1
|
Fattori P, De Vitis M, Filippini M, Vaccari FE, Diomedi S, Gamberini M, Galletti C. Visual sensitivity at the service of action control in posterior parietal cortex. Front Physiol 2024; 15:1408010. [PMID: 38841208 PMCID: PMC11151461 DOI: 10.3389/fphys.2024.1408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The posterior parietal cortex (PPC) serves as a crucial hub for the integration of sensory with motor cues related to voluntary actions. Visual input is used in different ways along the dorsomedial and the dorsolateral visual pathways. Here we focus on the dorsomedial pathway and recognize a visual representation at the service of action control. Employing different experimental paradigms applied to behaving monkeys while single neural activity is recorded from the medial PPC (area V6A), we show how plastic visual representation can be, matching the different contexts in which the same object is proposed. We also present data on the exchange between vision and arm actions and highlight how this rich interplay can be used to weight different sensory inputs in order to monitor and correct arm actions online. Indeed, neural activity during reaching or reach-to-grasp actions can be excited or inhibited by visual information, suggesting that the visual perception of action, rather than object recognition, is the most effective factor for area V6A. Also, three-dimensional object shape is encoded dynamically by the neural population, according to the behavioral context of the monkey. Along this line, mirror neuron discharges in V6A indicate the plasticity of visual representation of the graspable objects, that changes according to the context and peaks when the object is the target of one's own action. In other words, object encoding in V6A is a visual encoding for action.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Padova, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
3
|
Henderson J, Mari T, Hewitt D, Newton‐Fenner A, Giesbrecht T, Marshall A, Stancak A, Fallon N. The neural correlates of texture perception: A systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. Brain Behav 2023; 13:e3264. [PMID: 37749852 PMCID: PMC10636420 DOI: 10.1002/brb3.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Humans use discriminative touch to perceive texture through dynamic interactions with surfaces, activating low-threshold mechanoreceptors in the skin. It was largely assumed that texture was processed in primary somatosensory regions in the brain; however, imaging studies indicate heterogeneous patterns of brain activity associated with texture processing. METHODS To address this, we conducted a coordinate-based activation likelihood estimation meta-analysis of 13 functional magnetic resonance imaging studies (comprising 15 experiments contributing 228 participants and 275 foci) selected by a systematic review. RESULTS Concordant activations for texture perception occurred in the left primary somatosensory and motor regions, with bilateral activations in the secondary somatosensory, posterior insula, and premotor and supplementary motor cortices. We also evaluated differences between studies that compared touch processing to non-haptic control (e.g., rest or visual control) or those that used haptic control (e.g., shape or orientation perception) to specifically investigate texture encoding. Studies employing a haptic control revealed concordance for texture processing only in the left secondary somatosensory cortex. Contrast analyses demonstrated greater concordance of activations in the left primary somatosensory regions and inferior parietal cortex for studies with a non-haptic control, compared to experiments accounting for other haptic aspects. CONCLUSION These findings suggest that texture processing may recruit higher order integrative structures, and the secondary somatosensory cortex may play a key role in encoding textural properties. The present study provides unique insight into the neural correlates of texture-related processing by assessing the influence of non-textural haptic elements and identifies opportunities for a future research design to understand the neural processing of texture.
Collapse
Affiliation(s)
| | - Tyler Mari
- School of PsychologyUniversity of LiverpoolLiverpoolUK
| | | | - Alice Newton‐Fenner
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | | - Alan Marshall
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
| | - Andrej Stancak
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
4
|
Toth AJ, Hojaji F, Campbell MJ. Exploring the mechanisms of target acquisition performance in esports: The role of component kinematic phases on a first person shooter motor skill. COMPUTERS IN HUMAN BEHAVIOR 2023. [DOI: 10.1016/j.chb.2022.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Bruner E, Battaglia-Mayer A, Caminiti R. The parietal lobe evolution and the emergence of material culture in the human genus. Brain Struct Funct 2023; 228:145-167. [PMID: 35451642 DOI: 10.1007/s00429-022-02487-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Traditional and new disciplines converge in suggesting that the parietal lobe underwent a considerable expansion during human evolution. Through the study of endocasts and shape analysis, paleoneurology has shown an increased globularity of the braincase and bulging of the parietal region in modern humans, as compared to other human species, including Neandertals. Cortical complexity increased in both the superior and inferior parietal lobules. Emerging fields bridging archaeology and neuroscience supply further evidence of the involvement of the parietal cortex in human-specific behaviors related to visuospatial capacity, technological integration, self-awareness, numerosity, mathematical reasoning and language. Here, we complement these inferences on the parietal lobe evolution, with results from more classical neuroscience disciplines, such as behavioral neurophysiology, functional neuroimaging, and brain lesions; and apply these to define the neural substrates and the role of the parietal lobes in the emergence of functions at the core of material culture, such as tool-making, tool use and constructional abilities.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación Sobre la Evolución Humana, Burgos, Spain
| | | | - Roberto Caminiti
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia (IIT), Roma, Italy.
| |
Collapse
|
6
|
Christova P, James LM, Georgopoulos AP. Effects of sex and age on presumed inhibitory interactions in 6 areas of the human cerebral cortex as revealed by the fMRI Human Connectome Project. Exp Brain Res 2022; 240:969-979. [DOI: 10.1007/s00221-021-06298-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
|
7
|
Zanini A, Patané I, Blini E, Salemme R, Koun E, Farnè A, Brozzoli C. Peripersonal and reaching space differ: Evidence from their spatial extent and multisensory facilitation pattern. Psychon Bull Rev 2021; 28:1894-1905. [PMID: 34159525 PMCID: PMC8642341 DOI: 10.3758/s13423-021-01942-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2021] [Indexed: 12/31/2022]
Abstract
Peripersonal space (PPS) is a multisensory representation of the space near body parts facilitating interactions with the close environment. Studies on non-human and human primates agree in showing that PPS is a body part-centered representation that guides actions. Because of these characteristics, growing confusion surrounds peripersonal and arm-reaching space (ARS), that is the space one's arm can reach. Despite neuroanatomical evidence favoring their distinction, no study has contrasted directly their respective extent and behavioral features. Here, in five experiments (N = 140) we found that PPS differs from ARS, as evidenced both by participants' spatial and temporal performance and by its modeling. We mapped PPS and ARS using both their respective gold standard tasks and a novel multisensory facilitation paradigm. Results show that: (1) PPS is smaller than ARS; (2) multivariate analyses of spatial patterns of multisensory facilitation predict participants' hand locations within ARS; and (3) the multisensory facilitation map shifts isomorphically following hand positions, revealing hand-centered coding of PPS, therefore pointing to a functional similarity to the receptive fields of monkeys' multisensory neurons. A control experiment further corroborated these results and additionally ruled out the orienting of attention as the driving mechanism for the increased multisensory facilitation near the hand. In sharp contrast, ARS mapping results in a larger spatial extent, with undistinguishable patterns across hand positions, cross-validating the conclusion that PPS and ARS are distinct spatial representations. These findings show a need for refinement of theoretical models of PPS, which is relevant to constructs as diverse as self-representation, social interpersonal distance, and motor control.
