1
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Goto Y, Jono Y, Hatanaka R, Nomura Y, Tani K, Chujo Y, Hiraoka K. Different corticospinal control between discrete and rhythmic movement of the ankle. Front Hum Neurosci 2014; 8:578. [PMID: 25126066 PMCID: PMC4115592 DOI: 10.3389/fnhum.2014.00578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/14/2014] [Indexed: 12/05/2022] Open
Abstract
We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.
Collapse
Affiliation(s)
- Yumeno Goto
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Yasutomo Jono
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Ryota Hatanaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Yoshifumi Nomura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Keisuke Tani
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Yuta Chujo
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University Habikino, Japan
| | - Koichi Hiraoka
- College of Health and Human Sciences, Osaka Prefecture University Habikino, Japan
| |
Collapse
|
3
|
Knikou M, Kay E, Schmit BD. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord. Exp Neurol 2007; 206:146-58. [PMID: 17543951 PMCID: PMC1937333 DOI: 10.1016/j.expneurol.2007.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 11/16/2022]
Abstract
Spinal integration of sensory signals associated with hip position, muscle loading, and cutaneous sensation of the foot contributes to movement regulation. The exact interactive effects of these sensory signals under controlled dynamic conditions are unknown. The purpose of the present study was to establish the effects of combined plantar cutaneous afferent excitation and hip movement on the Hoffmann (H) and flexion reflexes in people with a spinal cord injury (SCI). The flexion and H-reflexes were elicited through stimulation of the right sural (at non-nociceptive levels) and posterior tibial nerves respectively. Reflex responses were recorded from the ipsilateral tibialis anterior (TA) (flexion reflex) and soleus (H-reflex) muscles. The plantar cutaneous afferents were stimulated at three times the perceptual threshold (200 Hz, 24-ms pulse train) at conditioning-test intervals that ranged from 3 to 90 ms. Sinusoidal movements were imposed to the right hip joint at 0.2 Hz with subjects supine. Control and conditioned reflexes were recorded as the hip moved in flexion and extension. Leg muscle activity and sagittal-plane joint torques were recorded. We found that excitation of plantar cutaneous afferents facilitated the soleus H-reflex and the long latency flexion reflex during hip extension. In contrast, the short latency flexion reflex was depressed by plantar cutaneous stimulation during hip flexion. Oscillatory joint forces were present during the transition phase of the hip movement from flexion to extension when stimuli were delivered during hip flexion. Hip-mediated input interacts with feedback from the foot sole to facilitate extensor and flexor reflex activity during the extension phase of movement. The interactive effects of these sensory signals may be a feature of impaired gait, but when they are appropriately excited, they may contribute to locomotion recovery in these patients.
Collapse
Affiliation(s)
- Maria Knikou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, and Department of Physical Medicine and Rehabilitation, Feinberg Medical School, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
4
|
Abstract
Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.
Collapse
Affiliation(s)
- Serge Rossignol
- Department of Physiology, Centre for Research in Neurological Sciences, Faculty of Medicine, Université de Montréal, PO Box 6128, Station Centre-Ville, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
5
|
Bronsing R, van der Burg J, Ruigrok TJH. Modulation of cutaneous reflexes in hindlimb muscles during locomotion in the freely walking rat: A model for studying cerebellar involvement in the adaptive control of reflexes during rhythmic movements. PROGRESS IN BRAIN RESEARCH 2005; 148:243-57. [PMID: 15661195 DOI: 10.1016/s0079-6123(04)48020-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This study aims to demonstrate stepphase-dependent modulation in the gain of cutaneously triggered reflexes in the freely locomoting rat. Electromyographic recordings of biceps femoris (mainly involved in knee flexion) and gastrocnemius (mainly involved in ankle extension) muscles were continuously monitored during locomotion and cutaneous reflexes were induced by subcutaneously placed stimulation electrodes in the lateral malleolal region. The results show that the reflex responses in both muscles during locomotion were generally reduced compared to reflexes induces in rest. For the biceps femoris reduction of reflex gain was highest during the stance phase whereas for the gastrocnemius the period of highest depression was found during the swing phase. We conclude that stepphase-dependent modulation of peripheral reflexes can be measured in freely locomoting rats and generally concur with previous studies in cat and man that this type of modulation may be functionally important for maintaining and adjusting gait. Moreover, although the mechanism of inducing and maintaining this modulation is not fully known, it is now open to experimental investigation in rodents.
