1
|
Bonet F, Hernandez-Torres F, Ramos-Sánchez M, Quezada-Feijoo M, Bermúdez-García A, Daroca T, Alonso-Villa E, García-Padilla C, Mangas A, Toro R. Unraveling the Etiology of Dilated Cardiomyopathy through Differential miRNA-mRNA Interactome. Biomolecules 2024; 14:524. [PMID: 38785931 PMCID: PMC11117812 DOI: 10.3390/biom14050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Dilated cardiomyopathy (DCM) encompasses various acquired or genetic diseases sharing a common phenotype. The understanding of pathogenetic mechanisms and the determination of the functional effects of each etiology may allow for tailoring different therapeutic strategies. MicroRNAs (miRNAs) have emerged as key regulators in cardiovascular diseases, including DCM. However, their specific roles in different DCM etiologies remain elusive. Here, we applied mRNA-seq and miRNA-seq to identify the gene and miRNA signature from myocardial biopsies from four patients with DCM caused by volume overload (VCM) and four with ischemic DCM (ICM). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were used for differentially expressed genes (DEGs). The miRNA-mRNA interactions were identified by Pearson correlation analysis and miRNA target-prediction programs. mRNA-seq and miRNA-seq were validated by qRT-PCR and miRNA-mRNA interactions were validated by luciferase assays. We found 112 mRNAs and five miRNAs dysregulated in VCM vs. ICM. DEGs were positively enriched for pathways related to the extracellular matrix (ECM), mitochondrial respiration, cardiac muscle contraction, and fatty acid metabolism in VCM vs. ICM and negatively enriched for immune-response-related pathways, JAK-STAT, and NF-kappa B signaling. We identified four pairs of negatively correlated miRNA-mRNA: miR-218-5p-DDX6, miR-218-5p-TTC39C, miR-218-5p-SEMA4A, and miR-494-3p-SGMS2. Our study revealed novel miRNA-mRNA interaction networks and signaling pathways for VCM and ICM, providing novel insights into the development of these DCM etiologies.
Collapse
Affiliation(s)
- Fernando Bonet
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Mónica Ramos-Sánchez
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Central de la Cruz Roja Hospital, 28003 Madrid, Spain; (M.R.-S.); (M.Q.-F.)
- Medicine Department, School of Medicine, Alfonso X EL Sabio University, 28691 Madrid, Spain
| | - Aníbal Bermúdez-García
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Tomás Daroca
- Cardiovascular Surgery Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain (T.D.)
| | - Elena Alonso-Villa
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | | | - Alipio Mangas
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
- Internal Medicine Department, Puerta del Mar University Hospital, 11009 Cádiz, Spain
| | - Rocio Toro
- Medicine Department, School of Medicine, University of Cádiz (UCA), 11003 Cádiz, Spain; (F.B.); (E.A.-V.); (A.M.)
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain
| |
Collapse
|
2
|
Bai Z, Sun H, Li X, Wu J, Yuan H, Zhang G, Yang H, Shi H. Time-ordered dysregulated ceRNA networks reveal disease progression and diagnostic biomarkers in ischemic and dilated cardiomyopathy. Cell Death Discov 2021; 7:296. [PMID: 34657123 PMCID: PMC8520530 DOI: 10.1038/s41420-021-00687-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two main causes of heart failure (HF). Despite similar clinical characteristics and common “HF pathways”, ICM and DCM are expected to have different personalized treatment strategies. The underlying mechanisms of ICM and DCM have yet to be fully elucidated. The present study developed a novel computational method for identifying dysregulated long noncoding RNA (lncRNA)–microRNA (miRNA)–mRNA competing endogenous RNA (ceRNA) triplets. Time-ordered dysregulated ceRNA networks were subsequently constructed to reveal the possible disease progression of ICM and DCM based on the method. Biological functional analysis indicated that ICM and DCM had similar features during myocardial remodeling, whereas their characteristics differed during progression. Specifically, disturbance of myocardial energy metabolism may be the main characteristic during DCM progression, whereas early inflammation and response to oxygen are the characteristics that may be specific to ICM. In addition, several panels of diagnostic biomarkers for differentiating non-heart failure (NF) and ICM (NF-ICM), NF-DCM, and ICM-DCM were identified. Our study reveals biological differences during ICM and DCM progression and provides potential diagnostic biomarkers for ICM and DCM.