Collapse
Affiliation(s)
- A Zanini
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France.
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France.
| | - I Patané
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - E Blini
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Department of General Psychology, University of Padova, Padova, Italy
| | - R Salemme
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Neuro-immersion - Mouvement et Handicap, Lyon, France
| | - E Koun
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Neuro-immersion - Mouvement et Handicap, Lyon, France
| | - A Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Neuro-immersion - Mouvement et Handicap, Lyon, France
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - C Brozzoli
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France.
- University Claude Bernard Lyon I, Université de Lyon, Lyon, France.
- Hospices Civils de Lyon, Neuro-immersion - Mouvement et Handicap, Lyon, France.
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Benyamini M, Demchenko I, Zacksenhouse M. Error related EEG potentials evoked by visuo-motor rotations. Brain Res 2021; 1769:147606. [PMID: 34364850 DOI: 10.1016/j.brainres.2021.147606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Electroencephalographic (EEG) correlates of errors, known as error-related potentials (ErrPs), provide promising tools to investigate error processing in the brain and to detect and correct errors induced by brain-computer interfaces (BCIs). Visuo-motor rotation (VMR) is a well-known experimental paradigm to introduce visuo-motor errors that closely mimics directional errors induced by BCIs. However, investigations of ErrPs during VMR experiments are limited and reveals different ErrPs depending on task and synchronization. We conducted VMR experiments with 5 randomly selected conditions (no-rotation, small, ±22.5°, or large, ±45° rotations) to hamper adaptation and facilitate investigation of the effect of error size. We tracked eye movements so EEG was synchronized not only to onset of movement correction (OMC) but also to saccadic movement onset (SMO). Kinematic analysis indicated that maximum deviations from a straight line to the target were larger in trials with large rotations compared to small or no rotations, but there was a large overlap. Thus, we also compared ErrPs generated by trials with different maximum deviations. Our results reveal that trials with large rotations and especially trials with large maximum deviations evoke a significant positive ErrP component. The positive peak appeared 380 msec after SMO and 240 msec after OMC. Furthermore, the positive peak was associated with activity in Brodmann areas 5 and 7, in agreement with other studies and with the role of posterior parietal cortex in reaching movements. The observed ErrP may facilitate further investigation of error processing in the brain and error detection and correction in BCIs.
Collapse
Affiliation(s)
- Miri Benyamini
- Brain-Computer Interfaces for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion, Israel.
| | - Igor Demchenko
- Brain-Computer Interfaces for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion, Israel.
| | - Miriam Zacksenhouse
- Brain-Computer Interfaces for Rehabilitation Lab., Faculty of Mechanical Engineering, Technion, Israel; Technion Autonomous Systems Program, Technion, Israel.
| |
Collapse
|
10
|
The Complex Hodological Architecture of the Macaque Dorsal Intraparietal Areas as Emerging from Neural Tracers and DW-MRI Tractography. eNeuro 2021; 8:ENEURO.0102-21.2021. [PMID: 34039649 PMCID: PMC8266221 DOI: 10.1523/eneuro.0102-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022] Open
Abstract
In macaque monkeys, dorsal intraparietal areas are involved in several daily visuomotor actions. However, their border and sources of cortical afferents remain loosely defined. Combining retrograde histologic tracing and MRI diffusion-based tractography, we found a complex hodology of the dorsal bank of the intraparietal sulcus (db-IPS), which can be subdivided into a rostral intraparietal area PEip, projecting to the spinal cord, and a caudal medial intraparietal area MIP lacking such projections. Both include an anterior and a posterior sector, emerging from their ipsilateral, gradient-like connectivity profiles. As tractography estimations, we used the cross-sectional area of the white matter bundles connecting each area with other parietal and frontal regions, after selecting regions of interest (ROIs) corresponding to the injection sites of neural tracers. For most connections, we found a significant correlation between the proportions of cells projecting to all sectors of PEip and MIP along the continuum of the db-IPS and tractography. The latter also revealed “false positive” but plausible connections awaiting histologic validation.
Collapse
|
11
|
Diomedi S, Vaccari FE, Filippini M, Fattori P, Galletti C. Mixed Selectivity in Macaque Medial Parietal Cortex during Eye-Hand Reaching. iScience 2020; 23:101616. [PMID: 33089104 PMCID: PMC7559278 DOI: 10.1016/j.isci.2020.101616] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
The activity of neurons of the medial posterior parietal area V6A in macaque monkeys is modulated by many aspects of reach task. In the past, research was mostly focused on modulating the effect of single parameters upon the activity of V6A cells. Here, we used Generalized Linear Models (GLMs) to simultaneously test the contribution of several factors upon V6A cells during a fix-to-reach task. This approach resulted in the definition of a representative “functional fingerprint” for each neuron. We first studied how the features are distributed in the population. Our analysis highlighted the virtual absence of units strictly selective for only one factor and revealed that most cells are characterized by “mixed selectivity.” Then, exploiting our GLM framework, we investigated the dynamics of spatial parameters encoded within V6A. We found that the tuning is not static, but changed along the trial, indicating the sequential occurrence of visuospatial transformations helpful to guide arm movement. The parietal cortex integrates a variety of sensorimotor inputs to guide reaching GLM disentangled the effect of various reaching parameters upon cell activity V6A neurons were not functionally clustered, but characterized by mixed selectivity Spatial selectivity was dynamic and reached its peak during the movement phase
Collapse
Affiliation(s)
- Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesco E. Vaccari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Corresponding author
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Real and Imagined Grasping Movements Differently Activate the Human Dorsomedial Parietal Cortex. Neuroscience 2020; 434:22-34. [DOI: 10.1016/j.neuroscience.2020.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/24/2022]
|
13
|
Battaglia-Mayer A. A Brief History of the Encoding of Hand Position by the Cerebral Cortex: Implications for Motor Control and Cognition. Cereb Cortex 2020; 29:716-731. [PMID: 29373634 DOI: 10.1093/cercor/bhx354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Encoding hand position by the cerebral cortex is essential not only for the neural representation of the body image but also for different actions based on eye-hand coordination. These include reaching for visual objects as well as complex movement sequences, such as tea-making, tool use, and object construction, among many others. All these functions depend on a continuous refreshing of the hand position representation, relying on both predictive signaling and afferent information. The hand position influence on neural activity in the parietofrontal system, together with eye position signals, are the basic elements of an eye-hand matrix from which all the above functions can emerge and could be regarded as key features of a network with several entry points, command nodes and outflow pathways, as confirmed by the discovery of a direct parietospinal projection for the control of hand action. The integrity of this system is crucial for daily life, as testified by the consequences of cortical lesions, spanning from severe paralysis to complex forms of apraxia. In this review, I will sketch my personal understanding of the scientific and conceptual trajectory of a line of investigation with many unexpected influences on cortical function and disease, from motor behavior to cognition.
