize that distinct low- and high-frequency processing modes may exist in the somatosensory cortex (SI), such that neural responses to stimuli at 1-40 Hz do not necessarily predict responses to higher frequency inputs. In total, these studies show that several frequency-specific mechanisms impact information transmission in the vibrissa sensory system and suggest that these properties play a crucial role in perception.
Collapse
Affiliation(s)
- Christopher I Moore
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|