1
|
Seikai T, Yamanishi T, Harada T, Ono Y, Tsuji T, Kondo T, Nishio T, Yokota Y, Ishihama K, Enomoto A, Togawa T, Tanaka S, Kogo M. Glycine alters the sequential pattern of swallowing activity in juvenile rat working heart-brainstem preparations. Brain Res Bull 2025; 226:111378. [PMID: 40347981 DOI: 10.1016/j.brainresbull.2025.111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Swallowing is a centrally programmed intricate activity modulated by both excitatory and inhibitory neural transmissions to ensure that aspiration does not occur. However, the role of inhibitory transmission in swallowing is not clearly understood. The working heart-brainstem preparation (WHBP) has recently gained attention as a tool for studying the central mechanisms of swallowing. Nevertheless, the swallowing activity elicited from the WHBP has not been adequately validated. Therefore, we aimed to confirm whether the neuronal activity elicited from the WHBP represented authentic swallowing activity and to investigate the roles of inhibitory neurotransmitter receptors in the development of sequential swallowing. By applying electrical stimulation to the superior laryngeal nerve of the WHBP, sequential muscle activity was recorded from multiple muscles, from the oral cavity toward the oesophagus. This activity transported the staining solution administered through the oral cavity to the lower end of the oesophagus, confirming the activity elicited from the WHBP as swallowing activity. Additionally, we found that administering a glycine receptor antagonist accelerated the timing of activation of the middle pharyngeal constrictor muscle during sequential swallowing activity, whereas the administration of a GABAA receptor antagonist had no effect. In conclusion, we validated that the WHBP elicits swallowing activity upon electrical stimulation of the superior laryngeal nerve, and that glycine receptors contribute to the orchestration of the sequential swallowing activity.
Collapse
Affiliation(s)
- Tetsuya Seikai
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan; Hokkaido University, Department of Oral and Maxillofacial Surgery, Division of Oral Pathobiological Science, Graduate School of Dental Medicine, Faculty of Dental Medicine, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Tadashi Yamanishi
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Takeshi Harada
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Yudai Ono
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Tadataka Tsuji
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Takahide Kondo
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Takahiro Nishio
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Yusuke Yokota
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Koji Ishihama
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Akifumi Enomoto
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan; Kindai University School of Medicine, Department of Oral and Maxillofacial Surgery, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Takeshi Togawa
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Susumu Tanaka
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| | - Mikihiko Kogo
- Osaka University Graduate School of Dentistry, First Department of Oral and Maxillofacial Surgery, 1-8 Suita, Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Sato Y, Sugiyama Y, Ishida T, Inufusa H, You F, Joseph D, Hirano S. The Potential Role of Oxidative Stress in Modulating Airway Defensive Reflexes. Antioxidants (Basel) 2025; 14:568. [PMID: 40427451 PMCID: PMC12108395 DOI: 10.3390/antiox14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Airway defensive reflexes, such as pharyngeal swallowing, coughing, and sneezing, play a pivotal role in maintaining airway homeostasis. These reflexes are controlled by complex mechanisms primarily governed by specific neuronal circuitry in the brainstem, referred to as central pattern generators. These behaviors also require optimal conditions for the peripheral organs within the airway and alimentary tracts, including the nose, pharynx, larynx, and trachea, which are vital for ensuring appropriate responsiveness and motor outputs. Oxidative stress is linked to the development and progress of impaired functions of those behaviors. Dysphagia caused by central or peripheral impairments, such as neurodegeneration of related neuronal networks and laryngeal desensitization, is likely associated with an increased level of oxidative stress. Chronic inflammation and allergic airway sensitization in the lower airways, including asthma, elevate oxidative stress levels and diminish the activity of antioxidant defense enzymes, which exacerbate the severity of respiratory conditions. Antioxidant supplements offer promising therapeutic benefits by facilitating the recovery of distorted airway defensive reflexes, although limited information has been provided concerning therapeutic strategies. Further studies are necessary to enhance our understanding of the pathophysiology of dysphagia and airway diseases related to oxidative stress, as well as to develop new treatment strategies for these disorders.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (Y.S.); (T.I.)
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (Y.S.); (T.I.)
| | - Tomoya Ishida
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan; (Y.S.); (T.I.)
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanaka Monzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
- Anti-Oxidant Research Laboratory, Louis Pasteur Center for Medical Research, Tanaka Monzen-cho 103-5, Sakyo-ku, Kyoto 606-8225, Japan
| | - Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
3
|
Huff A, Oliveira LM, Karlen-Amarante M, Ebiala F, Ramirez JM, Kalume F. Ndufs4 inactivation in glutamatergic neurons reveals swallow-breathing discoordination in a mouse model of Leigh syndrome. Exp Neurol 2025; 385:115123. [PMID: 39710245 PMCID: PMC11781966 DOI: 10.1016/j.expneurol.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration. We used a genetic mouse model of LS in which the NDUFS4 gene is knocked out (KO) specifically in Vglut2 or Gad2 neurons. We found increased variability of the swallow motor pattern, disruption in breathing regeneration post swallow, and water-induced apneas only in Vglut2 KO mice. These physiological changes likely contribute to weight loss and premature death seen in this mouse model. Following chronic hypoxia (CH) exposure, there was no difference in swallow motor pattern, breathing regeneration, weight, and life expectancy in the Vglut2-Ndufs4-KO CH mice compared to control CH, indicating a phenotypic rescue or prevention. These findings show that like patients with LS, Ndufs4 mouse models of LS exhibit swallow impairments as well as swallow-breathing discoordination alongside the other phenotypic traits described in previous studies. Understanding this aspect of LS will open roads for the development of future more efficacious therapeutic intervention for this illness.
Collapse
Affiliation(s)
- Alyssa Huff
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Luiz Marcelo Oliveira
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Marlusa Karlen-Amarante
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America
| | - Favour Ebiala
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Jan Marino Ramirez
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Franck Kalume
- Norecliffe Foundation Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States of America; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98108, USA.
| |
Collapse
|
4
|
Tsutsui Y, Chotirungsan T, Pan CR, Kawada S, Magara J, Tsujimura T, Okamoto K, Inoue M. The central neural control of the posterior belly of the digastric muscles during swallowing in rats. Am J Physiol Gastrointest Liver Physiol 2025; 328:G277-G288. [PMID: 39908006 DOI: 10.1152/ajpgi.00374.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
The aim of this study was to clarify whether the posterior belly of the digastric (post-Dig) muscle is activated during the swallowing reflex and whether the post-Dig muscle is directly controlled by the swallowing central pattern generator (CPG) in anesthetized rats, using physiological and immunohistochemical approaches. In physiological study, electromyograms (EMGs) of the post-Dig, sternohyoid and thyrohyoid muscles, and the diaphragm were recorded during respiration and swallowing with and without airway stenosis. In the immunohistochemical study, c-Fos immunoreactivity for expression of cells during swallowing was analyzed. Motoneurons were identified using immunohistochemistry with Fluoro-gold (FG). EMG bursts were observed in the hyoid muscles during the inspiratory phase and swallowing. With airway stenosis, the swallowing EMG activity was facilitated in terms of duration and area only in the post-Dig muscle. The coordination of these EMG activities during swallowing was maintained with airway stenosis. In contrast, the offset of the post-Dig EMG burst was delayed with airway stenosis. c-Fos-positive cells were observed in the accessory facial nucleus (Acs7), but only in the rostral portion. FG-labeled cells were observed in Acs7. Several c-Fos/FG double-labeled cells were observed only in the rostral Acs7. These results suggested that the post-Dig muscle is activated during swallowing, the activation of which is controlled by the swallowing CPG, and that the distribution of Acs7 neurons, which innervate the post-Dig muscle, was uneven in the nucleus. In addition, the modulation of post-Dig muscle activity during inspiration might be due to changes in peripheral conditions via respiratory CPG.NEW & NOTEWORTHY The posterior belly of the digastric muscle is activated during the inspiratory phase and swallowing. Increased airway resistance facilitates both inspiratory and swallowing activities of this muscle. Immunohistochemistry revealed that the motoneurons innervating the posterior belly of the digastric muscle were activated during swallowing only in the rostral portion of the accessory facial nucleus. These results suggested that the posterior belly of the digastric muscle is controlled by the respiratory and swallowing central pattern generators.
Collapse
Affiliation(s)
- Yuhei Tsutsui
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Titi Chotirungsan
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Charng-Rong Pan
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satomi Kawada
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
5
|
Triarhou LC. Robert W. Doty (1920-2011). J Neurol 2024; 271:7641-7643. [PMID: 39340540 DOI: 10.1007/s00415-024-12710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Affiliation(s)
- Lazaros C Triarhou
- Division of Brain, Behavior and Cognition, Department of Psychology, Aristotelian University Faculty of Philosophy, Thessaloníki, Greece.
- Graduate Program in Neuroscience, Department of Neurosurgery, Aristotelian University School of Medicine, Thessaloníki, Greece.
| |
Collapse
|
6
|
Mu L, Chen J, Li J, Nyirenda T, Hegland KW, Beach TG. Mechanisms of Swallowing, Speech and Voice Disorders in Parkinson's Disease: Literature Review with Our First Evidence for the Periperal Nervous System Involvement. Dysphagia 2024; 39:1001-1012. [PMID: 38498201 DOI: 10.1007/s00455-024-10693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The majority of patients with Parkinson's disease (PD) develop swallowing, speech, and voice (SSV) disorders. Importantly, swallowing difficulty or dysphagia and related aspiration are life-threatening conditions for PD patients. Although PD treatments have significant therapeutic effects on limb motor function, their effects on SSV disorders are less impressive. A large gap in our knowledge is that the mechanisms of SSV disorders in PD are poorly understood. PD was long considered to be a central nervous system disorder caused by the death of dopaminergic neurons in the basal ganglia. Aggregates of phosphorylated α-synuclein (PAS) underlie PD pathology. SSV disorders were thought to be caused by the same dopaminergic problem as those causing impaired limb movement; however, there is little evidence to support this. The pharynx, larynx, and tongue play a critical role in performing upper airway (UA) motor tasks and their dysfunction results in disordered SSV. This review aims to provide an overview on the neuromuscular organization patterns, functions of the UA structures, clinical features of SSV disorders, and gaps in knowledge regarding the pathophysiology underlying SSV disorders in PD, and evidence supporting the hypothesis that SSV disorders in PD could be associated, at least in part, with PAS damage to the peripheral nervous system controlling the UA structures. Determining the presence and distribution of PAS lesions in the pharynx, larynx, and tongue will facilitate the identification of peripheral therapeutic targets and set a foundation for the development of new therapies to treat SSV disorders in PD.