Collapse
|
14
|
Structural connectivity and functional properties of the macaque superior parietal lobule. Brain Struct Funct 2019; 225:1349-1367. [DOI: 10.1007/s00429-019-01976-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
|
15
|
Battaglia-Mayer A, Caminiti R. Corticocortical Systems Underlying High-Order Motor Control. J Neurosci 2019; 39:4404-4421. [PMID: 30886016 PMCID: PMC6554627 DOI: 10.1523/jneurosci.2094-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Cortical networks are characterized by the origin, destination, and reciprocity of their connections, as well as by the diameter, conduction velocity, and synaptic efficacy of their axons. The network formed by parietal and frontal areas lies at the core of cognitive-motor control because the outflow of parietofrontal signaling is conveyed to the subcortical centers and spinal cord through different parallel pathways, whose orchestration determines, not only when and how movements will be generated, but also the nature of forthcoming actions. Despite intensive studies over the last 50 years, the role of corticocortical connections in motor control and the principles whereby selected cortical networks are recruited by different task demands remain elusive. Furthermore, the synaptic integration of different cortical signals, their modulation by transthalamic loops, and the effects of conduction delays remain challenging questions that must be tackled to understand the dynamical aspects of parietofrontal operations. In this article, we evaluate results from nonhuman primate and selected rodent experiments to offer a viewpoint on how corticocortical systems contribute to learning and producing skilled actions. Addressing this subject is not only of scientific interest but also essential for interpreting the devastating consequences for motor control of lesions at different nodes of this integrated circuit. In humans, the study of corticocortical motor networks is currently based on MRI-related methods, such as resting-state connectivity and diffusion tract-tracing, which both need to be contrasted with histological studies in nonhuman primates.
Collapse
Affiliation(s)
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, 00185 Rome, Italy, and
- Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
16
|
Magri C, Fabbri S, Caramazza A, Lingnau A. Directional tuning for eye and arm movements in overlapping regions in human posterior parietal cortex. Neuroimage 2019; 191:234-242. [DOI: 10.1016/j.neuroimage.2019.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
|
17
|
Hadjidimitrakis K, Bakola S, Wong YT, Hagan MA. Mixed Spatial and Movement Representations in the Primate Posterior Parietal Cortex. Front Neural Circuits 2019; 13:15. [PMID: 30914925 PMCID: PMC6421332 DOI: 10.3389/fncir.2019.00015] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Yan T Wong
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Department of Electrical and Computer Science Engineering, Monash University, Clayton, VIC, Australia
| | - Maureen A Hagan
- Department of Physiology, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| |
Collapse
|
18
|
Tanaka H, Miyakoshi M, Makeig S. Dynamics of directional tuning and reference frames in humans: A high-density EEG study. Sci Rep 2018; 8:8205. [PMID: 29844584 PMCID: PMC5974292 DOI: 10.1038/s41598-018-26609-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022] Open
Abstract
Recent developments in EEG recording and signal processing have made it possible to record in an unconstrained, natural movement task, therefore EEG provides a promising approach to understanding the neural mechanisms of upper-limb reaching control. This study specifically addressed how EEG dynamics in the time domain encoded finger movement directions (directional tuning) and posture dependence (movement reference frames) by applying representational similarity analysis. High-density EEG covering the entire scalp was recorded while participants performed eight-directional, center-out reaching movements, thereby allowing us to explore directional selectivity of EEG sources over the brain beyond somatosensory areas. A majority of the source processes exhibited statistically significant directional tuning during peri-movement periods. In addition, directional tuning curves shifted systematically when the shoulder angle was rotated to perform the task within a more laterally positioned workspace, the degree of tuning curve rotation falling between that predicted by models assuming extrinsic and shoulder-based reference frames. We conclude that temporal dynamics of neural mechanisms for motor control can be studied noninvasively in humans using high-density EEG and that directional sensitivity of motor and non-motor processing is not limited within the sensorimotor areas but extends to the whole brain areas.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- School of Information Science Japan, Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan.
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute of Neural Computation University of California San Diego, 9500 Gilman Drive # 0559, La Jolla, CA, 92093-0559, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute of Neural Computation University of California San Diego, 9500 Gilman Drive # 0559, La Jolla, CA, 92093-0559, USA
| |
Collapse
|
19
|
Santandrea E, Breveglieri R, Bosco A, Galletti C, Fattori P. Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: Beyond the online guidance of movement. Sci Rep 2018; 8:6926. [PMID: 29720690 PMCID: PMC5931970 DOI: 10.1038/s41598-018-25117-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Over the years, electrophysiological recordings in macaque monkeys performing visuomotor tasks brought about accumulating evidence for the expression of neuronal properties (e.g., selectivity in the visuospatial and somatosensory domains, encoding of visual affordances and motor cues) in the posterior parietal area V6A that characterize it as an ideal neural substrate for online control of prehension. Interestingly, neuroimaging studies suggested a role of putative human V6A also in action preparation; moreover, pre-movement population activity in monkey V6A has been recently shown to convey grip-related information for upcoming grasping. Here we directly test whether macaque V6A neurons encode preparatory signals that effectively differentiate between dissimilar actions before movement. We recorded the activity of single V6A neurons during execution of two visuomotor tasks requiring either reach-to-press or reach-to-grasp movements in different background conditions, and described the nature and temporal dynamics of V6A activity preceding movement execution. We found striking consistency in neural discharges measured during pre-movement and movement epochs, suggesting that the former is a preparatory activity exquisitely linked to the subsequent execution of particular motor actions. These findings strongly support a role of V6A beyond the online guidance of movement, with preparatory activity implementing suitable motor programs that subsequently support action execution.
