1
|
Cheng Y, Wang X, Zhang Q, Ge R, Zhou M, Dai Y. Multiple patterns of persistent inward currents with multiple types of repetitive firings in medullary serotonergic neurons of mice: An experimental and modeling study. PLoS Comput Biol 2025; 21:e1012918. [PMID: 40203009 PMCID: PMC11981129 DOI: 10.1371/journal.pcbi.1012918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025] Open
Abstract
Persistent inward currents (PICs) play a crucial role in regulating neuronal excitability. These currents are composed of calcium (CaL) and sodium (NaP) components in vertebrate spinal neurons. Recent studies have reported that PICs are expressed in serotonergic neurons (5-HT) in medulla of mice. Multiple patterns of PICs were identified in 5-HT neurons, corresponding to a range of distinct repetitive firing types. The mechanisms underlying formation of these PIC patterns and firing types remain unknown. Using combined modeling and experimental approaches we explored the ionic mechanisms responsible for the PIC patterns and firing types. The whole cell patch clamp recordings were performed on the medullary 5-HT neurons of postnatal day 3-6 mice. A 5-HT neuron model was built based on the membrane properties of the 5-HT neurons and kinetics of voltage-gated channels. Results from physiological experiments and modeling simulations included: (1) PICs in 5-HT neurons were classified into six patterns based on their current trajectory induced by bi-ramp voltage, while repetitive firings were categorized into three types according to their response to bi-ramp current. Modulation of PICs conductance and kinetics altered the PIC patterns and firing types. (2) NaP conductance contributed to amplitude of PICs, whereas the slow inactivation gate (Sgate) of NaP regulated the PIC patterns and firing types. Increasing Sgate changed trajectory of PICs from counterclockwise to clockwise and firing types from asymmetrical to symmetric types induced by bi-ramp current. (3) CaL conductance dominated the amplitude of PICs, while CaL kinetics (half-activation voltage and slope) determined inactivation of PICs and prolongation of repetitive firing. (4) The novel finding was that distribution of CaL in distal dendrites modulated the PIC patterns and firing types. This study provides insights into the ionic mechanisms underlying generation of multiple PIC patterns and firing types in 5-HT neurons.
Collapse
Affiliation(s)
- Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Xingyu Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Qiang Zhang
- School of Electrical and Information Engineering, Jiangsu University of Science and Technology (Zhangjiagang Campus), Zhangjiagang, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Mei Zhou
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| | - Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
2
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Morphological and electrophysiological properties of serotonin neurons with NMDA modulation in the mesencephalic locomotor region of neonatal ePet-EYFP mice. Exp Brain Res 2019; 237:3333-3350. [PMID: 31720812 DOI: 10.1007/s00221-019-05675-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
The mesencephalic locomotor region (MLR) is an essential area for initiation of locomotion. Its functional roles and circuits underlying locomotion have been studied intensively in many species. Studies suggest that cuneiform nucleus and pedunculopontine nucleus (PPN) are two core regions in the MLR for locomotion. However, it remains unclear about cellular components and morphological and intrinsic membrane properties of the neurons in these regions, especially the serotonergic neurons. Using neonatal ePet-EYFP transgenic mice and immunofluorescent technique, we demonstrated existence of 5-HT neurons in the MLR and discovered that 5-HT neurons distributed mainly in the caudal PPN. 5-HT neurons were heterogeneous in MLR and had three types of firing pattern (single spike, phasic and tonic) and two subtypes of morphology (pyramidal and stellate). We measured parameters of 5-HT neurons (n = 35) including resting membrane potential (- 69.2 ± 4.2 mV), input resistance (1410.1 ± 616.9 MΩ), membrane capacitance (36.4 ± 14.9 pF), time constant (49.7 ± 19.4 ms), voltage threshold (- 32.1 ± 7.4 mV), rheobase (21.3 ± 12.4 pA), action potential amplitude (58.9 ± 12.8 mV) and half-width (4.7 ± 1.1 ms), afterhyperpolarization amplitude (23.6 ± 10.4 mV) and half-decay (331.6 ± 157.7 ms). 5-HT neurons were intrinsically different from adjacent non-5-HT neurons and less excitable than them. Hyperpolarization-activated inward currents and persistent inward currents were recorded in 5-HT neurons. NMDA increased excitability of 5-HT neurons, especially the tonic-firing neurons, accompanied with depolarization of membrane potential, hyperpolarization of voltage threshold, reduction of afterhyperpolarization half-decay, and left-shift of frequency-current relationship. This study provided insight into the distribution and properties of 5-HT neurons in the MLR and interaction between serotonergic and glutamatergic modulations.