Collapse
Affiliation(s)
- Ziyi Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoran Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuhong Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Hao Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Abstract
Heart failure is a major health problem worldwide with a significant morbidity and mortality rate. Although studied extensively in animal models, data from patients at the compensated disease stage are lacking. We sampled myocardium biopsies from aortic stenosis patients with compensated hypertrophy and moderate heart failure and used transcriptomics to study the transition to failure. Sequencing and comparative analysis of analogous samples of mice with transverse aortic constriction identified 25 candidate genes with similar regulation in response to pressure overload, reflecting highly conserved molecular processes. The gene cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is upregulated in the transition to failure in human and mouse and its function is unknown. Homology to ion channel regulatory toxins suggests a role in Ca2+ cycling. CRISPR/Cas9-mediated loss-of-function leads to dysregulated Ca2+ handling in human-induced pluripotent stem cell-derived cardiomyocytes. The downregulation of prohypertrophic, proapoptotic and Ca2+-signaling pathways upon CRISPLD1-KO and its upregulation in the transition to failure implicates a contribution to adverse remodeling. These findings provide new pathophysiological data on Ca2+ regulation in the transition to failure and novel candidate genes with promising potential for therapeutic interventions.
Collapse
|
4
|
Haywood ME, Cocciolo A, Porter KF, Dobrinskikh E, Slavov D, Graw SL, Reece TB, Ambardekar AV, Bristow MR, Mestroni L, Taylor MRG. Transcriptome signature of ventricular arrhythmia in dilated cardiomyopathy reveals increased fibrosis and activated TP53. J Mol Cell Cardiol 2020; 139:124-134. [PMID: 31958463 PMCID: PMC7144813 DOI: 10.1016/j.yjmcc.2019.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022]
Abstract
AIMS One-third of DCM patients experience ventricular tachycardia (VT), but a clear biological basis for this has not been established. The purpose of this study was to identify transcriptome signatures and enriched pathways in the hearts of dilated cardiomyopathy (DCM) patients with VT. METHODS AND RESULTS We used RNA-sequencing in explanted heart tissue from 49 samples: 19 DCM patients with VT, 16 DCM patients without VT, and 14 non-failing controls. We compared each DCM cohort to the controls and identified the genes that were differentially expressed in DCM patients with VT but not without VT. Differentially expressed genes were evaluated using pathway analysis, and pathways of interest were investigated by qRT-PCR validation, Western blot, and microscopy. There were 590 genes differentially expressed in DCM patients with VT that are not differentially expressed in patients without VT. These genes were enriched for genes in the TGFß1 and TP53 signaling pathways. Increased fibrosis and activated TP53 signaling was demonstrated in heart tissue of DCM patients with VT. CONCLUSIONS Our study supports that distinct biological mechanisms distinguish ventricular arrhythmia in DCM patients.
Collapse
Affiliation(s)
- Mary E Haywood
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA.
| | - Andrea Cocciolo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Kadijah F Porter
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| | - Evgenia Dobrinskikh
- Division of Renal Diseases and Hypertension, Department of Medicine University of Colorado, Aurora, CO, USA.
| | - Dobromir Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| | - T Brett Reece
- Department of Cardiothoracic Surgery, University of Colorado Hospital, Aurora, CO, USA.