Collapse
Affiliation(s)
- Elisa Santandrea
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Mooshagian E, Wang C, Holmes CD, Snyder LH. Single Units in the Posterior Parietal Cortex Encode Patterns of Bimanual Coordination. Cereb Cortex 2018; 28:1549-1567. [PMID: 28369392 PMCID: PMC5907348 DOI: 10.1093/cercor/bhx052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/12/2022] Open
Abstract
Bimanual coordination is critical for a broad array of behaviors. Drummers, for example, must carefully coordinate movements of their 2 arms, sometimes beating on the same drum and sometimes on different ones. While coordinated behavior is well-studied, the early stages of planning are not well understood. In the parietal reach region (PRR) of the posterior parietal cortex (PPC), the presence of neurons that modulate when either arm moves by itself has been taken as evidence for a role in bimanual coordination. To test this notion, we recorded neurons during both unilateral and bimanual movements. We find that the activity that precedes an ipsilateral arm movement is primarily a sensory response to a target in the neuron's visual receptive field and not a plan to move the ipsilateral arm. In contrast, the activity that precedes a contralateral arm movement is the sum of a movement plan plus a sensory response. Despite not coding ipsilateral arm movements, about half of neurons discriminate between different patterns of bimanual movements. These results provide direct evidence that PRR neurons represent bimanual reach plans, and suggest that bimanual coordination originates in the sensory-to-motor processing stream prior to the motor cortex, within the PPC.
Collapse
Affiliation(s)
- Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cunguo Wang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles D Holmes
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
21
|
Borra E, Ferroni CG, Gerbella M, Giorgetti V, Mangiaracina C, Rozzi S, Luppino G. Rostro-caudal Connectional Heterogeneity of the Dorsal Part of the Macaque Prefrontal Area 46. Cereb Cortex 2017; 29:485-504. [DOI: 10.1093/cercor/bhx332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elena Borra
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Carolina Giulia Ferroni
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Istituto Italiano di Tecnologia (IIT), Center for Biomolecular Nanotechnologies, via Eugenio Barsanti, Arnesano, Lecce, Italy
| | - Valentina Giorgetti
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Chiara Mangiaracina
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, via Volturno 39, Parma, Italy
| |
Collapse
|
22
|
Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6495872. [PMID: 29285515 PMCID: PMC5733201 DOI: 10.1155/2017/6495872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Accepted: 10/12/2017] [Indexed: 11/18/2022]
Abstract
The cortical representation of visual perception requires the integration of several-signal processing distributed across many cortical areas, but the neural substrates of such perception are largely unknown. The type of firing pattern exhibited by single neurons is an important indicator of dynamic circuitry within or across cortical areas. Neurons in area PEc are involved in the spatial mapping of the visual field; thus, we sought to analyze the firing pattern of activity of PEc optic flow neurons to shed some light on the cortical processing of visual signals. We quantified the firing activity of 152 optic flow neurons using a spline interpolation function, which allowed determining onset, end, and latency of each neuronal response. We found that many PEc neurons showed multiphasic activity, which is strictly related to the position of the eye and to the position of the focus of expansion (FOE) of the flow field. PEc neurons showed a multiphasic activity comprised of excitatory phases interspersed with inhibitory pauses. This phasic pattern seems to be a very efficient way to signal the spatial location of visual stimuli, given that the same neuron sends different firing patterns according to a specific combination of FOE/eye position.
Collapse
|
23
|
Borra E, Gerbella M, Rozzi S, Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 2017; 75:65-90. [DOI: 10.1016/j.neubiorev.2017.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
24
|
Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys. eNeuro 2017; 4:eN-NWR-0306-16. [PMID: 28275714 PMCID: PMC5329620 DOI: 10.1523/eneuro.0306-16.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022] Open
Abstract
The statistical structure of intrinsic parietal and parieto-frontal connectivity in monkeys was studied through hierarchical cluster analysis. Based on their inputs, parietal and frontal areas were grouped into different clusters, including a variable number of areas that in most instances occupied contiguous architectonic fields. Connectivity tended to be stronger locally: that is, within areas of the same cluster. Distant frontal and parietal areas were targeted through connections that in most instances were reciprocal and often of different strength. These connections linked parietal and frontal clusters formed by areas sharing basic functional properties. This led to five different medio-laterally oriented pillar domains spanning the entire extent of the parieto-frontal system, in the posterior parietal, anterior parietal, cingulate, frontal, and prefrontal cortex. Different information processing streams could be identified thanks to inter-domain connectivity. These streams encode fast hand reaching and its control, complex visuomotor action spaces, hand grasping, action/intention recognition, oculomotor intention and visual attention, behavioral goals and strategies, and reward and decision value outcome. Most of these streams converge on the cingulate domain, the main hub of the system. All of them are embedded within a larger eye–hand coordination network, from which they can be selectively set in motion by task demands.
Collapse
|
25
|
Brunamonti E, Genovesio A, Pani P, Caminiti R, Ferraina S. Reaching-related Neurons in Superior Parietal Area 5: Influence of the Target Visibility. J Cogn Neurosci 2016; 28:1828-1837. [DOI: 10.1162/jocn_a_01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Reaching movements require the integration of both somatic and visual information. These signals can have different relevance, depending on whether reaches are performed toward visual or memorized targets. We tested the hypothesis that under such conditions, therefore depending on target visibility, posterior parietal neurons integrate differently somatic and visual signals. Monkeys were trained to execute both types of reaches from different hand resting positions and in total darkness. Neural activity was recorded in Area 5 (PE) and analyzed by focusing on the preparatory epoch, that is, before movement initiation. Many neurons were influenced by the initial hand position, and most of them were further modulated by the target visibility. For the same starting position, we found a prevalence of neurons with activity that differed depending on whether hand movement was performed toward memorized or visual targets. This result suggests that posterior parietal cortex integrates available signals in a flexible way based on contextual demands.
Collapse
|
26
|
Battaglia-Mayer A, Babicola L, Satta E. Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience 2016; 334:76-92. [DOI: 10.1016/j.neuroscience.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
|
27
|
Hawkins KM, Sergio LE. Adults at Increased Alzheimer's Disease Risk Display Cognitive-Motor Integration Impairment Associated with Changes in Resting-State Functional Connectivity: A Preliminary Study. J Alzheimers Dis 2016; 53:1161-72. [PMID: 27340846 DOI: 10.3233/jad-151137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many neuroimaging parameters have demonstrated utility as biomarkers in preclinical AD, including resting-state functional connectivity in the default mode network. However, neuroimaging is not a practical, cost effective screening instrument. OBJECTIVE Here we investigate the relationship between performance on a cognitive-motor integration assessment and alterations in resting-state functional connectivity in an at-risk population. METHODS Three groups of ten adults (young: mean age = 26.6 ± 2.7, low AD risk: mean age = 58.7 ± 5.6, and high AD risk: mean age = 58.5 ± 6.9) performed a simple cognitive-motor integration task using a dual-touchscreen laptop and also underwent functional magnetic resonance imaging at rest. RESULTS We found poorer cognitive-motor integration performance in high AD risk participants, as well as an association with lower resting-state functional connectivity in this group. CONCLUSION These findings provide novel insight into underlying AD-related brain alterations associated with a behavioral assessment that can be easily administered clinically.