Collapse
|
4
|
Balanced cholinergic modulation of spinal locomotor circuits via M2 and M3 muscarinic receptors. Sci Rep 2019; 9:14051. [PMID: 31575899 PMCID: PMC6773880 DOI: 10.1038/s41598-019-50452-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Neuromodulation ensures that neural circuits produce output that is flexible whilst remaining within an optimal operational range. The neuromodulator acetylcholine is released during locomotion to regulate spinal motor circuits. However, the range of receptors and downstream mechanisms by which acetylcholine acts have yet to be fully elucidated. We therefore investigated metabotropic acetylcholine receptor-mediated modulation by using isolated spinal cord preparations from neonatal mice in which locomotor-related output can be induced pharmacologically. We report that M2 receptor blockade decreases the frequency and amplitude of locomotor-related activity, whilst reducing its variability. In contrast, M3 receptor blockade destabilizes locomotor-related bursting. Motoneuron recordings from spinal cord slices revealed that activation of M2 receptors induces an outward current, decreases rheobase, reduces the medium afterhyperpolarization, shortens spike duration and decreases synaptic inputs. In contrast, M3 receptor activation elicits an inward current, increases rheobase, extends action potential duration and increases synaptic inputs. Analysis of miniature postsynaptic currents support that M2 and M3 receptors modulate synaptic transmission via different mechanisms. In summary, we demonstrate that M2 and M3 receptors have opposing modulatory actions on locomotor circuit output, likely reflecting contrasting cellular mechanisms of action. Thus, intraspinal cholinergic systems mediate balanced, multimodal control of spinal motor output.
Collapse
|
5
|
Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019; 30:107-164. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.
Collapse
Affiliation(s)
- Inge Steuer
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
| | - Pierre A Guertin
- Neuroscience Unit, Laval University Medical Center (CHUL - CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
6
|
Kondratskaya E, Ievglevskyi O, Züchner M, Samara A, Glover JC, Boulland JL. Locomotor central pattern generator excitability states and serotonin sensitivity after spontaneous recovery from a neonatal lumbar spinal cord injury. Brain Res 2019; 1708:10-19. [PMID: 30521786 DOI: 10.1016/j.brainres.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
The spinal locomotor central pattern generator (CPG) in neonatal mice exhibits diverse output patterns, ranging from sub-rhythmic to multi-rhythmic to fictive locomotion, depending on its general level of excitation and neuromodulatory status. We have recently reported that the locomotor CPG in neonatal mice rapidly recovers the ability to produce neurochemically induced fictive locomotion following an upper lumbar spinal cord compression injury. Here we address the question of recovery of multi-rhythmic activity and the serotonin-sensitivity of the CPG. In isolated spinal cords from control and 3 days post-injury mice, application of dopamine and NMDA elicited multi-rhythmic activity with slow and fast components. The slow component comprised 10-20 s episodes of activity that were synchronous in ipsilateral or all lumbar ventral roots, and the fast components involved bursts within these episodes that displayed coordinated patterns of alternation between ipsilateral roots. Rhythm strength was the same in control and injured spinal cords. However, power spectral analysis of signal within episodes showed a reduced peak frequency after recovery. In control spinal cords, serotonin triggered fictive locomotion only when applied at high concentration (30 µM, constant NMDA). By contrast, in about 50% of injured preparations fictive locomotion was evoked by 2-3 times lower serotonin concentrations (10-15 µM). This increased serotonin sensitivity was correlated with post-injury changes in the expression of specific serotonin receptor transcripts, but not of dopamine receptor transcripts.