Collapse
Affiliation(s)
- Liancai Mu
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
| | - Jingming Chen
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Jing Li
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Themba Nyirenda
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Karen Wheeler Hegland
- Upper Airway Dysfunction Laboratory, M.A. Program in Communication Sciences & Disorders, Department of Speech, Language and Hearing Sciences, College of Public Health and Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL, 32611, USA
| | - Thomas G Beach
- Director of Neuroscience, Director of Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 West Santa Fe Dr, Sun City, AZ, 85351, USA
| |
Collapse
|
7
|
Kim SB, Choi YJ, Kim ST, Kim HJ. Comparison between botulinum toxin type A injection on masseter muscle only and additional injection on anterior belly of digastric muscle in sleep bruxism patients: A clinical trial. J Oral Rehabil 2024; 51:2125-2132. [PMID: 39030872 DOI: 10.1111/joor.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/24/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE This study aims to evaluate the effects on bite force and muscle thickness of the botulinum toxin (BoNT) injection for patients with sleep bruxism (SB) by comparing injections into the masseter muscle only and both the masseter and the anterior belly of the digastric muscle (ABDM) in a clinical trial. METHODS Twelve SB patients received BoNT-A injections using US-guided techniques into the masseter muscle only (Group A), while the remaining 12 SB patients received injections into both the masseter and ABDM (Group B). Bite force and muscle thickness were measured before injection, as well as 1 and 2 months after injection. RESULTS The bite force and masseter muscle thickness decreased in both Group A and Group B before injection, and at 1 and 2 months after injection. However, there was no significant difference (p > .05, repeated measures analysis of variance) between the two groups, and there was also no significant difference in ABDM thickness (p > .05, repeated measures analysis of variance). CONCLUSION This study is the first to assess the short-term effects of BoNT injected into ABDM for SB control. Results show no influence on SB reduction, suggesting the need for further research on BoNT's effectiveness in controlling intense ABDM contractions during sleep and assessing suprahyoid muscle potential impact on rhythmic masticatory muscle activity occurrence.
Collapse
Affiliation(s)
- Soo-Bin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - You-Jin Choi
- Department of Anatomy, School of Medicine, Konkuk University, Chungju, South Korea
| | - Seong Taek Kim
- Department of Orofacial Pain and Oral Medicine, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Electric and Electronical Engineering, College of Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
8
|
Saka N, Chotirungsan T, Yoshihara M, Pan CR, Tsutsui Y, Dewa N, Magara J, Tsujimura T, Inoue M. Functional involvement of the sternohyoid muscle during breathing and swallowing in rats. Am J Physiol Gastrointest Liver Physiol 2024; 327:G598-G607. [PMID: 39104324 DOI: 10.1152/ajpgi.00138.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The sternohyoid muscle depresses the hyoid bone, but it is unclear whether the muscle contributes to respiratory and swallowing mechanisms. This study aimed to clarify whether the sternohyoid muscle participates in the respiration and swallowing reflex and how the activity is modulated in two conditions: with airway stenosis and with a fixed sternohyoid muscle length. Electromyographic activity in the sternohyoid, digastric, thyrohyoid, and diaphragm muscles was recorded in anesthetized rats. The sternohyoid muscle activity was observed in the inspiratory phase and during swallowing, and was well coordinated with digastric and thyrohyoid muscle activity. With airway stenosis, the respiratory activity per respiratory cycle was facilitated in all assessed muscles but the facilitation of activity per second occurred only in the digastric, thyrohyoid, and sternohyoid muscles. With airway stenosis, the swallowing activity was facilitated only in the digastric muscle but not in the thyrohyoid and sternohyoid muscles. Swallowing activity was not observed in the sternohyoid muscle in the condition with the sternohyoid muscle length fixed, although increased inspiratory activity remained. The current results suggest that 1) the sternohyoid muscle is slightly activated in the inspiratory phase, 2) the effect of airway stenosis on respiratory function may differ between the upper airway muscles and diaphragm, and 3) swallowing activity in the sternohyoid muscle is not dominantly controlled by the swallowing central pattern generator but instead occurs as a myotatic reflex.NEW & NOTEWORTHY We found that the sternohyoid muscle was activated in the inspiratory phase. However, increased airway resistance had different effects on the extrathoracic muscles than on the diaphragm. The swallowing activity of the sternohyoid disappeared when the muscle length was fixed. These findings suggest that the sternohyoid muscle may be activated not by the swallowing central pattern generator but as a myotatic reflex.
Collapse
Affiliation(s)
- Nobuaki Saka
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Titi Chotirungsan
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Oral Diagnosis, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Charng-Rong Pan
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuhei Tsutsui
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nozomi Dewa
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
9
|
Huff A, Oliveira LM, Karlen-Amarante M, Ebiala F, Ramirez JM, Kalume F. Ndufs4 inactivation in glutamatergic neurons reveals swallow-breathing discoordination in a mouse model of Leigh Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612506. [PMID: 39314482 PMCID: PMC11419062 DOI: 10.1101/2024.09.11.612506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Swallowing, both nutritive and non-nutritive, is highly dysfunctional in children with Leigh Syndrome (LS) and contributes to the need for both gastrostomy and tracheostomy tube placement. Without these interventions aspiration of food, liquid, and mucus occur resulting in repeated bouts of respiratory infection. No study has investigated whether mouse models of LS, a neurometabolic disorder, exhibit dysfunctions in neuromuscular activity of swallow and breathing integration. We used a genetic mouse model of LS in which the NDUFS4 gene is knocked out (KO) specifically in Vglut2 or Gad2 neurons. We found increased variability of the swallow motor pattern, disruption in breathing regeneration post swallow, and water-induced apneas only in Vglut2 KO mice. These physiological changes likely contribute to weight loss and premature death seen in this mouse model. Following chronic hypoxia (CH) exposure, swallow motor pattern, breathing regeneration, weight, and life expectancy were not changed in the Vglut2-Ndufs4-KO CH mice compared to control, indicating a rescue of phenotypes. These findings show that like patients with LS, Ndufs4 mouse models of LS exhibit swallow impairments as well as swallow-breathing dyscoordination alongside the other phenotypic traits described in previous studies. Understanding this aspect of LS will open roads for the development of future more efficacious therapeutic intervention for this illness.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Favour Ebiala
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| | - Franck Kalume
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
10
|
Nagoya K, Tsujimura T, Yoshihara M, Watanabe M, Magara J, Kawasaki K, Inoue M. Physiological analyses of swallowing changes due to chronic obstructive pulmonary disease in anesthetized male rats. Front Physiol 2024; 15:1445336. [PMID: 39170764 PMCID: PMC11337103 DOI: 10.3389/fphys.2024.1445336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) was previously known as chronic bronchitis and emphysema. It has various main symptoms, such as dyspnea, chronic cough, and sputum, and is often accompanied by dysphagia. Although many published clinical reports have described COPD-related dysphagia, the physiological mechanisms underlying swallowing changes due to COPD remain unclear. Therefore, we analyzed how COPD affects the swallowing reflex using COPD model rats. We performed an electrophysiological study of respiration and swallowing using COPD model induced by intratracheal administration of porcine pancreatic elastase and lipopolysaccharide in Sprague-Dawley male rats. To identify the respiration and swallowing responses, electromyographic activity was recorded from the diaphragm, digastric (Dig), and thyrohyoid (TH) muscles. We confirmed COPD using micro-computed tomography analysis and hematoxylin and eosin staining of the lungs. The duty cycle was defined as the ratio of the inspiration duration to the total respiratory duration. In COPD model rats, the duty cycle was significantly higher than that in control rats. The frequency of the swallowing reflex evoked by electrical stimulation of the superior laryngeal nerve during the inspiration phase was higher in COPD model rats than in control rats. Furthermore, long-term COPD altered Dig and TH muscle activity without pathological muscle change. Our results suggest that COPD increases the frequency of swallowing initiation during the inspiration phase. Furthermore, long-term COPD affects swallowing-related muscle activity without pathological muscle changes. These physiological changes may increase the risk of developing dysphagia. Further studies are necessary to clarify the mechanisms contributing to the functional changes in respiration and swallowing in COPD.
Collapse
Affiliation(s)
- Kouta Nagoya
- Division of Oral Functional Rehabilitation Medicine, Department of Oral Health Management, Showa University School of Dentistry, Tokyo, Japan
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Watanabe
- Department of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
11
|
Hashimoto K, Sugiyama Y, Kaneko M, Kinoshita S, Yamamoto R, Ishida T, Umezaki T, Hirano S. A dysphagia model with denervation of the pharyngeal constrictor muscles in guinea pigs: functional evaluation of swallowing. Front Neurol 2024; 15:1401982. [PMID: 38962483 PMCID: PMC11220121 DOI: 10.3389/fneur.2024.1401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Swallowing impairment is a crucial issue that can lead to aspiration, pneumonia, and malnutrition. Animal models are useful to reveal pathophysiology and to facilitate development of new treatments for dysphagia caused by many diseases. The present study aimed to develop a new dysphagia model with reduced pharyngeal constriction during pharyngeal swallowing. Methods We analyzed the dynamics of pharyngeal swallowing over time with the pharyngeal branches of the vagus nerve (Ph-X) bilaterally or unilaterally transected, using videofluoroscopic assessment of swallowing in guinea pigs. We also evaluated the detailed anatomy of the pharyngeal constrictor muscles after the denervation. Results Videofluoroscopic examination of swallowing showed a significant increase in the pharyngeal area during swallowing after bilateral and unilateral sectioning of the Ph-X. The videofluoroscopy also showed significantly higher pharyngeal transit duration for bilateral and unilateral section groups. The thyropharyngeal muscle on the sectioned side was significantly thinner than that on the intact side. In contrast, the thickness of the cricopharyngeal muscles on the sectioned and intact sides were not significantly different. The mean thickness of the bilateral thyropharyngeal muscles showed a linear correlation to the pharyngeal area and pharyngeal transit duration. Discussion Data obtained in this study suggest that denervation of the Ph-X could influence the strength of pharyngeal contraction during pharyngeal swallowing in relation to thickness of the pharyngeal constrictor muscles, resulting in a decrease in bolus speed. This experimental model may provide essential information (1) for the development of treatments for pharyngeal dysphagia and (2) on the mechanisms related to the recovery process, reinnervation, and nerve regeneration following injury and swallowing impairment possibly caused by medullary stroke, neuromuscular disease, or surgical damage from head and neck cancer.
Collapse
Affiliation(s)
- Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Tomoya Ishida
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Inamoto Y, González-Fernández M, Saitoh E. Timing of True Vocal Cords Closure for Safe Swallowing: A Review of 5 Studies Using 3D Analysis Using Computerized Tomography (CT). Dysphagia 2024; 39:313-320. [PMID: 37804445 DOI: 10.1007/s00455-023-10620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/28/2023] [Indexed: 10/09/2023]
Abstract
Timely and complete laryngeal closure is critical for a successful swallow. Researchers have studied laryngeal closure, including true vocal cords (TVC) closure, closure of the arytenoids to the epiglottis base (laryngeal vestibule closure), and epiglottic inversion, but the most commonly available imaging tools have limitations that do not allow the study of these components individually. Swallowing computerized tomography (CT) has enabled three-dimensional dynamic visualization and quantitative evaluation of swallowing events providing a unique view of swallowing-related structures and their motion. Using CT, TVC closure can be visualized and evaluated on any plane or cross-section without being obscured by of laryngeal vestibule closure or epiglottis inversion. The current review summarizes the results of five papers evaluating the effects of bolus consistency and volume, posture, and age on TVC closure. The combined results of these studies suggest that TVC closure is responsive to oral sensory input based on bolus consistency and size and can be modulated in response to conditions perceived to increase the risk of airway invasion. These results are meaningful for dysphagia rehabilitation as it suggests that interventions to improve TVC closure are likely to enhance airway protection.