Collapse
Affiliation(s)
- R Bronsing
- Department of Neuroscience, Erasmus MC Rotterdam, P.O. Box 1738, 3000DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
6
|
Brooke JD. Somatosensory paths proceeding to spinal cord and brain — centripetal and centrifugal control for human movement. Can J Physiol Pharmacol 2004; 82:723-31. [PMID: 15523529 DOI: 10.1139/y04-045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The flow of fast-conducting somatosensory information proceeding from the human leg, and entering sensorimotor control processes, is modulated according to the demands of limb movement. Both centripetal (proceeding in from sensory receptor discharge) and centrifugal (proceeding out from motor control centres) convergences can cause modulation, as seen in human, dog, and cat studies. Spinal H-reflexes appear to be strongly centripetally modulated in magnitude, as do initial somatosensory-evoked potentials recorded from the scalp following transmission in fast-conducting afferents from the leg. From the brain and from locomotor pattern-generators, there is also centrifugal control onto fast-conducting somatosensory pathways from the leg, both serving spinal reflexes and ascending to the brain. One expression of the centrifugal control appears to be pattern-generator modulation of cutaneous reflexes. Centrifugal control also can be seen premovement, as spinal H-reflex facilitation. Further, it can be observed as reduction of reception at somatosensory cerebral cortex, when motor learning has occurred or when stimuli are less salient for the task. Fourteen research developments have been identified that involve the generalizability of effects, specific mechanisms, and somatosensory modulation in predictive control.Key words: feedback, feedforward, modulation, prediction, somatosensory evoked potential (SEP), H-reflex.
Collapse
Affiliation(s)
- John D Brooke
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 1233 Lands End Road, North Saanich, British Columbia V8L 5K2, Canada.
| |
Collapse
|
7
|
Abstract
Literature concerning the theoretical role of spinal reflex circuits and their sensorimotor signals in proprioceptive neuromuscular facilitation (PNF) muscle stretching techniques was examined. Reviewed data do not support the assertion commonly made in PNF literature that contraction of a stretched muscle prior to further stretch, or contraction of opposing muscles during muscle stretch, produces relaxation of the stretched muscle. Further, following contraction of a stretched muscle, inhibition of the stretch reflex response lasts only 1 s. Studies examined suggested that decreases in the response amplitude of the Hoffmann and muscle stretch reflexes following a contraction of a stretched muscle are not due to the activation of Golgi tendon organs, as commonly purported, but instead may be due to presynaptic inhibition of the muscle spindle sensory signal. The current view on the complex manner by which the spinal cord processes proprioceptive signals was discussed. The ability of acute PNF stretching procedures to often produce a joint range of motion greater than that observed with static stretching must be explained by mechanisms other than the spinal processing of proprioceptive information. Studies reviewed indicate that changes in the ability to tolerate stretch and/or the viscoelastic properties of the stretched muscle, induced by PNF procedures, are possible mechanisms.
Collapse
Affiliation(s)
- Gordon Chalmers
- Department of Physical Education, Health and Recreation, Western Washington University, Bellingham, WA, USA
| |
Collapse
|
8
|
Haftel VK, Bichler EK, Nichols TR, Pinter MJ, Cope TC. Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat. J Neurophysiol 2003; 91:2164-71. [PMID: 14695354 DOI: 10.1152/jn.01147.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among the mechanisms that may result in modulation of the stretch reflex by the recent history of muscle contraction is the history dependence observed under some conditions in the response properties of muscle spindles. The present study was designed to test one report that in successive trials of muscle stretch-release, spindle afferent firing during stretch, i.e., the dynamic response shows no history dependence beyond the initial burst of firing at stretch onset. Firing responses of spindle afferents were recorded during sets of three consecutive trials of triangular stretch-release applied to triceps surae muscles in barbiturate-anesthetized rats. All 69 spindle afferents fired more action potentials (spikes) during the dynamic response of the first trial, excluding the initial burst, than in the following two trials. The reduced dynamic response (RDR) was nearly complete after trial 1 and amounted to an average of approximately 12 fewer spikes (16 pps slower firing rate) in trial 3 than in trial 1. RDR was sensitive to the interval between stretch sets but independent of stretch velocity (4-32 mm/s). RDR was reflected in the synaptic potentials recorded intracellularly from 16 triceps surae alpha-motoneurons: depolarization during muscle stretch was appreciably reduced after trial 1. These findings demonstrate history dependence of spindle afferent responses that extends throughout the dynamic response in successive muscle stretches and that is synaptically transmitted to motoneurons with the probable effect, unless otherwise compensated, of modulating the stretch reflex.