Collapse
|
28
|
Hadjidimitrakis K, Dal Bo' G, Breveglieri R, Galletti C, Fattori P. Overlapping representations for reach depth and direction in caudal superior parietal lobule of macaques. J Neurophysiol 2015; 114:2340-52. [PMID: 26269557 DOI: 10.1152/jn.00486.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/07/2015] [Indexed: 11/22/2022] Open
Abstract
Reaching movements in the real world have typically a direction and a depth component. Despite numerous behavioral studies, there is no consensus on whether reach coordinates are processed in separate or common visuomotor channels. Furthermore, the neural substrates of reach depth in parietal cortex have been ignored in most neurophysiological studies. In the medial posterior parietal area V6A, we recently demonstrated the strong presence of depth signals and the extensive convergence of depth and direction information on single neurons during all phases of a fixate-to-reach task in 3-dimensional (3D) space. Using the same task, in the present work we examined the processing of direction and depth information in area PEc of the caudal superior parietal lobule (SPL) in three Macaca fascicularis monkeys. Across the task, depth and direction had a similar, high incidence of modulatory effect. The effect of direction was stronger than depth during the initial fixation period. As the task progressed toward arm movement execution, depth tuning became more prominent than directional tuning and the number of cells modulated by both depth and direction increased significantly. Neurons tuned by depth showed a small bias for far peripersonal space. Cells with directional modulations were more frequently tuned toward contralateral spatial locations, but ipsilateral space was also represented. These findings, combined with results from neighboring areas V6A and PE, support a rostral-to-caudal gradient of overlapping representations for reach depth and direction in SPL. These findings also support a progressive change from visuospatial (vergence angle) to somatomotor representations of 3D space in SPL.
Collapse
Affiliation(s)
- Kostas Hadjidimitrakis
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Giulia Dal Bo'
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| | - Rossella Breveglieri
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| | - Claudio Galletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| | - Patrizia Fattori
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; and
| |
Collapse
|
29
|
Caminiti R, Innocenti GM, Battaglia-Mayer A. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 2015; 56:73-96. [PMID: 26112130 DOI: 10.1016/j.neubiorev.2015.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution.
Collapse
Affiliation(s)
- Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Brain and Mind Institute, Federal Institute of Technology, EPFL, Lausanne, Switzerland
| | - Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
30
|
Visually-guided correction of hand reaching movements: The neurophysiological bases in the cerebral cortex. Vision Res 2015; 110:244-56. [DOI: 10.1016/j.visres.2014.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 11/19/2022]
|
31
|
Battaglia-Mayer A, Ferrari-Toniolo S, Visco-Comandini F. Timing and communication of parietal cortex for visuomotor control. Curr Opin Neurobiol 2015; 33:103-9. [PMID: 25841091 DOI: 10.1016/j.conb.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Abstract
In both monkeys and humans, motor cognition emerges from a parietal-frontal network containing discrete dominant domains of visual, eye and hand signals, where neurons are responsible for goal and effector selection. Within these domains, the combination of different inputs shape the tuning properties of neurons, while local and long cortico-cortical connections outline the architecture of the distributed network and determine the conduction time underlying eye-hand coordination, necessary for visually guided operations in the action space. The analysis of the communication timing between parietal and frontal nodes of the network helps understanding the sensorimotor cortical delays associated to different functions, such as online control of movement and eye-hand coordination, and opens a new perspective to the study of the parieto-frontal interactions.
Collapse
Affiliation(s)
- Alexandra Battaglia-Mayer
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| | - Simone Ferrari-Toniolo
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federica Visco-Comandini
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
32
|
Kilteni K, Maselli A, Kording KP, Slater M. Over my fake body: body ownership illusions for studying the multisensory basis of own-body perception. Front Hum Neurosci 2015; 9:141. [PMID: 25852524 PMCID: PMC4371812 DOI: 10.3389/fnhum.2015.00141] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/28/2015] [Indexed: 11/13/2022] Open
Abstract
Which is my body and how do I distinguish it from the bodies of others, or from objects in the surrounding environment? The perception of our own body and more particularly our sense of body ownership is taken for granted. Nevertheless, experimental findings from body ownership illusions (BOIs), show that under specific multisensory conditions, we can experience artificial body parts or fake bodies as our own body parts or body, respectively. The aim of the present paper is to discuss how and why BOIs are induced. We review several experimental findings concerning the spatial, temporal, and semantic principles of crossmodal stimuli that have been applied to induce BOIs. On the basis of these principles, we discuss theoretical approaches concerning the underlying mechanism of BOIs. We propose a conceptualization based on Bayesian causal inference for addressing how our nervous system could infer whether an object belongs to our own body, using multisensory, sensorimotor, and semantic information, and we discuss how this can account for several experimental findings. Finally, we point to neural network models as an implementational framework within which the computational problem behind BOIs could be addressed in the future.