Collapse
Affiliation(s)
- Elena Kondratskaya
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Oleksandr Ievglevskyi
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Mark Züchner
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Department of Neurosurgery, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Athina Samara
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Joel C Glover
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway.
| |
Collapse
|
7
|
Torres-da-Silva KR, Da Silva AV, Barioni NO, Tessarin GWL, De Oliveira JA, Ervolino E, Horta-Junior JAC, Casatti CA. Neurochemistry study of spinal cord in non-human primate (Sapajus spp.). Eur J Histochem 2016; 60:2623. [PMID: 27734991 PMCID: PMC5062631 DOI: 10.4081/ejh.2016.2623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
The spinal cord is involved in local, ascending and descending neural pathways. Few studies analyzed the distribution of neuromediators in the laminae of non-human primates along all segments. The present study described the classic neuromediators in the spinal cord of the non-human primate Sapajus spp. through histochemical and immunohistochemical methods. Nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH-d) method showed neuronal somata in the intermediolateral column (IML), central cervical nucleus (CCN), laminae I, II, III, IV, V, VI, VII, VIII and X, besides dense presence of nerve fibers in laminae II and IX. Acetylcholinesterase (AChE) activity was evident in the neuronal somata in laminae V, VI, VII, VIII, IX, CCN, IML and in the Clarke’s column (CC). Immunohistochemistry data revealed neuronal nitric oxide synthase (nNOS) immunoreactivity in neuronal somata and in fibers of laminae I, II, III, VII, VIII, X and IML; choline acetyltransferase (ChAT) in neuronal somata and in fibers of laminae VII, VIII and IX; calcitonin gene-related peptide (CGRP) was noticed in neuronal somata of lamina IX and in nerve fibers of laminae I, II, III, IV, V, VI and VII; substance P (SP) in nerve fibers of laminae I, II, III, IV, V, VI, VII, VIII, IX, X, CCN, CC and IML; serotonin (5-HT) and vesicular glutamate transporter-1 (VGLUT1) was noticed in nerve fibers of all laminae; somatostatin (SOM) in neuronal somata of laminae III, IV, V, VI, VII, VIII and IX and nerve fibers in laminae I, II, V, VI, VII, X and IML; calbindin (Cb) in neuronal somata of laminae I, II, VI, VII, IX and X; parvalbumin (PV) was found in neuronal somata and in nerve fibers of laminae III, IV, V, VI, VII, VIII, IX and CC; finally, gamma-amino butyric acid (GABA) was present in neuronal somata of laminae V, VI, VII, VIII, IX and X. This study revealed interesting results concerning the chemoarchitecture of the Sapajus spp. spinal cord with a distribution pattern mostly similar to other mammals. The data corroborate the result described in literature, except for some differences in CGRP, SP, Cb, PV and GABA immunoreactivities present in neuronal somata and in nerve fibers. This could suggest certain specificity for the neurochemistry distribution in this non-human primate species, besides adding relevant data to support further studies related to processes involving spinal cord components.
Collapse
|
8
|
Husch A, Dietz SB, Hong DN, Harris-Warrick RM. Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability. J Neurophysiol 2014; 113:1124-34. [PMID: 25520435 DOI: 10.1152/jn.00741.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development. Here, we compare intrinsic properties and serotonergic modulation of the V2a class of excitatory spinal interneurons in behaviorally mature (older than P43) mice to those in neonatal mice. Using perforated patch recordings from genetically tagged V2a interneurons, we revealed an age-dependent increase in excitability. The input resistance increased, the rheobase values decreased, and the relation between injected current and firing frequency (F/I plot) showed higher excitability in the adult neurons, with almost all neurons firing tonically during a current step. The adult action potential (AP) properties became narrower and taller, and the AP threshold hyperpolarized. While in neonates the AP afterhyperpolarization was monophasic, most adult V2a interneurons showed a biphasic afterhyperpolarization. Serotonin increased excitability and depolarized most neonatal and adult V2a interneurons. However, in ∼30% of adult V2a interneurons, serotonin additionally elicited spontaneous intrinsic membrane potential bistability, resulting in alternations between hyperpolarized and depolarized states with a dramatically decreased membrane input resistance and facilitation of evoked plateau potentials. This was never seen in younger animals. Our findings indicate a significant postnatal development of the properties of locomotor-related V2a interneurons, which could alter their interpretation of synaptic inputs in the locomotor CPG.