Collapse
Affiliation(s)
- Valerie K Haftel
- Department of Physiology, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | |
Collapse
|
9
|
Misiaszek JE. The H-reflex as a tool in neurophysiology: its limitations and uses in understanding nervous system function. Muscle Nerve 2003; 28:144-60. [PMID: 12872318 DOI: 10.1002/mus.10372] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Hoffmann reflex (H-reflex) is extensively used as both a research and clinical tool. The ease with which this reflex can be elicited in several muscles throughout the body makes it an attractive tool. This review discusses some of the important limitations in using the H-reflex. In particular, the inaccurate but widely held assumptions that the H-reflex (1). represents the monosynaptic reflex of the Ia afferent onto homonymous motoneurons, and (2). can be used to measure motoneuronal excitability are addressed. The second part of this review explores the utility of the H-reflex as a neural probe in neurophysiology and motor control research. Applications ranging from the investigation of the functional organization of neural circuitry to the study of adaptive plasticity in spinal structures in health and disease suggest that the H-reflex will continue to be an extensively used tool in motor control neurophysiology.
Collapse
Affiliation(s)
- John E Misiaszek
- Department of Occupational Therapy and Centre for Neuroscience, University of Alberta, 2-64 Corbett Hall, Edmonton, Alberta T6G 2G4, Canada.
| |
Collapse
|
10
|
Abstract
This study compares the level of presynaptic inhibition during two rhythmic movements in the cat: locomotion and scratch. Dorsal rootlets from L6, L7, or S1 segments were cut, and their proximal stumps were recorded during fictive locomotion occurring spontaneously in decerebrate cats and during fictive scratch induced by d-tubocurarine applied on the C1 and C2 segments. Compared with rest, the number of antidromic spikes was increased (by 12%) during locomotion, whereas it was greatly decreased (31%) during scratch, and the amplitude of dorsal root potentials (DRPs), evoked by stimulating a muscle nerve, was slightly decreased (7%) during locomotion but much more so during scratch (53%). When compared with locomotion, the decrease in the number of antidromic spikes (45%) and the decrease in DRP amplitude (43%) during scratch were of similar magnitude. Also, the amplitude of primary afferent depolarization (PAD), recorded with micropipettes in axons (n = 13) of two cats, was found to be significantly reduced (60%) during scratch compared with rest. During both rhythms, there were cyclic oscillations in dorsal root potential the timing of which was linearly related to the timing of rhythmic activity in tibialis anterior. The amplitude of these oscillations was significantly smaller (34%) during locomotion compared with scratch. These results suggest that the reduction in antidromic activity during scratch was attributable to a task-dependent decrease in transmission in PAD pathways and not to underlying potential oscillations related to the central pattern generator. It is concluded that presynaptic inhibition and antidromic discharge may have a more important role in the control of locomotion than scratch.
Collapse
|
11
|
De Serres SJ, Bennett DJ, Stein RB. Stretch reflex gain in cat triceps surae muscles with compliant loads. J Physiol 2002; 545:1027-40. [PMID: 12482905 PMCID: PMC2290714 DOI: 10.1113/jphysiol.2002.027177] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The triceps surae (TS) stretch reflex was measured in decerebrate cats during crossed extensor stimulation (tonic contractions) and after spinalization during rhythmic locomotor activity. The TS reflex force in response to a short pulse stretch measured during tonic contractions at low level of background activity was greater than when more background activity was present at the time of application of stretch. In contrast, the reflex force measured during rhythmic contractions was very small at low level of background force (flexion phase) and increased at moderate and high levels of background activity (extension phase). Thus, even in reduced preparations, a task modulation of the stretch reflex occurs. Throughout the experimental procedure, the torque motor used to stretch the muscles behaved like a spring of a preset compliance (from isometric to very compliant). A reflex model was used to simulate the responses obtained experimentally. The gain of the stretch reflex loop was estimated for each load condition and both behavioural tasks. The reflex loop gain was significantly larger as the compliance of the external load increased for both tonic and rhythmic contractions, although to a lesser extent in the phasically activated muscles. During rhythmic locomotor contractions the gain was less than 1, assuring stability of the system. In contrast, during tonic contractions against a compliant load the gain exceeded 1, consistent with the instability (oscillations, clonus) seen at times under these load conditions. However, the high gain and instability was only transient, since repeated stretch reduced the gain. Thus, non-linearities in the system assured vigorous responses at the onset of perturbations, but then weaker responses to ongoing perturbations to reduce the chance of feedback instability (clonus).