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA.
| | - Michael R Bristow
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA.
| | - Luisa Mestroni
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA; Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| | - Matthew R G Taylor
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA; Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
5
|
Sweet ME, Cocciolo A, Slavov D, Jones KL, Sweet JR, Graw SL, Reece TB, Ambardekar AV, Bristow MR, Mestroni L, Taylor MRG. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genomics 2018; 19:812. [PMID: 30419824 PMCID: PMC6233272 DOI: 10.1186/s12864-018-5213-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/31/2018] [Indexed: 01/17/2023] Open
Abstract
Background Current heart failure (HF) treatment is based on targeting symptoms and left ventricle dysfunction severity, relying on a common HF pathway paradigm to justify common treatments for HF patients. This common strategy may belie an incomplete understanding of heterogeneous underlying mechanisms and could be a barrier to more precise treatments. We hypothesized we could use RNA-sequencing (RNA-seq) in human heart tissue to delineate HF etiology-specific gene expression signatures. Results RNA-seq from 64 human left ventricular samples: 37 dilated (DCM), 13 ischemic (ICM), and 14 non-failing (NF). Using a multi-analytic approach including covariate adjustment for age and sex, differentially expressed genes (DEGs) were identified characterizing HF and disease-specific expression. Pathway analysis investigated enrichment for biologically relevant pathways and functions. DCM vs NF and ICM vs NF had shared HF-DEGs that were enriched for the fetal gene program and mitochondrial dysfunction. DCM-specific DEGs were enriched for cell-cell and cell-matrix adhesion pathways. ICM-specific DEGs were enriched for cytoskeletal and immune pathway activation. Using the ICM and DCM DEG signatures from our data we were able to correctly classify the phenotypes of 24/31 ICM and 32/36 DCM samples from publicly available replication datasets. Conclusions Our results demonstrate the commonality of mitochondrial dysfunction in end-stage HF but more importantly reveal key etiology-specific signatures. Dysfunctional cell-cell and cell-matrix adhesion signatures typified DCM whereas signals related to immune and fibrotic responses were seen in ICM. These findings suggest that transcriptome signatures may distinguish end-stage heart failure, shedding light on underlying biological differences between ICM and DCM. Electronic supplementary material The online version of this article (10.1186/s12864-018-5213-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary E Sweet
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA
| | - Andrea Cocciolo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Dobromir Slavov
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, USA
| | - Joseph R Sweet
- Department of Statistics, E. & J. Gallo, Modesto, CA, USA
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - T Brett Reece
- Department of Cardiothoracic Surgery, University of Colorado Hospital, Aurora, CO, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Michael R Bristow
- Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Luisa Mestroni
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA.,Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA
| | - Matthew R G Taylor
- Human Medical Genetics and Genomics, University of Colorado, Aurora, CO, USA. .,Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
6
|
Perrino C, Barabási AL, Condorelli G, Davidson SM, De Windt L, Dimmeler S, Engel FB, Hausenloy DJ, Hill JA, Van Laake LW, Lecour S, Leor J, Madonna R, Mayr M, Prunier F, Sluijter JPG, Schulz R, Thum T, Ytrehus K, Ferdinandy P. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 2018; 113:725-736. [PMID: 28460026 PMCID: PMC5437366 DOI: 10.1093/cvr/cvx070] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/27/2017] [Indexed: 01/19/2023] Open
Abstract
Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human ‘diseasome’. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Albert-Laszló Barabási
- Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, USA.,Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Center for Network Science, Central European University, Budapest, Hungary.,Department of Medicine, and Division of Network Medicine, Brigham and Womens Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, Humanitas Research Hospital and Humanitas University, Rozzano, Italy.,Institute of Genetic and Biomedical Research, National Research Council of Italy, Rozzano, Milan, Italy
| | - Sean Michael Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Leon De Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), RheinMain, Germany
| | - Felix Benedikt Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Derek John Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Joseph Addison Hill