Collapse
Affiliation(s)
- Yoko Inamoto
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan.
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan.
| | - Marlís González-Fernández
- Department of Physical Medicine and Rehabilitation and Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eiichi Saitoh
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
13
|
Huff AD, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic intermittent hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. eLife 2024; 12:RP92175. [PMID: 38655918 PMCID: PMC11042803 DOI: 10.7554/elife.92175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurological and systemic comorbidities, including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently, we showed the postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa D Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
14
|
Frazure M, Morimoto I, Fielder N, Mellen N, Iceman K, Pitts T. Serotonin therapies for opioid-induced disordered swallow and respiratory depression. J Appl Physiol (1985) 2024; 136:821-843. [PMID: 38385184 PMCID: PMC11286276 DOI: 10.1152/japplphysiol.00509.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Opioids are well-known to cause respiratory depression, but despite clinical evidence of dysphagia, the effects of opioids on swallow excitability and motor pattern are unknown. We tested the effects of the clinically relevant opioid buprenorphine on pharyngeal swallow and respiratory drive in male and female rats. We also evaluated the utility of 5-HT1A agonists (8-OH-DPAT and buspirone) to improve swallowing and breathing following buprenorphine administration. Experiments were performed on 44 freely breathing Sprague-Dawley rats anesthetized with sodium pentobarbital. Bipolar fine wire electrodes were inserted into the mylohyoid, thyroarytenoid, posterior cricoarytenoid, thyropharyngeus, and diaphragm muscles to measure electromyographic (EMG) activity of swallowing and breathing. We evaluated the hypotheses that swallowing varies by stimulus, opioids depress swallowing and breathing, and that 5-HT1A agonists improve these depressions. Our results largely confirmed the following hypotheses: 1) swallow-related EMG activity was larger during swallows elicited by esophageal distension plus oral water infusion than by either stimulus alone. 2) Buprenorphine depressed swallow in both sexes, but females were more susceptible to total swallow suppression. 3) Female animals were also more vulnerable to opioid-induced respiratory depression. 4) 8-OH-DPAT rescued breathing following buprenorphine-induced respiratory arrest, and pretreatment with the partial 5-HT1A agonist buspirone prevented buprenorphine-induced respiratory arrest in female animals. 5) 8-OH-DPAT enhanced mylohyoid and thyropharyngeus EMG amplitude during swallow but did not restore excitability of the swallow pattern generator following total suppression by buprenorphine. Our results highlight sex-specific and behavior-specific effects of buprenorphine and provide preclinical evidence of a 5HT1A agonist for the treatment of respiratory depression and dysphagia.NEW & NOTEWORTHY This is the first study, to our knowledge, to evaluate sex-specific effects of opioid administration on pharyngeal swallow. We expand on a small but growing number of studies that report a lower threshold for opioid-induced respiratory depression in females compared with males, and we are the first to produce this effect with the partial μ-opioid-receptor agonist buprenorphine. This is the first demonstration, to our knowledge, that activation of 5-HT1A receptors can improve swallow and breathing outcomes following systemic buprenorphine administration.
Collapse
Affiliation(s)
- Michael Frazure
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - In Morimoto
- Department of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Nathan Fielder
- School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Nicholas Mellen
- Department of Neurology, School of Medicine, University of Louisville, Louisville, Kentucky, United States
| | - Kimberly Iceman
- Department of Speech, Language, and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, Columbia, Missouri, United States
| | - Teresa Pitts
- Department of Speech, Language, and Hearing Sciences and Dalton Cardiovascular Center, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
15
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Chronic Intermittent Hypoxia reveals role of the Postinspiratory Complex in the mediation of normal swallow production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559560. [PMID: 37808787 PMCID: PMC10557756 DOI: 10.1101/2023.09.26.559560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurologic and systemic comorbidities including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently we showed the Postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger Complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
16
|
Ross CF, Laurence-Chasen JD, Li P, Orsbon C, Hatsopoulos NG. Biomechanical and Cortical Control of Tongue Movements During Chewing and Swallowing. Dysphagia 2024; 39:1-32. [PMID: 37326668 PMCID: PMC10781858 DOI: 10.1007/s00455-023-10596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Tongue function is vital for chewing and swallowing and lingual dysfunction is often associated with dysphagia. Better treatment of dysphagia depends on a better understanding of hyolingual morphology, biomechanics, and neural control in humans and animal models. Recent research has revealed significant variation among animal models in morphology of the hyoid chain and suprahyoid muscles which may be associated with variation in swallowing mechanisms. The recent deployment of XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3D hyolingual kinematics has revealed new details on flexion and roll of the tongue during chewing in animal models, movements similar to those used by humans. XROMM-based studies of swallowing in macaques have falsified traditional hypotheses of mechanisms of tongue base retraction during swallowing, and literature review suggests that other animal models may employ a diversity of mechanisms of tongue base retraction. There is variation among animal models in distribution of hyolingual proprioceptors but how that might be related to lingual mechanics is unknown. In macaque monkeys, tongue kinematics-shape and movement-are strongly encoded in neural activity in orofacial primary motor cortex, giving optimism for development of brain-machine interfaces for assisting recovery of lingual function after stroke. However, more research on hyolingual biomechanics and control is needed for technologies interfacing the nervous system with the hyolingual apparatus to become a reality.
Collapse
Affiliation(s)
- Callum F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA.
| | - J D Laurence-Chasen
- National Renewable Energy Laboratory, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Peishu Li
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| | - Courtney Orsbon
- Department of Radiology, University of Vermont Medical Center, Burlington, USA
| | - Nicholas G Hatsopoulos
- Department of Organismal Biology & Anatomy, The University of Chicago, 1027 East 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Sieck GC, Hernandez-Vizcarrondo GA, Brown AD, Fogarty MJ. Sarcopenia of the longitudinal tongue muscles in rats. Respir Physiol Neurobiol 2024; 319:104180. [PMID: 37863156 PMCID: PMC10851598 DOI: 10.1016/j.resp.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The tongue is a muscular hydrostat, with lingual movements occurring during breathing, chewing, swallowing, vocalization, vomiting, coughing and grooming/sexual activities. In the elderly, reduced lingual dysfunction and weakness contribute to increased risks of obstructive sleep apnea and aspiration pneumonia. In Fischer 344 (F344) rats, a validated model of aging, hypoglossal motor neuron death is apparent, although there is no information regarding tongue strength. The intrinsic tongue muscles, the superior and inferior longitudinal, transversalis and verticalis exist in an interdigitated state. Recently, we established a method to measure the specific force of individual intrinsic tongue muscle, accounting for the tissue bulk that is not in the direction of uniaxial force. In the longitudinal muscles of 6- (n = 10), 18- (n = 9) and 24-month-old (n = 12) female and male F344 rats, we assessed specific force, fatigability, fiber type dependent cross-sectional area (CSA) and overall CSA. Muscle force and fatigue was assessed ex vivo using platinum plate simulation electrodes. Tongue muscles were frozen in melting isopentane, and transverse sections cut at 10 µm. Muscle fiber type was classified based on immunoreactivity to myosin heavy chain (MyHC) isoform antibodies. In H&E stained muscle, CSA and uniaxial muscle contributions to total tongue bulk was assessed. We observed a robust ∼30% loss of longitudinal specific force, with reductions in overall longitudinal muscle fiber CSA and specific atrophy of type IIx/IIb fibers. It will be important to investigate the mechanistic underpinnings of hypoglossal motor neuron death and tongue muscle weakness to eventually provide therapies for age-associated lingual dysfunctions.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alyssa D Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Fogarty MJ. Loss of larger hypoglossal motor neurons in aged Fischer 344 rats. Respir Physiol Neurobiol 2023:104092. [PMID: 37331418 DOI: 10.1016/j.resp.2023.104092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
The intrinsic (longitudinal, transversalis and verticalis) and extrinsic (genioglossus, styloglossus, hyoglossus and geniohyoid) tongue muscles are innervated by hypoglossal motor neurons (MNs). Tongue muscle activations occur during many behaviors: maintaining upper airway patency, chewing, swallowing, vocalization, vomiting, coughing, sneezing and grooming/sexual activities. In the tongues of the elderly, reduced oral motor function and strength contribute to increased risk of obstructive sleep apnoea. Tongue muscle atrophy and weakness is also described in rats, yet hypoglossal MN numbers are unknown. In young (6-months, n=10) and old (24-months, n=8) female and male Fischer 344 (F344) rats, stereological assessment of hypoglossal MN numbers and surface areas were performed on 16µm Nissl-stained brainstem cryosections. We observed a robust loss of ~15% of hypoglossal MNs and a modest ~8% reduction in their surface areas with age. In the larger size tertile of hypoglossal MNs, age-associated loss of hypoglossal MNs approached ~30% These findings uncover a potential neurogenic locus of pathology for age-associated tongue dysfunctions.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
19
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Role of the postinspiratory complex in regulating swallow-breathing coordination and other laryngeal behaviors. eLife 2023; 12:e86103. [PMID: 37272425 PMCID: PMC10264072 DOI: 10.7554/elife.86103] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative disease. Here, we study the role of the postinspiratory complex (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing anesthetized ChATcre:Ai32, Vglut2cre:Ai32 and intersectional recombination of ChATcre:Vglut2FlpO:ChR2 mice reveals PiCo mediates airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior in an all-or-nothing manner, while there is a higher probability for stimulating only laryngeal activation when activated further into expiration. Laryngeal activation is dependent on stimulation duration. Sufficient bilateral PiCo activation is necessary for preserving the physiological swallow motor sequence since activation of only a few PiCo neurons or unilateral activation leads to blurred upper airway behavioral responses. We believe PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination with breathing in neurological diseases.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research InstituteSeattleUnited States
- Department of Neurological Surgery, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
20
|
Cole CL, Yu VX, Perry S, Seenauth A, Lumpkin EA, Troche MS, Pitman MJ, Moayedi Y. Healthy Human Laryngopharyngeal Sensory Innervation Density Correlates with Age. Laryngoscope 2023; 133:773-784. [PMID: 35841384 DOI: 10.1002/lary.30287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Somatosensory feedback from upper airway structures is essential for swallowing and airway defense but little is known about the identities and distributions of human upper airway neurons. Furthermore, whether sensory innervation modifies with aging is unknown. In this study, we quantify neuronal and chemosensory cell density in upper airway structures and correlate with age. METHODS Participants underwent biopsies from base of tongue, lateral and midline pharyngeal wall, epiglottis, and arytenoids (N = 25 13 female/12 male; 20-80 years, mean 51.4 years without clinical diagnosis of dysphagia or clinical indication for biopsy). Tissue sections were labeled with antibodies for all neurons, myelinated neurons, and chemosensory cells. Densities of lamina propria innervation, epithelial innervation, solitary chemosensory cells, and taste buds were calculated and correlated with age. RESULTS Arytenoid had the highest density of innervation and chemosensory cells across all measures compared to other sites. Taste buds were frequently observed in arytenoid and epiglottis. Base of tongue, lateral pharynx, and midline posterior pharynx had minimal innervation and few chemosensory cells. Epithelial innervation was present primarily in close proximity to chemosensory cells and taste buds. Overall innervation and myelinated fibers in the arytenoid lamina propria decline with aging. CONCLUSION Findings establish the architecture of healthy adult sensory innervation and demonstrate the varied distribution of laryngopharyngeal innervation, necessary steps toward understanding the sensory basis for swallowing and airway defense. We also document age-related decline in arytenoid innervation density. These findings suggest that sensory afferent denervation of the upper airway may be a contributing factor to presbyphagia. LEVEL OF EVIDENCE NA Laryngoscope, 133:773-784, 2023.