Collapse
Affiliation(s)
- Konstantina Kilteni
- Event Lab, Department of Personality, Evaluation and Psychological Treatment, University of Barcelona Barcelona, Spain ; IR3C Institute for Brain, Cognition, and Behaviour, University of Barcelona Barcelona, Spain
| | - Antonella Maselli
- Event Lab, Department of Personality, Evaluation and Psychological Treatment, University of Barcelona Barcelona, Spain
| | - Konrad P Kording
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation, Northwestern University Chicago, IL, USA ; Department of Physiology, Northwestern University Chicago, IL, USA
| | - Mel Slater
- Event Lab, Department of Personality, Evaluation and Psychological Treatment, University of Barcelona Barcelona, Spain ; IR3C Institute for Brain, Cognition, and Behaviour, University of Barcelona Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23 Barcelona, Spain
| |
Collapse
|
33
|
Tanaka H, Sejnowski TJ. Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates. J Neurophysiol 2015; 113:1217-33. [PMID: 25429111 DOI: 10.1152/jn.00002.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain processes sensory and motor information in a wide range of coordinate systems, ranging from retinal coordinates in vision to body-centered coordinates in areas that control musculature. Here we focus on the coordinate system used in the motor cortex to guide actions and examine physiological and psychophysical evidence for an allocentric reference frame based on spatial coordinates. When the equations of motion governing reaching dynamics are expressed as spatial vectors, each term is a vector cross product between a limb-segment position and a velocity or acceleration. We extend this computational framework to motor adaptation, in which the cross-product terms form adaptive bases for canceling imposed perturbations. Coefficients of the velocity- and acceleration-dependent cross products are assumed to undergo plastic changes to compensate the force-field or visuomotor perturbations. Consistent with experimental findings, each of the cross products had a distinct reference frame, which predicted how an acquired remapping generalized to untrained location in the workspace. In response to force field or visual rotation, mainly the coefficients of the velocity- or acceleration-dependent cross products adapted, leading to transfer in an intrinsic or extrinsic reference frame, respectively. The model further predicted that remapping of visuomotor rotation should under- or overgeneralize in a distal or proximal workspace. The cross-product bases can explain the distinct patterns of generalization in visuomotor and force-field adaptation in a unified way, showing that kinematic and dynamic motor adaptation need not arise through separate neural substrates.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California; School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Terrence J Sejnowski
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California; Division of Biological Sciences, University of California at San Diego, La Jolla, California; and
| |
Collapse
|
34
|
Kuang S, Morel P, Gail A. Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex. Cereb Cortex 2015; 26:731-47. [PMID: 25576535 DOI: 10.1093/cercor/bhu312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurons in the posterior parietal cortex respond selectively for spatial parameters of planned goal-directed movements. Yet, it is still unclear which aspects of the movement the neurons encode: the spatial parameters of the upcoming physical movement (physical goal), or the upcoming visual limb movement (visual goal). To test this, we recorded neuronal activity from the parietal reach region while monkeys planned reaches under either normal or prism-reversed viewing conditions. We found predominant encoding of physical goals while fewer neurons were selective for visual goals during planning. In contrast, local field potentials recorded in the same brain region exhibited predominant visual goal encoding, similar to previous imaging data from humans. The visual goal encoding in individual neurons was neither related to immediate visual input nor to visual memory, but to the future visual movement. Our finding suggests that action planning in parietal cortex is not exclusively a precursor of impending physical movements, as reflected by the predominant physical goal encoding, but also contains spatial kinematic parameters of upcoming visual movement, as reflected by co-existing visual goal encoding in neuronal spiking. The co-existence of visual and physical goals adds a complementary perspective to the current understanding of parietal spatial computations in primates.
Collapse
Affiliation(s)
- Shenbing Kuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China German Primate Center, Göttingen, Germany Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | | | - Alexander Gail
- German Primate Center, Göttingen, Germany Bernstein Center for Computational Neuroscience, Göttingen, Germany
| |
Collapse
|
35
|
A learning-based approach to artificial sensory feedback leads to optimal integration. Nat Neurosci 2014; 18:138-44. [PMID: 25420067 PMCID: PMC4282864 DOI: 10.1038/nn.3883] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022]
Abstract
Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration.
Collapse
|
36
|
Ferrari-Toniolo S, Papazachariadis O, Visco-Comandini F, Salvati M, D’Elia A, Di Berardino F, Caminiti R, Battaglia-Mayer A. A visuomotor disorder in the absence of movement: Does Optic Ataxia generalize to learned isometric hand action? Neuropsychologia 2014; 63:59-71. [DOI: 10.1016/j.neuropsychologia.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/16/2022]
|
37
|
Karkhanis AN, Heider B, Silva FM, Siegel RM. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons. J Physiol 2014; 592:3625-46. [PMID: 24928956 DOI: 10.1113/jphysiol.2014.270942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Barbara Heider
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Fabian Muñoz Silva
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Ralph M Siegel
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| |
Collapse
|
38
|
Fabbri S, Strnad L, Caramazza A, Lingnau A. Overlapping representations for grip type and reach direction. Neuroimage 2014; 94:138-146. [DOI: 10.1016/j.neuroimage.2014.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/19/2014] [Accepted: 03/08/2014] [Indexed: 11/16/2022] Open
|
39
|
Tarantino V, De Sanctis T, Straulino E, Begliomini C, Castiello U. Object size modulates fronto-parietal activity during reaching movements. Eur J Neurosci 2014; 39:1528-37. [PMID: 24593322 DOI: 10.1111/ejn.12512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 02/01/2023]
Abstract
In both monkeys and humans, reaching-related sensorimotor transformations involve the activation of a wide fronto-parietal network. Recent neurophysiological evidence suggests that some components of this network host not only neurons encoding the direction of arm reaching movements, but also neurons whose involvement is modulated by the intrinsic features of an object (e.g. size and shape). To date, it has yet to be investigated whether a similar modulation is evident in the human reaching-related areas. To fill this gap, we asked participants to reach towards either a small or a large object while kinematic and electroencephalographic signals were recorded. Behavioral results showed that the precision requirements were taken into account and the kinematics of reaching was modulated depending on the object size. Similarly, reaching-related neural activity at the level of the posterior parietal and premotor cortices was modulated by the level of accuracy determined by object size. We therefore conclude that object size is engaged in the neural computations for reach planning and execution, consistent with the results from physiological studies in non-human primates.
Collapse
Affiliation(s)
- Vincenza Tarantino
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padova, Italy
| | | | | | | | | |
Collapse
|
40
|
Decoupled visually-guided reaching in optic ataxia: differences in motor control between canonical and non-canonical orientations in space. PLoS One 2013; 8:e86138. [PMID: 24392035 PMCID: PMC3877394 DOI: 10.1371/journal.pone.0086138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 12/05/2013] [Indexed: 11/25/2022] Open
Abstract
Guiding a limb often involves situations in which the spatial location of the target for gaze and limb movement are not congruent (i.e. have been decoupled). Such decoupled situations involve both the implementation of a cognitive rule (i.e. strategic control) and the online monitoring of the limb position relative to gaze and target (i.e. sensorimotor recalibration). To further understand the neural mechanisms underlying these different types of visuomotor control, we tested patient IG who has bilateral caudal superior parietal lobule (SPL) damage resulting in optic ataxia (OA), and compared her performance with six age-matched controls on a series of center-out reaching tasks. The tasks comprised 1) directing a cursor that had been rotated (180° or 90°) within the same spatial plane as the visual display, or 2) moving the hand along a different spatial plane than the visual display (horizontal or para-sagittal). Importantly, all conditions were performed towards visual targets located along either the horizontal axis (left and right; which can be guided from strategic control) or the diagonal axes (top-left and top-right; which require on-line trajectory elaboration and updating by sensorimotor recalibration). The bilateral OA patient performed much better in decoupled visuomotor control towards the horizontal targets, a canonical situation in which well-categorized allocentric cues could be utilized (i.e. guiding cursor direction perpendicular to computer monitor border). Relative to neurologically intact adults, IG's performance suffered towards diagonal targets, a non-canonical situation in which only less-categorized allocentric cues were available (i.e. guiding cursor direction at an off-axis angle to computer monitor border), and she was therefore required to rely on sensorimotor recalibration of her decoupled limb. We propose that an intact caudal SPL is crucial for any decoupled visuomotor control, particularly when relying on the realignment between vision and proprioception without reliable allocentric cues towards non-canonical orientations in space.