Collapse
Affiliation(s)
- Sophie J De Serres
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
12
|
Abstract
The purpose of this article is to review the neural adaptations that occur in able-bodied humans with alterations in chronic patterns of physical activity. The adaptations are categorized as those related to cortical maps, motor command, descending drive, muscle activation, motor units, and sensory feedback. We focused on the adaptations that occur with such activities as strength training, limb immobilization, and limb unloading. For these types of interventions, the adaptations are widely distributed throughout the nervous system, but those changes that are observed with strength training are often not the converse of those found with reduced-use protocols.
Collapse
Affiliation(s)
- Jacques Duchateau
- Laboratory of Biology, Université Libre de Bruxelles, Bruxelles, Belgium
| | | |
Collapse
|
13
|
Chalmers GR, Knutzen KM. Soleus H-reflex gain in healthy elderly and young adults when lying, standing, and balancing. J Gerontol A Biol Sci Med Sci 2002; 57:B321-9. [PMID: 12145358 DOI: 10.1093/gerona/57.8.b321] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Soleus Hoffman-reflex (H-reflex) gain was compared at the same background level of electromyographic activity across lying, natural standing, and tandem stance postures, in 12 young and 16 elderly adults. When compared to a lying posture, young adults significantly depressed soleus H-reflex gain when in a natural standing (19% decrease) and a tandem stance position (30% decrease; p <.0125 for both positions). For elderly adults, there was no significant decrease in H-reflex gain while standing naturally, but there was a significant 28% decrease when performing tandem stance (p <.0125). The data indicate that, although the mild motor control challenge of natural standing does not induce a decrease in soleus H-reflex gain in the elderly adults, as it does in young adults, in the more difficult task of tandem stance, soleus H-reflex gain is significantly decreased in both young and elderly adults.
Collapse
Affiliation(s)
- Gordon R Chalmers
- Department of Physical Education, Health and Recreation, Western Washington University, Bellingham 98225-9067, USA.
| | | |
Collapse
|
14
|
Ménard A, Leblond H, Gossard JP. Sensory integration in presynaptic inhibitory pathways during fictive locomotion in the cat. J Neurophysiol 2002; 88:163-71. [PMID: 12091542 DOI: 10.1152/jn.2002.88.1.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to understand how sensory inputs of different modalities are integrated into spinal cord pathways controlling presynaptic inhibition during locomotion. Primary afferent depolarization (PAD), an estimate of presynaptic inhibition, was recorded intra-axonally in group I afferents (n = 31) from seven hindlimb muscles in L(6)-S(1) segments during fictive locomotion in the decerebrate cat. PADs were evoked by stimulating alternatively low-threshold afferents from a flexor nerve, a cutaneous nerve and a combination of both. The fictive step cycle was divided in five bins and PADs were averaged in each bin and their amplitude compared. PADs evoked by muscle stimuli alone showed a significant phase-dependent modulation in 20/31 group I afferents. In 12/20 afferents, the cutaneous stimuli alone evoked a phase-dependent modulation of primary afferent hyperpolarization (PAH, n = 9) or of PADs (n = 3). Combining the two sensory modalities showed that cutaneous volleys could significantly modify the amplitude of PADs evoked by muscle stimuli in at least one part (bin) of the step cycle in 17/31 (55%) of group I afferents. The most common effect (13/17) was a decrease in the PAD amplitude by 35% on average, whereas it was increased by 17% on average in the others (4/17). Moreover, in 8/13 afferents, the PAD reduction was obtained in 4/5 bins i.e., for most of the duration of the step cycle. These effects were seen in group I afferents from all seven muscles. On the other hand, we found that different cutaneous nerves had quite different efficacy; the superficial peroneal (SP) being the most efficient (85% of trials) followed by Saphenous (60%) and caudal sural (44%) nerves. The results indicate that cutaneous interneurons may act, in part, by modulating the transmission in PAD pathways activated by group I muscle afferents. We conclude that cutaneous input, especially from the skin area on the dorsum of the paw (SP), could subtract presynaptic inhibition in some group I afferents during perturbations of stepping (e.g., hitting an obstacle) and could thus adjust the influence of proprioceptive feedback onto motoneuronal excitability.
Collapse
Affiliation(s)
- Ariane Ménard
- Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | | | | |
Collapse
|
15
|
Abstract
Walking the way we do is inherently unstable. Sophisticated neurological control systems are required to ensure that we progress and maintain our balance at the same time. Most of what is known about the functional organization of these neurological control systems is inferred from studies on animals. Here, I compare selected studies on the neural control of human walking with similar studies in reduced animal preparations. The simple monosynaptic reflex appears to be controlled by comparable mechanisms in walking cats and humans. However, peripheral feedback mechanisms suggested to contribute to the switch from stance to swing on the basis of experiments in reduced cat preparations have little influence during human walking. A cat whose spinal cord has been completely transected can be made to walk on a treadmill by drug injections, but such an immediate effect of pharmacological intervention is not seen in humans. However, there have been reports that pharmacological intervention can improve the walking of patients with incomplete spinal cord injury, especially when pharmacological treatment is combined with training.