Collapse
Affiliation(s)
- Caroline L Cole
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Victoria X Yu
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA
| | - Sarah Perry
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA.,Department of Medicine, University of Otago, Christchurch, New Zealand.,The University of Canterbury Rose Center for Stroke Recovery & Research at St. George's Medical Center, Christchurch, New Zealand
| | - Anisa Seenauth
- Department of Neurology, Columbia University, New York, New York, USA
| | - Ellen A Lumpkin
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Michelle S Troche
- Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University, New York, New York, USA.,Department of Neurology, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Mialland A, Atallah I, Bonvilain A. Toward a robust swallowing detection for an implantable active artificial larynx: a survey. Med Biol Eng Comput 2023; 61:1299-1327. [PMID: 36792845 DOI: 10.1007/s11517-023-02772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 01/04/2023] [Indexed: 02/17/2023]
Abstract
Total laryngectomy consists in the removal of the larynx and is intended as a curative treatment for laryngeal cancer, but it leaves the patient with no possibility to breathe, talk, and swallow normally anymore. A tracheostomy is created to restore breathing through the throat, but the aero-digestive tracts are permanently separated and the air no longer passes through the nasal tracts, which allowed filtration, warming, humidification, olfaction, and acceleration of the air for better tissue oxygenation. As for phonation restoration, various techniques allow the patient to talk again. The main one consists of a tracheo-esophageal valve prosthesis that makes the air passes from the esophagus to the pharynx, and makes the air vibrate to allow speech through articulation. Finally, swallowing is possible through the original tract as it is now isolated from the trachea. Yet, many methods exist to detect and assess a swallowing, but none is intended as a definitive restoration technique of the natural airway, which would permanently close the tracheostomy and avoid its adverse effects. In addition, these methods are non-invasive and lack detection accuracy. The feasibility of an effective early detection of swallowing would allow to further develop an implantable active artificial larynx and therefore restore the aero-digestive tracts. A previous attempt has been made on an artificial larynx implanted in 2012, but no active detection was included and the system was completely mechanic. This led to residues in the airway because of the imperfect sealing of the mechanism. An active swallowing detection coupled with indwelling measurements would thus likely add a significant reliability on such a system as it would allow to actively close an artificial larynx. So, after a brief explanation of the swallowing mechanism, this survey intends to first provide a detailed consideration of the anatomical region involved in swallowing, with a detection perspective. Second, the swallowing mechanism following total laryngectomy surgery is detailed. Third, the current non-invasive swallowing detection technique and their limitations are discussed. Finally, the previous points are explored with regard to the inherent requirements for the feasibility of an effective swallowing detection for an artificial larynx. Graphical Abstract.
Collapse
Affiliation(s)
- Adrien Mialland
- Institute of Engineering and Management Univ. Grenoble Alpes, Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France.
| | - Ihab Atallah
- Institute of Engineering and Management Univ. Grenoble Alpes, Otorhinolaryngology, CHU Grenoble Alpes, 38700, La Tronche, France
| | - Agnès Bonvilain
- Institute of Engineering and Management Univ. Grenoble Alpes, Univ. Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab, 38000, Grenoble, France
| |
Collapse
|
22
|
Yao L, Ye Q, Liu Y, Yao S, Yuan S, Xu Q, Deng B, Tang X, Shi J, Luo J, Wu J, Wu Z, Liu J, Tang C, Wang L, Xu N. Electroacupuncture improves swallowing function in a post-stroke dysphagia mouse model by activating the motor cortex inputs to the nucleus tractus solitarii through the parabrachial nuclei. Nat Commun 2023; 14:810. [PMID: 36781899 PMCID: PMC9925820 DOI: 10.1038/s41467-023-36448-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
As a traditional medical therapy, stimulation at the Lianquan (CV23) acupoint, located at the depression superior to the hyoid bone, has been shown to be beneficial in dysphagia. However, little is known about the neurological mechanism by which this peripheral stimulation approach treats for dysphagia. Here, we first identified a cluster of excitatory neurons in layer 5 (L5) of the primary motor cortex (M1) that can regulate swallowing function in male mice by modulating mylohyoid activity. Moreover, we found that focal ischemia in the M1 mimicked the post-stroke dysphagia (PSD) pathology, as indicated by impaired water consumption and electromyographic responses in the mylohyoid. This dysfunction could be rescued by electroacupuncture (EA) stimulation at the CV23 acupoint (EA-CV23) in a manner dependent on the excitatory neurons in the contralateral M1 L5. Furthermore, neuronal activation in both the parabrachial nuclei (PBN) and nucleus tractus solitarii (NTS), which was modulated by the M1, was required for the ability of EA-CV23 treatment to improve swallowing function in male PSD model mice. Together, these results uncover the importance of the M1-PBN-NTS neural circuit in driving the protective effect of EA-CV23 against swallowing dysfunction and thus reveal a potential strategy for dysphagia intervention.
Collapse
Affiliation(s)
- Lulu Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiuping Ye
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yun Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Shuqi Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si Yuan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qin Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bing Deng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiahui Shi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianyu Luo
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Junshang Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhennan Wu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianhua Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Acupuncture Research Team, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Chunzhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Mayerl CJ, Gould FDH, Adjerid K, Edmonds C, German RZ. The Pathway from Anatomy and Physiology to Diagnosis: A Developmental Perspective on Swallowing and Dysphagia. Dysphagia 2023; 38:33-41. [PMID: 35441265 PMCID: PMC9579268 DOI: 10.1007/s00455-022-10449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
Dysphagia results from diverse and distinct etiologies. The pathway from anatomy and physiology to clinical diagnosis is complex and hierarchical. Our approach in this paper is to show the linkages from the underlying anatomy and physiology to the clinical presentation. In particular, the terms performance, function, behavior, and physiology are often used interchangeably, which we argue is an obstacle to clear discussion of mechanism of pathophysiology. We use examples from pediatric populations to highlight the importance of understanding anatomy and physiology to inform clinical practice. We first discuss the importance of understanding anatomy in the context of physiology and performance. We then use preterm infants and swallow-breathe coordination as examples to explicate the hierarchical nature of physiology and its impact on performance. We also highlight where the holes in our knowledge lie, with the ultimate endpoint of providing a framework that could enhance our ability to design interventions to help patients. Clarifying these terms, and the roles they play in the biology of dysphagia will help both the researchers studying the problems as well as the clinicians applying the results of those studies.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - F D H Gould
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - K Adjerid
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - C Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - R Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
24
|
Huff A, Karlen-Amarante M, Oliveira LM, Ramirez JM. Postinspiratory complex acts as a gating mechanism regulating swallow-breathing coordination and other laryngeal behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524513. [PMID: 36712111 PMCID: PMC9882227 DOI: 10.1101/2023.01.18.524513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Breathing needs to be tightly coordinated with upper airway behaviors, such as swallowing. Discoordination leads to aspiration pneumonia, the leading cause of death in neurodegenerative diseases. Here we study the role of the postinspiratory complex, (PiCo) in coordinating breathing and swallowing. Using optogenetic approaches in freely breathing-anesthetized ChATcre, Vglut2cre and co-transmission of ChATcre/Vglut2FlpO mice reveals this small brainstem microcircuit acts as a central gating mechanism for airway protective behaviors. Activation of PiCo during inspiration or the beginning of postinspiration triggers swallow behavior, while there is a higher probability for stimulating laryngeal activation when activated further into expiration, suggesting PiCo's role in swallow-breathing coordination. PiCo triggers consistent swallow behavior and preserves physiologic swallow motor sequence, while stimulates laryngeal activation variable to stimulation duration. Sufficient bilateral PiCo activation is necessary for gating function since activation of only a few PiCo neurons or unilateral activation leads to blurred behavioral response. Viral tracing experiments reveal projections from the caudal nucleus of the solitary tract (cNTS), the presumed swallow pattern generator (SPG), to PiCo and vice versa. However, PiCo does not directly connect to laryngeal muscles. Investigating PiCo's role in swallow and laryngeal coordination will aid in understanding discoordination in breathing and neurological diseases.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Luiz Marcelo Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, 98101,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA, 98108
| |
Collapse
|
25
|
Adjerid K, Johnson M, Edmonds C, Steer K, Gould F, German R, Mayerl C. The effect of stiffness and hole size on nipple compression in infant suckling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:92-100. [PMID: 36121049 PMCID: PMC9771940 DOI: 10.1002/jez.2657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
During infant feeding, the nipple is an important source of sensory information that affects motor outputs, including ones dealing with compression of the nipple, suction, milk bolus movement, and swallowing. Despite known differences in behavior across commercially available nipples, little is known about the in vivo effects of nipple property variation. Here we quantify the effect of differences in nipple stiffness and hole size on an easily measured metric representing infant feeding behavior: nipple compression. We bottle-fed 7-day old infant pigs (n = 6) on four custom fabricated silicone nipples. We recorded live X-ray fluoroscopic imaging data of feeding on nipples of two levels of hardness/stiffness and two hole sizes. We tested for differences in nipple compression at the nipple's maximum compression across different nipple types using a mixed model analysis of variance. Stiffer nipples and those with smaller holes were compressed less than compliant nipples and nipples with larger holes (p < 0.001). We also estimated the force applied on the nipple during feeding and found that more force was applied to the compliant nipple with disproportionately larger strains. Our results suggest that infant pigs' nipple compression depends on material type and hole size, which is likely detected by the infant pigs' initial assessment of compressibility and flow. By isolating nipple properties, we demonstrated a relationship between properties and suckling behavior. Our results suggest that sensory information affects feeding behaviors and may also inform clinical treatment of poor feeding performance.