Collapse
Affiliation(s)
- Andreas Husch
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Shelby B Dietz
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | - Diana N Hong
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York
| | | |
Collapse
|
9
|
Jordan LM, McVagh JR, Noga BR, Cabaj AM, Majczyński H, Sławińska U, Provencher J, Leblond H, Rossignol S. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front Neural Circuits 2014; 8:132. [PMID: 25414645 PMCID: PMC4222238 DOI: 10.3389/fncir.2014.00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023] Open
Abstract
Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a “hyper-cholinergic” state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in suppressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed by our experiments.
Collapse
Affiliation(s)
- Larry M Jordan
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - J R McVagh
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| | - B R Noga
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miami, FL, USA
| | - A M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland ; Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS Warsaw, Poland
| | - H Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - J Provencher
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - H Leblond
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central and Department of Neuroscience, Faculty of Medicine, Université de Montréal Montreal, QC, Canada
| |
Collapse
|
10
|
He C, Chen F, Li B, Hu Z. Neurophysiology of HCN channels: From cellular functions to multiple regulations. Prog Neurobiol 2014; 112:1-23. [DOI: 10.1016/j.pneurobio.2013.10.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 12/18/2022]
|
11
|
Abstract
Motor behaviors result from the interplay between the brain and the spinal cord. Reticulospinal neurons, situated between the supraspinal structures that initiate motor movements and the spinal cord that executes them, play key integrative roles in these behaviors. However, the molecular identities of mammalian reticular formation neurons that mediate motor behaviors have not yet been determined, thus limiting their study in health and disease. In the medullary reticular formation of the mouse, we identified neurons that express the transcription factors Lhx3 and/or Chx10, and demonstrate that these neurons form a significant component of glutamatergic reticulospinal pathways. Lhx3-positive medullary reticular formation neurons express Fos following a locomotor task in the adult, indicating that they are active during walking. Furthermore, they receive functional inputs from the mesencephalic locomotor region and have electrophysiological properties to support tonic repetitive firing, both of which are necessary for neurons that mediate the descending command for locomotion. Together, these results suggest that Lhx3/Chx10 medullary reticular formation neurons are involved in locomotion.
Collapse
|
12
|
Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development. J Neurosci 2012; 32:9265-76. [PMID: 22764234 DOI: 10.1523/jneurosci.1198-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study investigated the requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CSTs) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period [postnatal week 5 (PW5) to PW7] produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired limb, for the month after M1 inactivation (PW8-PW13; "restraint alone"). A second group wore the restraint during PW8-PW13 and was also trained for 1 h/d in a reaching task with the contralateral forelimb ("early training"). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20-PW24 ("delayed training"). Early training restored CST connections and the M1 motor map, increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side, and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury.
Collapse
|
13
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
14
|