Collapse
|
41
|
Inouchi M, Matsumoto R, Taki J, Kikuchi T, Mitsueda-Ono T, Mikuni N, Wheaton L, Hallett M, Fukuyama H, Shibasaki H, Takahashi R, Ikeda A. Role of posterior parietal cortex in reaching movements in humans: clinical implication for 'optic ataxia'. Clin Neurophysiol 2013; 124:2230-41. [PMID: 23831168 DOI: 10.1016/j.clinph.2013.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/12/2013] [Accepted: 05/22/2013] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To clarify the spatio-temporal profile of cortical activity related to reaching movement in the posterior parietal cortex (PPC) in humans. METHODS Four patients with intractable partial epilepsy who underwent subdural electrode implantation were studied as a part of pre-surgical evaluation. We investigated the Bereitschaftspotential (BP) associated with reaching and correlated the findings with the effect of electrical stimulation of the same cortical area. RESULTS BPs specific for reaching, as compared with BPs for simple movements by the hand or arm contralateral to the implanted hemisphere, were recognized in all patients, mainly around the intraparietal sulcus (IPS), the superior parietal lobule (SPL) and the precuneus. BPs near the IPS had the earlier onset than BPs in the SPL. Electrical stimulation of a part of the PPC, where the reach-specific BPs were recorded, selectively impaired reaching. CONCLUSIONS Intracranial BP recording and cortical electrical stimulation delineated human reach-related areas in the PPC. SIGNIFICANCE The present study for the first time by direct cortical recording in humans demonstrates that parts of the cortices around the IPS and SPL play a crucial role in visually-guided reaching.
Collapse
Affiliation(s)
- Morito Inouchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mahan MY, Georgopoulos AP. Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circuits 2013; 7:92. [PMID: 23720612 PMCID: PMC3654201 DOI: 10.3389/fncir.2013.00092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022] Open
Abstract
Motor directional tuning (Georgopoulos et al., 1982) has been found in every brain area in which it has been sought for during the past 30-odd years. It is typically broad, with widely distributed preferred directions and a population signal that predicts accurately the direction of an upcoming reaching movement or isometric force pulse (Georgopoulos et al., 1992). What is the basis for such ubiquitous directional tuning? How does the tuning come about? What are the implications of directional tuning for understanding the brain mechanisms of movement in space? This review addresses these questions in the light of accumulated knowledge in various sub-fields of neuroscience and motor behavior. It is argued (a) that direction in space encompasses many aspects, from vision to muscles, (b) that there is a directional congruence among the central representations of these distributed “directions” arising from rough but orderly topographic connectivities among brain areas, (c) that broad directional tuning is the result of broad excitation limited by recurrent and non-recurrent (i.e., direct) inhibition within the preferred direction loci in brain areas, and (d) that the width of the directional tuning curve, modulated by local inhibitory mechanisms, is a parameter that determines the accuracy of the directional command.
Collapse
Affiliation(s)
- Margaret Y Mahan
- Graduate Program in Biomedical Informatics and Computational Biology, University of Minnesota Minneapolis, MN, USA
| | | |
Collapse
|
43
|
Nadkarni NK, Studenski SA, Perera S, Rosano C, Aizenstein HJ, Brach JS, Van Swearingen JM. White matter hyperintensities, exercise, and improvement in gait speed: does type of gait rehabilitation matter? J Am Geriatr Soc 2013; 61:686-93. [PMID: 23590257 PMCID: PMC3874589 DOI: 10.1111/jgs.12211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To examine whether white matter hyperintensities (WMHs) on brain magnetic resonance imaging (MRI) in tracts in older adults with mobility impairment are linked to outcomes of gait rehabilitation interventions. DESIGN Twelve-week randomized controlled single-blind trial. SETTING University-based mobility research laboratory. PARTICIPANTS Ambulatory adults aged 65 and older with mobility impairment. INTERVENTION A conventional gait intervention focusing on walking, endurance, balance, and strength (WEBS, n = 21) and a task-oriented intervention focused on timing and coordination of gait (TC, n = 23). MEASUREMENTS Self-paced gait speed was measured over an instrumented walkway before and after the intervention, and WMH and brain volumes were quantified on preintervention brain MRI using an automated segmentation process. A white matter tract atlas was overlaid on the segmented images to measure tract WMH volumes, and WMH volumes were normalized to total brain volume. Aggregate WMH volumes in all white matter tracts and individual WMH volumes in specific longitudinal tracts (superior longitudinal fasciculus, inferior longitudinal fasciculus, and fronto-occipital fasciculus) and the cingulum were measured. RESULTS Gait speed gains in the TC group were of the same magnitude, independent of WMH volume measures in all except the cingulum, but in the WEBS group, gain in gait speed was smaller with greater overall tract WMH volumes (P < .001) and with greater WMH volume in the three longitudinal tracts (P < .001 to .02). CONCLUSION Gains in gait speed with two types of gait rehabilitation are associated with individual differences in WMHs. Task-oriented therapy that targets timing and coordination of gait may particularly benefit older adults with WMHs in brain tracts that influence gait and cognition.
Collapse
Affiliation(s)
- Neelesh K Nadkarni
- Division of Geriatric Medicine and Gerontology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Renzi C, Ricciardi E, Bonino D, Handjaras G, Vecchi T, Pietrini P. The effects of visual control and distance in modulating peripersonal spatial representation. PLoS One 2013; 8:e59460. [PMID: 23555037 PMCID: PMC3598753 DOI: 10.1371/journal.pone.0059460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/18/2013] [Indexed: 11/19/2022] Open
Abstract
In the presence of vision, finalized motor acts can trigger spatial remapping, i.e., reference frames transformations to allow for a better interaction with targets. However, it is yet unclear how the peripersonal space is encoded and remapped depending on the availability of visual feedback and on the target position within the individual's reachable space, and which cerebral areas subserve such processes. Here, functional magnetic resonance imaging (fMRI) was used to examine neural activity while healthy young participants performed reach-to-grasp movements with and without visual feedback and at different distances of the target from the effector (near to the hand-about 15 cm from the starting position-vs. far from the hand-about 30 cm from the starting position). Brain response in the superior parietal lobule bilaterally, in the right dorsal premotor cortex, and in the anterior part of the right inferior parietal lobule was significantly greater during visually-guided grasping of targets located at the far distance compared to grasping of targets located near to the hand. In the absence of visual feedback, the inferior parietal lobule exhibited a greater activity during grasping of targets at the near compared to the far distance. Results suggest that in the presence of visual feedback, a visuo-motor circuit integrates visuo-motor information when targets are located farther away. Conversely in the absence of visual feedback, encoding of space may demand multisensory remapping processes, even in the case of more proximal targets.