Collapse
Affiliation(s)
- K. Adjerid
- Northeast Ohio Medical University, Rootstown, OH
| | - M.L. Johnson
- Northeast Ohio Medical University, Rootstown, OH
| | - C.E. Edmonds
- Northeast Ohio Medical University, Rootstown, OH
| | - K.E. Steer
- Northeast Ohio Medical University, Rootstown, OH
| | - F.D.H. Gould
- Rowan University School of Osteopathic Medicine, Glassboro, NJ
| | - R.Z. German
- Northeast Ohio Medical University, Rootstown, OH
| | - C.J. Mayerl
- Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
26
|
Pitts T, Iceman KE. Deglutition and the Regulation of the Swallow Motor Pattern. Physiology (Bethesda) 2023; 38:0. [PMID: 35998250 PMCID: PMC9707372 DOI: 10.1152/physiol.00005.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite centuries of investigation, questions and controversies remain regarding the fundamental genesis and motor pattern of swallow. Two significant topics include inspiratory muscle activity during swallow (Schluckatmung, i.e., "swallow-breath") and anatomical boundaries of the swallow pattern generator. We discuss the long history of reports regarding the presence or absence of Schluckatmung and the possible advantages of and neural basis for such activity, leading to current theories and novel experimental directions.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Kimberly E Iceman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
27
|
Saunders SE, Baekey DM, Levitt ES. Fentanyl effects on respiratory neuron activity in the dorsolateral pons. J Neurophysiol 2022; 128:1117-1132. [PMID: 36197016 PMCID: PMC9621704 DOI: 10.1152/jn.00113.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Opioids suppress breathing through actions in the brainstem, including respiratory-related areas of the dorsolateral pons, which contain multiple phenotypes of respiratory patterned neurons. The discharge identity of dorsolateral pontine neurons that are impacted by opioids is unknown. To address this, single neuronal units were recorded in the dorsolateral pons of arterially perfused in situ rat preparations that were perfused with an apneic concentration of the opioid agonist fentanyl, followed by the opioid antagonist naloxone (NLX). Dorsolateral pontine neurons were categorized based on respiratory-associated discharge patterns, which were differentially affected by fentanyl. Inspiratory neurons and a subset of inspiratory/expiratory phase-spanning neurons were either silenced or had reduced firing frequency during fentanyl-induced apnea, which was reversed upon administration of naloxone. In contrast, the majority of expiratory neurons continued to fire tonically during fentanyl-induced apnea, albeit with reduced firing frequency. In addition, pontine late-inspiratory and postinspiratory neuronal activity were absent from apneustic-like breaths during the transition to fentanyl-induced apnea and the naloxone-mediated transition to recovery. Thus, opioid-induced deficits in respiratory patterning may occur due to reduced activity of pontine inspiratory neurons, whereas apnea occurs with loss of all phasic pontine activity and sustained tonic expiratory neuron activity.NEW & NOTEWORTHY Opioids can suppress breathing via actions throughout the brainstem, including the dorsolateral pons. The respiratory phenotype of dorsolateral pontine neurons inhibited by opioids is unknown. Here, we describe the effect of the highly potent opioid fentanyl on the firing activity of these dorsolateral pontine neurons. Inspiratory neurons were largely silenced by fentanyl, whereas expiratory neurons were not. We provide a framework whereby this differential sensitivity to fentanyl can contribute to respiratory pattern deficits and apnea.
Collapse
Affiliation(s)
- Sandy E Saunders
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - David M Baekey
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
- Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| |
Collapse
|
28
|
Murakami C, Sasaki M, Shimoda S, Tamada Y. Quantification of the Swallowing Mechanism Through Muscle Synergy Analysis. Dysphagia 2022; 38:973-989. [PMID: 36149515 DOI: 10.1007/s00455-022-10523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Decreased swallowing function increases the risk of choking and aspiration pneumonia. Videofluoroscopy and computed tomography allow for detailed observation of the swallowing movements but have radiation risks. Therefore, we developed a method using surface electromyography (sEMG) to noninvasively assess swallowing function without radiation exposure. A 44-channel flexible sEMG sensor was used to measure the sEMG signals of the hyoid muscles during swallowing in 14 healthy young adult and 14 elderly subjects. Muscle synergy analysis was performed to extract the muscle synergies from the sEMG signals, and the three synergies were extracted from the hyoid muscle activities during the swallowing experiments. The experimental results showed that the three synergies represent the oral, early pharyngeal, and late pharyngeal swallowing phases and that swallowing strength is tuned by the strength of the muscle activities, whereas swallowing volume is controlled by adjusting muscle activation timing. In addition, the timing of the swallowing reflex is slower in elderly individuals. The results confirm that the proposed approach successfully quantifies swallowing function from sEMG signals, mapping the signals to the swallowing phases.
Collapse
Affiliation(s)
- Chiaki Murakami
- Division of Biorobotics, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan
| | - Makoto Sasaki
- Division of Biorobotics, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.
| | - Shingo Shimoda
- Intelligent Behavior Control Unit, RIKEN CBS-Toyota Collaboration Center, 2271-130 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi, 463-0003, Japan
| | - Yasushi Tamada
- Department of Dysphagia Rehabilitation and Department of Special Care Dentistry, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki, 852-8102, Japan
| |
Collapse
|
29
|
Garand KLF, Bhutada AM, Hopkins-Rossabi T, Mulekar MS, Carnaby G. Pilot Study of Respiratory-Swallow Coordination in Amyotrophic Lateral Sclerosis. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:2815-2828. [PMID: 35921660 DOI: 10.1044/2022_jslhr-21-00619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PURPOSE Amyotrophic lateral sclerosis (ALS) impacts bulbar and respiratory musculature, which may contribute to impaired swallow function (dysphagia) and respiratory-swallow coordination. The purpose of this pilot study was to examine if respiratory-swallow coordination in individuals with ALS was perturbed compared to healthy controls. We further explored relationships between measures of respiratory function and self-reported swallowing outcomes on respiratory-swallow coordination. METHOD We employed a cross-sectional design with eight participants with ALS and eight age- and sex-matched healthy participants. Respiratory inductance plethysmography and a nasal cannula were used to capture respiratory-swallow phase patterns during a standardized clinical swallow examination. The advantageous respiratory-swallow phase pattern was defined if exhalation surrounded the swallow (E-E). Spirometry was used to capture indices of respiratory function (forced vital capacity % predicted, peak cough flow [PCF]). Validated questionnaires were used to collect information regarding ALS-related bulbar functional status and swallowing-related concerns. RESULTS Compared to the matched healthy cohort, individuals with ALS demonstrated higher rates of non-E-E respiratory-swallow phase patterning and worse bulbar/swallow dysfunction. Group (ALS), swallow tasks, and PCF were significantly associated with respiratory-swallow phase pattern. CONCLUSIONS These preliminary findings support altered respiratory-swallow phase patterning in ALS. Future work should employ an instrumental assessment to quantify swallowing physiology and elucidate the relationship between perturbed respiratory-swallow coordination and swallowing function.
Collapse
Affiliation(s)
| | - Ankita M Bhutada
- Department of Speech Pathology and Audiology, University of South Alabama, Mobile
| | - Theresa Hopkins-Rossabi
- Speech-Language Pathology Program, Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston
| | - Madhuri S Mulekar
- Department of Mathematics and Statistics, University of South Alabama, Mobile
| | - Giselle Carnaby
- School of Health Sciences, The University of Texas Health Science Center, San Antonio
| |
Collapse
|
30
|
Huff A, Karlen-Amarante M, Pitts T, Ramirez JM. Optogenetic stimulation of pre-Bötzinger complex reveals novel circuit interactions in swallowing-breathing coordination. Proc Natl Acad Sci U S A 2022; 119:e2121095119. [PMID: 35858334 PMCID: PMC9304034 DOI: 10.1073/pnas.2121095119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 02/02/2023] Open
Abstract
The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre-Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as Vglut2 and Sst neurons) and inhibitory neurons (defined as Vgat neurons) and inhibit and activate neurons defined by the transcription factor Dbx1 to gain an understanding of the coordination between the preBötC and swallow behavior. We found that stimulating inhibitory preBötC neurons did not mimic the premature shutdown of inspiratory activity caused by water swallows, suggesting that swallow-induced suppression of inspiratory activity is not directly mediated by the inhibitory neurons in the preBötC. By contrast, stimulation of preBötC Dbx1 neurons delayed laryngeal closure of the swallow sequence. Inhibition of Dbx1 neurons increased laryngeal closure duration and stimulation of Sst neurons pushed swallow occurrence to later in the respiratory cycle, suggesting that excitatory neurons from the preBötC connect to the laryngeal motoneurons and contribute to the timing of swallowing. Interestingly, the delayed swallow sequence was also caused by chronic intermittent hypoxia (CIH), a model for sleep apnea, which is 1) known to destabilize inspiratory activity and 2) associated with dysphagia. This delay was not present when inhibiting Dbx1 neurons. We propose that a stable preBötC is essential for normal swallow pattern generation and disruption may contribute to the dysphagia seen in obstructive sleep apnea.
Collapse
Affiliation(s)
- Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101
| | - Teresa Pitts
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, KY 40202
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA 98108
| |
Collapse
|
31
|
Pitts T, Iceman KE, Huff A, Musselwhite MN, Frazure ML, Young KC, Greene CL, Howland DR. Laryngeal and swallow dysregulation following acute cervical spinal cord injury. J Neurophysiol 2022; 128:405-417. [PMID: 35830612 PMCID: PMC9359645 DOI: 10.1152/jn.00469.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Laryngeal function is vital to airway protection. While swallow is mediated by the brainstem, mechanisms underlying increased risk of dysphagia after cervical spinal cord injury (SCI) are unknown. We hypothesized that loss of descending phrenic drive affects swallow and breathing differently, and loss of ascending spinal afferent information alters swallow regulation. We recorded electromyograms from upper airway and chest wall muscles in freely breathing pentobarbital-anesthetized cats and rats. Inspiratory laryngeal activity increased ~two-fold following C2 lateral-hemisection. Ipsilateral to the injury, crural diaphragm EMG amplitude was reduced during breathing (62 ± 25% change post-injury), but no animal had complete termination of activity; 75% of animals increased contralateral diaphragm recruitment, but this did not reach significance. During swallow, laryngeal adductor and pharyngeal constrictor muscles increased activity, and diaphragm activity was bilaterally suppressed. This was unexpected because of the ipsilateral-specific response during breathing. Swallow-breathing coordination was also disrupted and more swallows occurred during early expiration. Finally, to determine if the chest wall is a major source of feedback for laryngeal regulation, we performed T1 total transections in rats. As in the C2 lateral-hemisection, inspiratory laryngeal recruitment was the first feature noted. In contrast to the C2 lateral-hemisection, diaphragmatic drive increased after T1 transection. Overall, we found that SCI alters laryngeal drive during swallow and breathing, and reduced swallow-related diaphragm activity. Our results show behavior-specific effects, suggesting SCI affects swallow more than breathing, and emphasizes the need for additional studies on the effects of ascending afferents from the spinal cord on laryngeal function.