Collapse
Affiliation(s)
- Charles Capaday
- Brain and Movement Laboratory, CRULRG, Departmentt of Anatomy and Physiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1J 2G3.
| |
Collapse
|
16
|
McCrea DA. Spinal circuitry of sensorimotor control of locomotion. J Physiol 2001; 533:41-50. [PMID: 11351011 PMCID: PMC2278617 DOI: 10.1111/j.1469-7793.2001.0041b.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 03/22/2001] [Indexed: 11/26/2022] Open
Abstract
During locomotion many segmental hindlimb reflex pathways serve not only to regulate the excitability of local groups of motoneurones, but also to control the basic operation of the central pattern-generating circuitry responsible for locomotion. This is accomplished through a reorganization of reflexes that includes the suppression of reflex pathways operating at rest and the recruitment during locomotion of previously unrecognized types of spinal interneurones. In addition presynaptic inhibition of transmission from segmental afferents serves to regulate the gain of segmental reflexes and may contribute to the selection of particular reflex pathways during locomotion. The fictive locomotion preparation in adult decerebrate cats has proved to be an important tool in understanding reflex pathway reorganization. Further identification of the spinal interneurones involved in locomotor-dependent reflexes will contribute to our understanding not only of reflex pathway organization but also of the organization of the mammalian central pattern generator.
Collapse
Affiliation(s)
- D A McCrea
- Department of Physiology, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 3J7.
| |
Collapse
|
17
|
Ferris DP, Aagaard P, Simonsen EB, Farley CT, Dyhre-Poulsen P. Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol 2001; 530:167-80. [PMID: 11136869 PMCID: PMC2278388 DOI: 10.1111/j.1469-7793.2001.0167m.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ~30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.
Collapse
Affiliation(s)
- D P Ferris
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Gosgnach S, Quevedo J, Fedirchuk B, McCrea DA. Depression of group Ia monosynaptic EPSPs in cat hindlimb motoneurones during fictive locomotion. J Physiol 2000; 526 Pt 3:639-52. [PMID: 10922014 PMCID: PMC2270044 DOI: 10.1111/j.1469-7793.2000.00639.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The effects of fictive locomotion on monosynaptic EPSPs recorded in motoneurones and extracellular field potentials recorded in the ventral horn were examined during brainstem-evoked fictive locomotion in decerebrate cats. Composite homonymous and heteronymous EPSPs and field potentials were evoked by group I intensity (<= 2T) stimulation of ipsilateral hindlimb muscle nerves. Ninety-one of the 98 monosynaptic EPSPs were reduced in amplitude during locomotion (mean depression of the 91 was to 66 % of control values); seven increased in amplitude (to a mean of 121 % of control). Twenty-one of the 22 field potentials were depressed during locomotion (mean depression to 72 % of control). All but 14 Ia EPSPs were smaller during both the flexion and extension phases of locomotion than during control. In 35 % of the cases there was < 5 % difference between the amplitudes of the EPSPs evoked during the flexion and extension phases. In 27 % of the cases EPSPs evoked during flexion were larger than those evoked during extension. The remaining 38 % of EPSPs were larger during extension. There was no relation between either the magnitude of EPSP depression or the locomotor phase in which maximum EPSP depression occurred and whether an EPSP was recorded in a flexor or extensor motoneurone. The mean recovery time of both EPSP and field potential amplitudes following the end of a bout of locomotion was approximately 2 min (range, < 10 to > 300 s). Motoneurone membrane resistance decreased during fictive locomotion (to a mean of 61 % of control, n = 22). Because these decreases were only weakly correlated to EPSP depression (r 2 = 0.31) they are unlikely to fully account for this depression. The depression of monosynaptic EPSPs and group I field potentials during locomotion is consistent with the hypothesis that during fictive locomotion there is a tonic presynaptic regulation of synaptic transmission from group Ia afferents to motoneurones and interneurones. Such a reduction in neurotransmitter release would decrease group Ia monosynaptic reflex excitation during locomotion. This reduction may contribute to the tonic depression of stretch reflexes occurring in the decerebrate cat during locomotion.
Collapse
Affiliation(s)
- S Gosgnach
- Department of Physiology, University of Manitoba, 730 William Avenue, Winnipeg, Canada R3E 3J7
| | | | | | | |
Collapse
|