Dai Y, Jordan LM. Tetrodotoxin-, dihydropyridine-, and riluzole-resistant persistent inward current: novel sodium channels in rodent spinal neurons. J Neurophysiol 2011; 106:1322-40. [PMID: 21653721 DOI: 10.1152/jn.00918.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported the tetrodotoxin (TTX)- and dihydropyridine (DHP)-resistant (TDR) inward currents in neonatal mouse spinal neurons. In this study, we further characterized these currents in the presence of 1-5 μM TTX and 20-30 μM DHP (nifedipine, nimodipine, or isradipine). TDR inward currents were recorded by voltage ramp (persistent inward current, TDR-PIC) and step (TDR-I(p)) protocols. TDR-PIC and TDR-I(p) were found in 80.2% of recorded neurons (101/126) crossing laminae I to X from T12 to L6. TDR-PIC activated at -28.6 ± 13 mV with an amplitude of 80.6 ± 75 pA and time constant of 470.6 ± 240 ms (n = 75). TDR-I(p) had an amplitude of 151.2 ± 151 pA and a voltage threshold of -17.0 ± 9 mV (n = 54) with a wide range of kinetics parameters. The half-maximal activation was -21.5 ± 8 mV (-37 to -12 mV, n = 29) with a time constant of 5.2 ± 2 ms (1.2-11.2 ms, n = 19), whereas the half-maximal inactivation was -26.9 ± 9 mV (-39 to -18 mV, n = 14) with a time constant of 1.4 ± 0.4 s (0.5-2.2 s, n = 19). TDR-PIC and TDR-I(p) could be reduced by 60% in zero calcium and completely removed in zero sodium solutions, suggesting that they were mediated by sodium ions. Furthermore, the reversal potential of TDR-I(p) was estimated as 56.6 ± 3 mV (n = 10). TDR-PIC and TDR-I(p) persisted in 1-205 μM TTX, 20-100 μM DHP, 3-30 μM riluzole, 50-300 μM flufenamic acid, and 2-30 mM intracellular BAPTA. They also persisted with T-, N-, P/Q-, and R-type calcium channel blockers. In conclusion, we demonstrated novel TTX-, DHP-, and riluzole-resistant sodium channels in neonatal rodent spinal neurons. The unique pharmacological and electrophysiological properties would allow these channels to play a functional role in spinal motor system.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
15
|
Harris-Warrick RM. Neuromodulation and flexibility in Central Pattern Generator networks. Curr Opin Neurobiol 2011; 21:685-92. [PMID: 21646013 DOI: 10.1016/j.conb.2011.05.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/29/2022]
Abstract
Central Pattern Generator (CPG) networks, which organize rhythmic movements, have long served as models for neural network organization. Modulatory inputs are essential components of CPG function: neuromodulators set the parameters of CPG neurons and synapses to render the networks functional. Each modulator acts on the network by many effects which may oppose one another; this may serve to stabilize the modulated state. Neuromodulators also determine the active neuronal composition in the CPG, which varies with state changes such as locomotor speed. The pattern of gene expression which determines the electrophysiological personality of each CPG neuron is also under modulatory control. It is not possible to model the function of neural networks without including the actions of neuromodulators.
Collapse
Affiliation(s)
- Ronald M Harris-Warrick
- Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. J Neurosci 2011; 31:4821-33. [PMID: 21451020 DOI: 10.1523/jneurosci.4764-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Commissural inhibitory interneurons (INs) are integral components of the locomotor circuitry that coordinate left-right motor activity during movements. We have shown that GABA-mediated synaptic transmission plays a key role in generating alternating locomotor-like activity in the mouse spinal cord (Hinckley et al., 2005a). The primary objective of our study was to determine whether properties of lamina VIII (LVIII) GABAergic INs in the spinal cord of GAD67::GFP transgenic mice fit the classification of rhythm-coordinating neurons in the locomotor circuitry. The relatively large green fluorescent protein-expressing (GFP(+)) INs had comparable morphological and electrophysiological properties, suggesting that they comprised a homogenous neuronal population. They displayed multipolar and complex dendritic arbors in ipsilateral LVII-LVIII, and their axonal projections crossed the ventral commissure and branched into contralateral ventral, medial, and dorsal laminae. Putative synaptic contacts evident as bouton-like varicosities were detected in close apposition to lateral motoneurons, Renshaw cells, other GFP(+) INs, and unidentified neurons. Exposure to a rhythmogenic mixture triggered locomotor-like rhythmic firing in the majority of LVIII GFP(+) INs. Their induced oscillatory activity was out-of-phase with bursts of contralateral motoneurons and in-phase with bouts of ipsilateral motor activity. Membrane voltage oscillations were elicited by rhythmic increases in excitatory synaptic drive and might have been augmented by three types of voltage-activated cationic currents known to increase neuronal excitability. Based on their axonal projections and activity pattern, we propose that this population of GABAergic INs forms a class of local commissural inhibitory interneurons that are integral component of the locomotor circuitry.