Collapse
Affiliation(s)
- Teresa Pitts
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Kimberly E Iceman
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, WA, United States
| | - Matthew Nicholas Musselwhite
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Michael L Frazure
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Kellyanna C Young
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Clinton L Greene
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Dena Ruth Howland
- Kentucky Spinal Cord Injury Center, Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Research Service, Robley Rex VA Medical Center, Louisville, KY, United States
| |
Collapse
|
32
|
Edmonds CE, German RZ, Bond LE, Mayerl CJ. Oropharyngeal Capsaicin Exposure Improves Infant Feeding Performance in an Animal Model of Superior Laryngeal Nerve Damage. J Neurophysiol 2022; 128:339-349. [PMID: 35822726 PMCID: PMC9359634 DOI: 10.1152/jn.00063.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor feedback is critical to safe and effective swallowing. Because of this, sensory interventions have the potential to treat dysphagia. One such treatment may be found in capsaicin, which activates the internal branch of the superior laryngeal nerve (iSLN). The iSLN initiates the pharyngeal swallow, and a more sensitive iSLN should more readily elicit swallowing and improve swallow safety. We explored the neurophysiological mechanism by which capsaicin improves swallow performance using an infant pig model with a unilateral iSLN lesion. Using high-speed videofluoroscopy, we collected oropharyngeal kinematic data while pigs suckled on bottles, before and after applying capsaicin to the posterior tongue and valleculae. We found that capsaicin application decreased maximal bolus sizes, which improved swallow safety. Furthermore, capsaicin improved performance when infant pigs swallowed more moderately sized boluses. However, capsaicin did not change swallow frequency, the number of sucks prior to each swallow, nor total pharyngeal transit time (TPT). Similarly, excursions of the hyoid, thyroid, and posterior tongue were unchanged. TPT and hyoid and thyroid excursions maintained relationships with bolus size post-capsaicin, suggesting that these variables are less sensitive to sensory intervention. The timing and extent of posterior tongue movement were only correlated with bolus size pre-capsaicin, which could imply that capsaicin fundamentally changes in relationships between tongue movements and bolus size. Our results provide insight into the neural control of swallowing and capsaicin's mechanism of action, and suggest that capsaicin may be beneficial in treating acute infant dysphagia.
Collapse
Affiliation(s)
- Chloe E Edmonds
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| | - Rebecca Z German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| | - Laura E Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| | - Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, United States
| |
Collapse
|
33
|
Miller KJW, Macrae P, Paskaranandavadivel N, Huckabee ML, Cheng LK. Non-invasive assessment of swallowing using flexible high-density electromyography arrays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5120-5123. [PMID: 36083930 DOI: 10.1109/embc48229.2022.9871168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Swallowing is a vital function that serves to safely transport food and fluid to the stomach, while simultaneously protecting our airways. Evaluation of swallowing is important for the diagnosis and rehabilitation of individuals with dysphagia, a disorder of swallowing. Flexible high-density surface electromyography (HD sEMG) arrays were designed and fabricated to span the floor of mouth and neck muscles. These arrays were applied on 6 healthy participants over duplicate recording sessions. During each recording session, participants performed three different swallowing motor tasks. The HD sEMG signals were filtered and tasks extracted. For each task, the RMS amplitude was computed, visualized, and compared. Dynamic motor coordination was evident in the filtered signals traces, with different electrode locations showing unique temporal activations. The 2D topographical maps allowed the location of different RMS intensities to be visualized, revealing qualitatively similar patterns across participants and tasks. These motor task trends were also seen within RMS quantifications. The RMS metric across all participants identified significant differences between non-effortful 3 ml and effortful 3 ml swallow tasks ( p=0.006) and there was a minimal variation of 3.1±1.9 μV RMS for repeated recording sessions by each participant. The HD-sEMG array successfully recorded differences in muscle activations during swallowing and was able to discern between two different motor tasks. The arrays offers a spatially detailed non-invasive assessment of the neuromuscular performance of swallowing. Clinical Relevance- The utility of HD-sEMG arrays for evaluation of the muscles involved in swallowing could enable diagnosis and rehabilitation of individuals with dysphagia.
Collapse
|
34
|
Sasa A, Kulvanich S, Hao N, Ita R, Watanabe M, Suzuki T, Magara J, Tsujimura T, Inoue M. Functional Role of Suprahyoid Muscles in Bolus Formation During Mastication. Front Physiol 2022; 13:881891. [PMID: 35755433 PMCID: PMC9214202 DOI: 10.3389/fphys.2022.881891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
It still remains unclear how the suprahyoid muscles function in bolus formation during mastication. This study aimed to investigate the contributory role of the suprahyoid muscles during mastication. A total of 20 healthy young volunteers were asked to perform tongue pressure generation tasks and unilateral mastication tasks using peanuts and two different types of rice crackers. Surface electromyographic (EMG) activity of the masseter and suprahyoid muscles and mandibular kinematics were recorded. Suprahyoid activity increased with increasing tongue pressure. Masticatory duration until the first deglutition differed significantly among the different foods; the harder the food, the longer the duration. This was also the case in masseter activity per masticatory cycle. Masticatory rate and suprahyoid activity per masticatory cycle were significantly higher during soft rice cracker mastication. Masseter activity was higher on the masticatory side than on the non-masticatory side, however, there was no difference in suprahyoid activity between the sides. Suprahyoid activity and jaw gape showed significant positive correlation in the early stage on both the masticatory and non-masticatory sides. The suprahyoid muscles functioned dominantly for jaw-opening during peanut mastication, and for bolus formation, especially in the late stage during soft rice cracker mastication. Bolus formation was performed dominantly on the masticatory side during rice cracker mastication. These findings clearly demonstrate a functional role of the suprahyoid muscles during mastication of solid foods from assessments using both EMG activity and mandibular kinematic recordings.
Collapse
Affiliation(s)
- Anna Sasa
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sirima Kulvanich
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Department of Community Dentistry and Gerodontology, Faculty of Dentistry, Thammasat University, Klongluang, Thailand
| | - Naohito Hao
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Reiko Ita
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Watanabe
- Department of Special Needs Dentistry, Division of Hygiene and Oral Health, Showa University School of Dentistry, Tokyo, Japan
| | - Taku Suzuki
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
35
|
Mu L, Chen J, Nyirenda T, Li J, Sobotka S, Benson B, Christopherson M, Sanders I. Morphometric and Immunohistochemical Characteristics of the Adult Human Soft Palate Muscles. J Histochem Cytochem 2022; 70:225-236. [PMID: 34957888 PMCID: PMC8832629 DOI: 10.1369/00221554211066985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The soft palate is the only structure that reversibly separates the respiratory and gastrointestinal systems. Most species can eat and breathe at the same time. Humans cannot do this and malfunction of the soft palate may allow food to enter the lungs and cause fatal aspiration pneumonia. Speech is the most defining characteristic of humans and the soft palate, along with the larynx and tongue, plays the key roles. In addition, palatal muscles are involved in snoring and obstructive sleep apnea. Considering the significance of the soft palate, its function is insufficiently understood. The objectives of this study were to document morphometric and immunohistochemical characteristics of adult human soft palate muscles, including fiber size, the fiber type, and myosin heavy chain (MyHC) composition for better understanding muscle functions. In this study, 15 soft palates were obtained from human autopsies. The palatal muscles were separated, cryosectioned, and stained using histological and immunohistochemical techniques. The results showed that there was a fast type II predominance in the musculus uvulae and palatopharyngeus and a slow type I predominance in the levator veli palatine. Approximately equal proportions of type I and type II fibers existed in both the palatoglossus and tensor veli palatine. Soft palate muscles also contained hybrid fibers and some specialized myofibers expressing slow-tonic and embryonic MyHC isoforms. These findings would help better understand muscle functions.
Collapse
Affiliation(s)
- Liancai Mu
- Liancai Mu, Upper Airway Research Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA. E-mail:
| | - Jingming Chen
- Upper Airway Research Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Themba Nyirenda
- Upper Airway Research Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Jing Li
- Upper Airway Research Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Stanislaw Sobotka
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York City, New York,Upper Airway Research Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Brian Benson
- Department Otolaryngology, Hackensack University Medical Center, Hackensack, New Jersey
| | | | | |
Collapse
|
36
|
Yeung J, Burke PGR, Knapman FL, Patti J, Brown EC, Gandevia SC, Eckert DJ, Butler JE, Bilston LE. Task-dependent neural control of regions within human genioglossus. J Appl Physiol (1985) 2022; 132:527-540. [PMID: 34989652 DOI: 10.1152/japplphysiol.00478.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anatomical and imaging evidence suggests neural control of oblique and horizontal compartments of the genioglossus differs. However, neurophysiological evidence for differential control remains elusive. This study aimed to determine whether there are differences in neural drive to the oblique and horizontal regions of the genioglossus during swallowing and tongue protrusion. Adult participants (N=63; 48M) were recruited from a sleep clinic; 41 had Obstructive Sleep Apnoea (OSA: 34M, 8F). Electromyographic (EMG) was recorded at rest (awake, supine) using 4 intramuscular fine-wire electrodes inserted percutaneously into the anterior oblique, posterior oblique, anterior horizontal and posterior horizontal genioglossus. Epiglottic pressure and nasal airflow were also measured. During swallowing, two distinct EMG patterns were observed- a monophasic response (single EMG peak) and a biphasic response (two bursts of EMG). Peak EMG and timing of the peak relative to epiglottic pressure were significantly different between patterns (linear mixed models, p<0.001). Monophasic activation was more likely in the horizontal than oblique region during swallowing (OR=6.83, CI=3.46-13.53, p<0.001). In contrast, during tongue protrusion, activation patterns and EMG magnitude were not different between regions. There were no systematic differences in EMG patterns during swallowing or tongue protrusion between OSA and non-OSA groups. These findings provide evidence for functional differences in the motoneuronal output to the oblique and horizontal compartments, enabling differential task-specific drive. Given this, it is important to identify the compartment from which EMG is acquired. We propose that the EMG patterns during swallowing may be used to identify the compartment where a recording electrode is located.