Collapse
Affiliation(s)
- Chiara Renzi
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa Medical School, Pisa, Italy
- Deptartment of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino, Pavia, Italy
| | - Emiliano Ricciardi
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa Medical School, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio CNR-Regione Toscana, Pisa, Italy
- * E-mail:
| | - Daniela Bonino
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa Medical School, Pisa, Italy
| | - Giacomo Handjaras
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa Medical School, Pisa, Italy
| | - Tomaso Vecchi
- Deptartment of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino, Pavia, Italy
| | - Pietro Pietrini
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa Medical School, Pisa, Italy
- Clinical Psychology Branch, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
45
|
Hwang EJ, Hauschild M, Wilke M, Andersen RA. Inactivation of the parietal reach region causes optic ataxia, impairing reaches but not saccades. Neuron 2013; 76:1021-9. [PMID: 23217749 DOI: 10.1016/j.neuron.2012.10.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 11/17/2022]
Abstract
Lesions in human posterior parietal cortex can cause optic ataxia (OA), in which reaches but not saccades to visual objects are impaired, suggesting separate visuomotor pathways for the two effectors. In monkeys, one potentially crucial area for reach control is the parietal reach region (PRR), in which neurons respond preferentially during reach planning as compared to saccade planning. However, direct causal evidence linking the monkey PRR to the deficits observed in OA is missing. We thus inactivated part of the macaque PRR, in the medial wall of the intraparietal sulcus, and produced the hallmarks of OA, misreaching for peripheral targets but unimpaired saccades. Furthermore, reach errors were larger for the targets preferred by the neural population local to the injection site. These results demonstrate that PRR is causally involved in reach-specific visuomotor pathways, and reach goal disruption in PRR can be a neural basis of OA.
Collapse
Affiliation(s)
- Eun Jung Hwang
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
46
|
Lingnau A, Strnad L, He C, Fabbri S, Han Z, Bi Y, Caramazza A. Cross-modal plasticity preserves functional specialization in posterior parietal cortex. Cereb Cortex 2012; 24:541-9. [PMID: 23118194 DOI: 10.1093/cercor/bhs340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In congenitally blind individuals, many regions of the brain that are typically heavily involved in visual processing are recruited for a variety of nonvisual sensory and cognitive tasks (Rauschecker 1995; Pascual-Leone et al. 2005). This phenomenon-cross-modal plasticity-has been widely documented, but the principles that determine where and how cross-modal changes occur remain poorly understood (Bavelier and Neville 2002). Here, we evaluate the hypothesis that cross-modal plasticity respects the type of computations performed by a region, even as it changes the modality of the inputs over which they are carried out (Pascual-Leone and Hamilton 2001). We compared the fMRI signal in sighted and congenitally blind participants during proprioceptively guided reaching. We show that parietooccipital reach-related regions retain their functional role-encoding of the spatial position of the reach target-even as the dominant modality in this region changes from visual to nonvisual inputs. This suggests that the computational role of a region, independently of the processing modality, codetermines its potential cross-modal recruitment. Our findings demonstrate that preservation of functional properties can serve as a guiding principle for cross-modal plasticity even in visuomotor cortical regions, i.e. beyond the early visual cortex and other traditional visual areas.
Collapse
Affiliation(s)
- Angelika Lingnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Hawkins KM, Sayegh P, Yan X, Crawford JD, Sergio LE. Neural activity in superior parietal cortex during rule-based visual-motor transformations. J Cogn Neurosci 2012; 25:436-54. [PMID: 23092356 DOI: 10.1162/jocn_a_00318] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cognition allows for the use of different rule-based sensorimotor strategies, but the neural underpinnings of such strategies are poorly understood. The purpose of this study was to compare neural activity in the superior parietal lobule during a standard (direct interaction) reaching task, with two nonstandard (gaze and reach spatially incongruent) reaching tasks requiring the integration of rule-based information. Specifically, these nonstandard tasks involved dissociating the planes of reach and vision or rotating visual feedback by 180°. Single unit activity, gaze, and reach trajectories were recorded from two female Macaca mulattas. In all three conditions, we observed a temporal discharge pattern at the population level reflecting early reach planning and on-line reach monitoring. In the plane-dissociated task, we found a significant overall attenuation in the discharge rate of cells from deep recording sites, relative to standard reaching. We also found that cells modulated by reach direction tended to be significantly tuned either during the standard or the plane-dissociated task but rarely during both. In the standard versus feedback reversal comparison, we observed some cells that shifted their preferred direction by 180° between conditions, reflecting maintenance of directional tuning with respect to the reach goal. Our findings suggest that the superior parietal lobule plays an important role in processing information about the nonstandard nature of a task, which, through reciprocal connections with precentral motor areas, contributes to the accurate transformation of incongruent sensory inputs into an appropriate motor output. Such processing is crucial for the integration of rule-based information into a motor act.
Collapse
|
48
|
Battaglia-Mayer A, Ferrari-Toniolo S, Visco-Comandini F, Archambault PS, Saberi-Moghadam S, Caminiti R. Impairment of online control of hand and eye movements in a monkey model of optic ataxia. ACTA ACUST UNITED AC 2012; 23:2644-56. [PMID: 22918983 DOI: 10.1093/cercor/bhs250] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The parietal mechanisms for online control of hand trajectory were studied by combining single-cell recording and reversible inactivation of superior parietal area 5 (PE/PEc; SPL) of monkeys while these made reaches and saccades to visual targets, when the target position changed unexpectedly. Neural activity was modulated by hand position, speed, and movement direction, and by pre- and/or postsaccadic signals. After bilateral muscimol injection, an increase in the hand reaction- and movement-time toward both the first and second targets was observed. This caused an increase in the time necessary for the trajectory correction, and therefore an elongation of the hand-path toward the first target location. Furthermore, hand trajectories were different in shape than control ones. An elongation of the eye reaction time to both first and second targets was also observed, which could partially explain the deficit of planning and correction of hand movement. These results identify the superior parietal lobule as a crucial node in the online control of hand and eye movement and highlight the role of the eye impairment in the emergence of the reaching disorder so far regarded as the hallmark of optic ataxia.
Collapse
|
49
|
Vesia M, Crawford JD. Specialization of reach function in human posterior parietal cortex. Exp Brain Res 2012; 221:1-18. [DOI: 10.1007/s00221-012-3158-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
50
|
The role of saccades in multitasking: towards an output-related view of eye movements. PSYCHOLOGICAL RESEARCH 2011; 75:452-65. [DOI: 10.1007/s00426-011-0352-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
|