Collapse
|
17
|
Pearlstein E, Bras H, Deneris ES, Vinay L. Contribution of 5-HT to locomotion - the paradox of Pet-1(-/-) mice. Eur J Neurosci 2011; 33:1812-22. [PMID: 21501257 DOI: 10.1111/j.1460-9568.2011.07679.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) plays a critical role in locomotor pattern generation by modulating the rhythm and the coordinations. Pet-1, a transcription factor selectively expressed in the raphe nuclei, controls the differentiation of 5-HT neurons. Surprisingly, inactivation of Pet-1 (Pet-1(-/-) mice) that causes a 70% reduction in the number of 5-HT-positive neurons in the raphe does not impair locomotion in adult mice. The goal of the present study was to investigate the operation of the locomotor central pattern generator (CPG) in neonatal Pet-1(-/-) mice. We first confirmed, by means of immunohistochemistry, that there is a marked reduction of 5-HT innervation in the lumbar spinal cord of Pet-1(-/-) mice. Fictive locomotion was induced in the in vitro neonatal mouse spinal cord preparation by bath application of N-methyl-d,l-Aspartate (NMA) alone or together with dopamine and 5-HT. A locomotor pattern characterized by left-right and flexor-extensor alternations was observed in both conditions. Increasing the concentration of 5-HT from 0.5 to 5 μm impaired the pattern in Pet-1(-/-) mice. We tested the role of endogenous 5-HT in the NMA-induced fictive locomotion. Application of 5-HT(2) or 5-HT(7) receptor antagonists affected the NMA-induced fictive locomotion in both heterozygous and homozygous mice although the effects were weaker in the latter strain. This may be, at least partly, explained by the reduced expression of 5-HT(2A) R as observed by means of immunohistochemistry. These results suggest that compensatory mechanisms take place in Pet-1(-/-) mice that make locomotion less dependent upon 5-HT.
Collapse
Affiliation(s)
- E Pearlstein
- Laboratoire Plasticité et Physio-Pathologie de la Motricité (P3M), CNRS & Université de la Méditerranée, UMR 6196, CNRS, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
18
|
Ahmed Z. Trans-spinal direct current stimulation modulates motor cortex-induced muscle contraction in mice. J Appl Physiol (1985) 2011; 110:1414-24. [PMID: 21350028 DOI: 10.1152/japplphysiol.01390.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study investigated the effect of trans-spinal direct current (tsDC) on the firing rate, pattern, and amplitude of spontaneous activity of the tibial nerve and on the magnitude of cortically elicited triceps surae (TS) muscle contractions. The effect of combined tsDC and repetitive cortical electrical stimulation (rCES) on the amplitude of cortically elicited TS twitches was also investigated. Stimulation was applied by two disk electrodes (0.79 cm(2)): one was located subcutaneously over the vertebral column (T(10)-L(1)) and was used to deliver anodal DC (a-tsDC) or cathodal DC (c-tsDC) (density range: ± 0.64 to ± 38.2 A/m(2)), whereas the other was located subcutaneously on the lateral aspect of the abdomen and served as a reference. While the application of a-tsDC significantly increased the spike frequency and amplitude of spontaneous discharges compared with c-tsDC, c-tsDC made the spontaneous discharges more rhythmic. Cortically elicited TS twitches were depressed during a-tsDC and potentiated after termination. Conversely, cortically elicited TS twitches were enhanced during c-tsDC and depressed after termination. While combined a-tsDC and rCES produced similar effects as a-tsDC alone, combined c-tsDC and rCES showed the greatest increase in cortically elicited TS twitches. tsDC appears to be a powerful neurostimulation tool that can differentially modulate spinal cord excitability and corticospinal transmission.
Collapse
Affiliation(s)
- Zaghloul Ahmed
- Department of Physical Therapy and Neuroscience Program, The College of Staten Island/City University of New York, Staten Island, NY, USA.
| |
Collapse
|
19
|
Jordan LM, Sławińska U. Chapter 12--modulation of rhythmic movement: control of coordination. PROGRESS IN BRAIN RESEARCH 2011; 188:181-95. [PMID: 21333810 DOI: 10.1016/b978-0-444-53825-3.00017-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Three rhythmic movements, breathing, walking, and chewing, are considered from the perspective of the emerging factors that control their coordination. This takes us beyond the concept of a core excitatory kernel and into the common principles that govern the interaction between components of the neural networks that must be orchestrated properly to produce meaningful movement beyond the production of the basic rhythm. We focus on the role of neuromodulators, especially 5-hydroxytryptamine (5-HT), in the production of coordinated breathing, walking, and chewing, and we review the evidence that at least in the case of breathing and walking, 5-HT input to the CPGs acts through the selection of inhibitory interneurons that are essential for coordination. We review data from recently developed mouse models that offer insight into the contributions of inhibitory coordinating neurons, including the development of a new model that has allowed the revelation that there are glycinergic pacemaker neurons that likely contribute to the production of the respiratory rhythm. Perhaps walking and chewing will not be far behind.
Collapse
Affiliation(s)
- Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg MB, Canada
| | | |
Collapse
|