Collapse
Affiliation(s)
- Jade Yeung
- grid.250407.4Neuroscience Research Australia, Sydney, New South Wales, Australia
| | | | - Fiona L Knapman
- grid.250407.4Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Jessica Patti
- grid.250407.4Neuroscience Research Australia, Randwick, Australia
| | - Elizabeth C Brown
- Neuroscience Research Australia, University of New South Wales, Randwick, NSW, Australia
| | - Simon C Gandevia
- grid.250407.4Neuroscience Research Australia, Randwick, Sydney, New South Wales, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health (AISH)/ Flinders Health and Medical Research Institute Sleep Health, grid.1014.4Flinders University, Bedford Park, SA, Australia
| | - Jane E Butler
- grid.250407.4Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, grid.1005.4Neuroscience Research Australia, Randwick, Australia
| |
Collapse
|
37
|
Prosiegel M. Neuroanatomie des Schluckens. SCHLUCKSTÖRUNGEN 2022:53-66. [DOI: 10.1016/b978-3-437-44418-0.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
38
|
Yamamoto R, Sugiyama Y, Hashimoto K, Kinoshita S, Takemura A, Fuse S, Kaneko M, Mukudai S, Umezaki T, Dutschmann M, Nakagawa T, Hirano S. Firing characteristics of swallowing interneurons in the dorsal medulla during physiologically induced swallowing in perfused brainstem preparation in rats. Neurosci Res 2021; 177:64-77. [PMID: 34808248 DOI: 10.1016/j.neures.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
Oropharyngeal swallowing is centrally mediated by a swallowing central pattern generator (Sw-CPG) in the medulla oblongata. The activity of the Sw-CPG depends on the sensory inputs determined by physical and chemical bolus properties. Here we investigate the sensory-motor integration during swallowing arising from different sensory sources. To do so we electrically stimulated the superior laryngeal nerve and we triggered swallowing with oral injections of distilled water or capsaicin solution and extracellularly recorded from swallowing interneurons in arterially perfused brainstem preparations of rats. We recorded the activities of 40 neurons, while monitoring the motor activities of the phrenic, vagal and hypoglossal nerves. Eighteen neurons responded to electrical stimulation of the ipsilateral superior laryngeal nerve, and 6 neurons were excited by oral fluid injection, while 16 non-respiratory neurons did not receive afferent inputs to either electrical or physiological stimuli. The cellular activities displayed by swallowing interneurons during electrical and physiological stimulation of pharyngeal and laryngeal afferent input reveal complex adaptations of the timing of firing patterns and frequencies. The modulation of neuronal activity is likely to contribute to the coordination of efficient bolus transfer during the pharyngeal stage of swallowing.
Collapse
Affiliation(s)
- Ryota Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-5852, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akiyo Takemura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, 814-0001, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, VIC 3052, Australia
| | - Takashi Nakagawa
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-5852, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
39
|
Mayerl CJ, Steer KE, Chava AM, Bond LE, Edmonds CE, Gould FDH, Hieronymous TL, Vinyard CJ, German RZ. Anatomical and physiological variation of the hyoid musculature during swallowing in infant pigs. J Exp Biol 2021; 224:jeb243075. [PMID: 34734633 PMCID: PMC10659033 DOI: 10.1242/jeb.243075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
The function of a muscle is impacted by its line of action, activity timing and contractile characteristics when active, all of which have the potential to vary within a behavior. One function of the hyoid musculature is to move the hyoid bone during swallowing, yet we have little insight into how their lines of action and contractile characteristics might change during a swallow. We used an infant pig model to quantify the contractile characteristics of four hyoid muscles during a swallow using synchronized electromyography, fluoromicrometry and high-speed biplanar videofluoroscopy. We also estimated muscle line of action during a swallow using contrast-enhanced CT-scanned muscles animated to move with the hyoid bone and found that as the hyoid elevated, the line of action of the muscles attached to it became greater in depression. We also found that muscles acted eccentrically and concentrically, which was correlated with hyoid movement. This work contributes to our understanding of how the musculature powering feeding functions during swallowing.
Collapse
Affiliation(s)
- Christopher J. Mayerl
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Kendall E. Steer
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Almasi M. Chava
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Laura E. Bond
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Chloe E. Edmonds
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Francois D. H. Gould
- Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Tobin L. Hieronymous
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Christopher J. Vinyard
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | - Rebecca Z. German
- NEOMED Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| |
Collapse
|
40
|
Fogarty MJ, Sieck GC. Tongue muscle contractile, fatigue, and fiber type properties in rats. J Appl Physiol (1985) 2021; 131:1043-1055. [PMID: 34323593 DOI: 10.1152/japplphysiol.00329.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intrinsic and extrinsic tongue muscles manipulate the position and shape of the tongue and are activated during many oral and respiratory behaviors. In the present study, in 6-mo-old Fischer 344 rats, we examined mechanical and fatigue properties of tongue muscles in relation to their fiber type composition. In an ex vivo preparation, isometric force and fatigue was assessed by direct muscle stimulation. Tongue muscles were frozen in melting isopentane and transverse sections cut at 10 µm. In hematoxylin-eosin (H&E)-stained muscle sections, the relative fractions of muscle versus extracellular matrix were determined. Muscle fibers were classified as type I, IIa and IIx, and/or IIb based on immunoreactivity to specific myosin heavy chain isoform antibodies. Cross-sectional areas (CSAs) and proportions of different fiber types were used to calculate their relative contribution to total muscle CSAs. We found that the superior and inferior longitudinal intrinsic muscles (4.4 N/cm2) and genioglossus muscle (3.0 N/cm2) generated the greatest maximum isometric force compared with the transversalis muscle (0.9 N/cm2). The longitudinal muscles and the transversalis muscle displayed greater fatigue during repetitive stimulation consistent with the greater relative contribution of type IIx and/or IIb fibers. By contrast, the genioglossus, comprising a higher proportion of type I and IIa fibers, was more fatigue resistant. This study advances our understanding of the force, fatigue, and fiber type-specific properties of individual tongue musculature. The assessments and approach provide a readily accessible muscular readout for scenarios where motor control dysfunction or tongue weakness is evident.NEW & NOTEWORTHY For the individual tongue muscles, relatively little quantification of uniaxial force, fatigue, and fiber type-specific properties has been documented. Here, we assessed uniaxial-specific force generation, fatigability, and muscle fiber type-specific properties in the superior and inferior longitudinal muscles, the transversalis, and the genioglossus in Fischer 344 rats. The longitudinal muscles produced the greatest isometric tetanic-specific forces. The genioglossus was more fatigue resistant and comprised higher proportions of I and IIa fibers.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, grid.66875.3aMayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, grid.66875.3aMayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Hao N, Sasa A, Kulvanich S, Nakajima Y, Nagoya K, Magara J, Tsujimura T, Inoue M. Coordination of Respiration, Swallowing, and Chewing in Healthy Young Adults. Front Physiol 2021; 12:696071. [PMID: 34326780 PMCID: PMC8313873 DOI: 10.3389/fphys.2021.696071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Examining the coordination of respiration and swallowing is important for elucidating the mechanisms underlying these functions and assessing how respiration is linked to swallowing impairment in dysphagic patients. In this study, we assessed the coordination of respiration and swallowing to clarify how voluntary swallowing is coordinated with respiration and how mastication modulates the coordination of respiration and swallowing in healthy humans. Twenty-one healthy volunteers participated in three experiments. The participants were asked to swallow 3 ml of water with or without a cue, to drink 100 ml of water using a cup without breathing between swallows, and to eat a 4-g portion of corned beef. The major coordination pattern of respiration and swallowing was expiration–swallow–expiration (EE type) while swallowing 3 ml of water either with or without a cue, swallowing 100 ml of water, and chewing. Although cueing did not affect swallowing movements, the expiratory time was lengthened with the cue. During 100-ml water swallowing, the respiratory cycle time and expiratory time immediately before swallowing were significantly shorter compared with during and after swallowing, whereas the inspiratory time did not differ throughout the recording period. During chewing, the respiratory cycle time was decreased in a time-dependent manner, probably because of metabolic demand. The coordination of the two functions is maintained not only in voluntary swallowing but also in involuntary swallowing during chewing. Understanding the mechanisms underlying respiration and swallowing is important for evaluating how coordination affects physiological swallowing in dysphagic patients.
Collapse
Affiliation(s)
- Naohito Hao
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Anna Sasa
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sirima Kulvanich
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuta Nakajima
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
42
|
Frazure ML, Brown AD, Greene CL, Iceman KE, Pitts T. Rapid activation of esophageal mechanoreceptors alters the pharyngeal phase of swallow: Evidence for inspiratory activity during swallow. PLoS One 2021; 16:e0248994. [PMID: 33798212 PMCID: PMC8018667 DOI: 10.1371/journal.pone.0248994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Swallow is a complex behavior that consists of three coordinated phases: oral, pharyngeal, and esophageal. Esophageal distension (EDist) has been shown to elicit pharyngeal swallow, but the physiologic characteristics of EDist-induced pharyngeal swallow have not been specifically described. We examined the effect of rapid EDist on oropharyngeal swallow, with and without an oral water stimulus, in spontaneously breathing, sodium pentobarbital anesthetized cats (n = 5). Electromyograms (EMGs) of activity of 8 muscles were used to evaluate swallow: mylohyoid (MyHy), geniohyoid (GeHy), thyrohyoid (ThHy), thyropharyngeus (ThPh), thyroarytenoid (ThAr), cricopharyngeus (upper esophageal sphincter: UES), parasternal (PS), and costal diaphragm (Dia). Swallow was defined as quiescence of the UES with overlapping upper airway activity, and it was analyzed across three stimulus conditions: 1) oropharyngeal water infusion only, 2) rapid esophageal distension (EDist) only, and 3) combined stimuli. Results show a significant effect of stimulus condition on swallow EMG amplitude of the mylohyoid, geniohyoid, thyroarytenoid, diaphragm, and UES muscles. Collectively, we found that, compared to rapid cervical esophageal distension alone, the stimulus condition of rapid distension combined with water infusion is correlated with increased laryngeal adductor and diaphragm swallow-related EMG activity (schluckatmung), and post-swallow UES recruitment. We hypothesize that these effects of upper esophageal distension activate the brainstem swallow network, and function to protect the airway through initiation and/or modulation of a pharyngeal swallow response.
Collapse
Affiliation(s)
- Michael L Frazure
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America.,Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Alyssa D Brown
- School of Medicine, University of Louisville, Louisville, Kentucky, United States of America.,Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Clinton L Greene
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Kimberly E Iceman
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Teresa Pitts
- Department of Neurological Surgery and Kentucky Spinal Cord Injury Research Center, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
43
|
A Novel Method for Triggering the Swallowing Reflex in Patients with Amyotrophic Lateral Sclerosis: the Ishizaki Press Method. Dysphagia 2021; 37:177-182. [PMID: 33590294 DOI: 10.1007/s00455-021-10261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
This study describes the identification of specific maxillofacial points triggering the swallowing reflex by finger pressure in a patient with severe amyotrophic lateral sclerosis. This method has been named as the "Ishizaki Press Method." The first point was identified in a serendipitous encounter during training sessions to aid communication. This led to the search for such additional points, after obtaining informed consent from the patient and his relatives. Seven effective points were identified: the depressions in front of the left and right tragus (Ting gong points), bilateral points over the parotid and submandibular glands, and a point over the mentum in the midline of the face. The efficacy of these trigger points was noted to be ≥ 70%. The mean time taken for swallowing to occur in response to the stimulation at each of these points was less than 10 s, and the induction of a rapid swallowing reflex was recognized. Alternating left and right stimulations of the Ting gong points and the parotid points triggered the swallowing reflex significantly faster than unilateral stimulations alone. The Ishizaki Press Method may improve the management of dysphagia in patients with amyotrophic lateral sclerosis.
Collapse
|
44
|
Pitts T, Huff A, Reed M, Iceman K, Mellen N. Evidence of intermediate reticular formation involvement in swallow pattern generation, recorded optically in the neonate rat sagittally sectioned hindbrain. J Neurophysiol 2021; 125:993-1005. [PMID: 33566745 DOI: 10.1152/jn.00623.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Swallow is a primitive behavior regulated by medullary networks, responsible for movement of food/liquid from the oral cavity to the esophagus. To investigate how functionally heterogeneous networks along the medullary intermediate reticular formation (IRt) and ventral respiratory column (VRC) control swallow, we electrically stimulated the nucleus tractus solitarius to induce fictive swallow between inspiratory bursts, with concurrent optical recordings using a synthetic Ca2+ indicator in the neonatal sagittally sectioned rat hindbrain (SSRH) preparation. Simultaneous recordings from hypoglossal nerve rootlet (XIIn) and ventral cervical spinal root C1-C2 enabled identification of the system-level correlates of 1) swallow (identified as activation of the XIIn but not the cervical root) and 2) Breuer-Hering expiratory reflex (BHE; lengthened expiration in response to stimuli during expiration). Optical recording revealed reconfiguration of respiration-modulated networks in the ventrolateral medulla during swallow and the BHE reflex. Recordings identified novel spatially compact networks in the IRt near the facial nucleus (VIIn) that were active during fictive swallow, suggesting that the swallow network is not restricted to the caudal medulla. These findings also establish the utility of using this in vitro preparation to investigate how functionally heterogeneous medullary networks interact and reconfigure to enable a repertoire of orofacial behaviors.NEW & NOTEWORTHY For the first time, medullary networks that control breathing and swallow are recorded optically. Episodic swallows are induced via electrical stimulation along the dorsal medulla, in and near the NTS, during spontaneously occurring fictive respiration. These findings establish that networks regulating both orofacial behaviors and breathing are accessible for optical recording at the surface of the sagittally sectioned rodent hindbrain preparation.
Collapse
Affiliation(s)
- Teresa Pitts
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Mitchell Reed
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Kimberly Iceman
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Nicholas Mellen
- Department of Neurology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
45
|
Groher ME. Normal Swallowing in Adults. Dysphagia 2021. [DOI: 10.1016/b978-0-323-63648-3.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Stevens M, Mayerl C, Bond L, German RZ, Barkmeier-Kraemer JM. Pathophysiology of aspiration in a unilateral SLN lesion model using quantitative analysis of VFSS. Int J Pediatr Otorhinolaryngol 2021; 140:110518. [PMID: 33310447 PMCID: PMC7770015 DOI: 10.1016/j.ijporl.2020.110518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/23/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The purpose of this study was to elucidate the pathophysiology of aspiration in previously studied female infant piglets after a unilateral superior laryngeal nerve (uSLN) lesion. METHODS Videofluoroscopic swallow studies (VFSS) were acquired from 15 female piglets ages 2-3 weeks (9 with uSLN lesion and 6 controls). VFSS were analyzed at 30 frames/second sampling rate. Quantitative measures were conducted and compared between groups using published methodologies for VFSS assessment in adult and infant humans. Measures included the: 1) number of lingual-palatal contacts (LPC) (i.e. pre-swallow), 2) total pharyngeal transit time (TPT), 3) offset of swallow (offP), as well as onset of: 4) pharyngeal stage (onP), 5) pharyngoesophageal segment opening (oPES), 6) maximum PES opening (maxPES), 7) airway closure onset (oAC), and 8) maximum airway closure (maxAC). Measures 5-7 were determined relative to onP. Bolus residue was rated by severity (0 (none) to 3 (severe)). A gamma regression was used to compare continuous measures between lesioned and control groups. RESULTS The number of LPC (p = .006), TPT (p = .023) and timing of maxAC (p = .041) were significantly greater in the uSLN lesion than the control group. CONCLUSIONS Outcomes of this study replicated prior published findings and elucidated that piglets with right uSLN lesions exhibited delayed maxAC. Noteworthy was the use of clinically relevant quantitative videofluoroscopic measures in piglets for comparison to future studies in human pediatric populations.
Collapse
Affiliation(s)
- Maya Stevens
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, USA; Department of Surgery, Division of Otolaryngology, University of Utah, Salt Lake City, UT, USA.
| | - Christopher Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH
| | - Laura Bond
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Rebecca Z. German
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH
| | - Julie M Barkmeier-Kraemer
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT, USA; Department of Surgery, Division of Otolaryngology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coordinated contractions and motility patterns unique to each gastrointestinal organ facilitate the digestive process. These motor activities are coordinated by bioelectrical events, sensory and motor nerves, and hormones. The motility problems in the gastrointestinal tract known as functional gastrointestinal disorders (FGIDs) are generally caused by impaired neuromuscular activity and are highly prevalent. Their diagnosis is challenging as symptoms are often vague and difficult to localize. Therefore, the underlying pathophysiological factors remain unknown. However, there is an increasing level of research and clinical evidence suggesting a link between FGIDs and altered bioelectrical activity. In addition, electroceuticals (bioelectrical therapies to treat diseases) have recently gained significant interest. This paper gives an overview of bioelectrical signatures of gastrointestinal organs with normal and/or impaired motility patterns and bioelectrical therapies that have been developed for treating FGIDs. The existing research evidence suggests that bioelectrical activities could potentially help to identify the diverse etiologies of FGIDs and overcome the drawbacks of the current clinically adapted methods. Moreover, electroceuticals could potentially be effective in the treatment of FGIDs and replace the limited existing conventional therapies which often attempt to treat the symptoms rather than the underlying condition.
Collapse
|
48
|
Past, Present, and Future in the Study of Neural Control of the Lower Urinary Tract. Int Neurourol J 2020; 24:191-199. [PMID: 33017890 PMCID: PMC7538290 DOI: 10.5213/inj.2040318.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The neurological coordination of the lower urinary tract can be analyzed from the perspective of motor neurons or sensory neurons. First, sensory nerves with receptors in the bladder and urethra transmits stimuli to the cerebral cortex through the periaqueductal gray (PAG) of the midbrain. Upon the recognition of stimuli, the cerebrum carries out decision-making in response. Motor neurons are divided into upper motor neurons (UMNs) and lower motor neurons (LMNs) and UMNs coordinate storage and urination in the brainstem for synergic voiding. In contrast, LMNs, which originate in the spinal cord, cause muscles to contract. These neurons are present in the sacrum, and in particular, a specific neuron group called Onuf’s nucleus is responsible for the contraction of the external urethral sphincter and maintains continence in states of rising vesical pressure through voluntary contraction of the sphincter. Parasympathetic neurons originating from S2–S4 are responsible for the contraction of bladder muscles, while sympathetic neurons are responsible for contraction of the urethral smooth muscle, including the bladder neck, during the guarding reflex. UMNs are controlled in the pons where various motor stimuli to the LMNs are directed along with control to various other pelvic organs, and in the PAG, where complex signals from the brain are received and integrated. Future understanding of the complex mechanisms of micturition requires integrative knowledge from various fields encompassing these distinct disciplines.
Collapse
|
49
|
Umezaki T, Shiba K, Sugiyama Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J Neurophysiol 2020; 124:750-762. [PMID: 32727254 DOI: 10.1152/jn.00093.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded membrane potentialp changes in 45 pharyngeal motoneurons (PMs) including 33 expiratory modulated and 12 nonrespiratory neurons during breathing, swallowing, and coughing in decerebrate paralyzed cats. Four types of membrane potential changes were observed during swallowing: 1) depolarization during swallowing (n = 27), 2) depolarization preceded by a brief (≤ 0.1 s) hyperpolarization (n = 4), 3) longer term (> 0.3 s) hyperpolarization followed by depolarization (n = 11), and 4) hyperpolarization during the latter period of swallowing (n = 3). During coughing, PMs showed two types of membrane potential changes (n = 10). Nine neurons exhibited a ramp-like depolarization during the expiratory phase of coughing with the potential peak at the end of expiratory phase. This depolarization was interrupted by a transient repolarization just before the potential peak. The membrane potential of the remaining neuron abruptly depolarized at the onset of the expiratory phase and then gradually decreased even after the end of the expiratory phase. Single-shock stimulation of the superior laryngeal nerve (SLN) induced inhibitory postsynaptic potentials in 19 of 21 PMs. Two motoneurons exhibited an SLN-induced excitatory postsynaptic potential. The present study revealed that PMs receive the central drive, consisting of a combination of excitation and inhibition, from the pattern generator circuitry of breathing, swallowing, and coughing, which changes the properties of their membrane potential to generate these motor behaviors of the pharynx. Our data will provide the basis of studies of pharyngeal activity and its control from the medullary neuronal circuitry responsible for the upper airway motor activity.NEW & NOTEWORTHY We have provided the first demonstration of the multifunctional activity of the pharyngeal motoneurons at the level of membrane potential during respiration, swallowing, and coughing.
Collapse
Affiliation(s)
- Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Keisuke Shiba
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
50
|
Orsbon CP, Gidmark NJ, Gao T, Ross CF. XROMM and diceCT reveal a hydraulic mechanism of tongue base retraction in swallowing. Sci Rep 2020; 10:8215. [PMID: 32427836 PMCID: PMC7237434 DOI: 10.1038/s41598-020-64935-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
During primate swallowing, tongue base retraction (TBR) drives the food bolus across the oropharynx towards the esophagus and flips the epiglottis over the laryngeal inlet, protecting against penetration and aspiration of food into the airway. Despite the importance of TBR for swallowing performance, the mechanics of TBR are poorly understood. Using biplanar videoradiography (XROMM) of four macaque monkeys, we tested the extrinsic muscle shortening hypothesis, which posits that shortening of the hyoglossus and styloglossus muscles pulls the tongue base posteriorly, and the muscular hydrostat or intrinsic tongue muscle hypothesis, which suggests that, because the tongue is composed of incompressible fluid, intrinsic muscle shortening increases tongue length and displaces the tongue base posteriorly. Our data falsify these hypotheses. Instead we suggest a novel hydraulic mechanism of TBR: shortening and rotation of suprahyoid muscles compresses the tongue between the hard palate, hyoid and mouth floor, squeezing the midline tongue base and food bolus back into the oropharynx. Our hydraulic mechanism is consistent with available data on human tongue swallowing kinematics. Rehabilitation for poor tongue base retraction might benefit from including suprahyoid muscle exercises during treatment.
Collapse
Affiliation(s)
- Courtney P Orsbon
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas J Gidmark
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL, 60637, USA
- Biology Department, Knox College, Galesburg, IL, 61401, USA
| | - Tingran Gao
- Committee on Computational and Applied Mathematics, Department of Statistics, The University of Chicago, Chicago, IL, 60637, USA
| | - Callum F Ross
- Department of Organismal Biology & Anatomy, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|