- Departments of Medicine (Cardiology) and Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Linda Wilhelmina Van Laake
- Division of Heart and Lungs, Hubrecht Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center and Hubrecht Institute, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Tel-Aviv University, Tel-Aviv, Israel.,Tamman Cardiovascular Research Institute, Sheba Medical Center; Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel Hashomer, Israel
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy; Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.,The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Fabrice Prunier
- Department of Cardiology, Institut MITOVASC, University of Angers, University Hospital of Angers, Angers, France
| | - Joost Petrus Geradus Sluijter
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
7
|
Su YR, Chiusa M, Brittain E, Hemnes AR, Absi TS, Lim CC, Di Salvo TG. Right ventricular protein expression profile in end-stage heart failure. Pulm Circ 2015; 5:481-97. [PMID: 26401249 DOI: 10.1086/682219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 11/03/2022] Open
Abstract
Little is known about the right ventricular (RV) proteome in human heart failure (HF), including possible differences compared to the left ventricular (LV) proteome. We used 2-dimensional differential in-gel electrophoresis (pH: 4-7, 10-150 kDa), followed by liquid chromatography tandem mass spectrometry, to compare the RV and LV proteomes in 12 explanted human hearts. We used Western blotting and multiple-reaction monitoring for protein verification and RNA sequencing for messenger RNA and protein expression correlation. In all 12 hearts, the right ventricles (RVs) demonstrated differential expression of 11 proteins relative to the left ventricles (LVs), including lesser expression of CRYM, TPM1, CLU, TXNL1, and COQ9 and greater expression of TNNI3, SAAI, ERP29, ACTN2, HSPB2, and NDUFS3. Principal-components analysis did not suggest RV-versus-LV proteome partitioning. In the nonischemic RVs (n = 6), 7 proteins were differentially expressed relative to the ischemic RVs (n = 6), including increased expression of CRYM, B7Z964, desmin, ANXA5, and MIME and decreased expression of SERPINA1 and ANT3. Principal-components analysis demonstrated partitioning of the nonischemic and ischemic RV proteomes, and gene ontology analysis identified differences in hemostasis and atherosclerosis-associated networks. There were no proteomic differences between RVs with echocardiographic dysfunction (n = 8) and those with normal function (n = 4). Messenger RNA and protein expression did not correlate consistently, suggesting a major role for RV posttranscriptional protein expression regulation. Differences in contractile, cytoskeletal, metabolic, signaling, and survival pathways exist between the RV and the LV in HF and may be related to the underlying HF etiology and differential posttranscriptional regulation.
Collapse
Affiliation(s)
- Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Pulmonary Medicine and Critical Care, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tarek S Absi
- Department of Surgical Science, Division of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Chee Chew Lim
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas G Di Salvo
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Hulanicka M, Garncarz M, Parzeniecka-Jaworska M, Jank M. The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure. BMC Genomics 2014; 15:509. [PMID: 24952741 PMCID: PMC4092214 DOI: 10.1186/1471-2164-15-509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 06/13/2014] [Indexed: 01/17/2023] Open
Abstract
Background In recent years advances have been made in the investigative methods of molecular background of canine heart disease. Studies have been conducted to identify specific genes which, when pathologically expressed, could lead to the dysfunction of the canine heart or are correlated with heart failure. For this purpose genome wide microarray experiments on tissues from failing hearts have been performed. In the presented study a whole genome microarray analysis was used for the first time to describe the transcription profile of peripheral blood nuclear cells in dogs with heart failure. Dogs with recognized heart disease were classified according the ISACHC (International Small Animal Cardiac Health Council) classification scheme as class 1 (asymptomatic) - 13 dogs, class 2 (mild to moderate heart failure) - 13 dogs and class 3 (severe heart failure) - 12 dogs. The control group consisted of 14 healthy dogs. The clinical picture of the animals included: animal history, clinical examination, echocardiographic examination and where applicable electrocardiographic and radiographic examinations. Results In the present study we identified four sets of differentially expressed genes, namely heart-failure-specific genes and ISACHC1-specific genes, ISACHC2-sepcific genes and ISACHC-3 specific genes. The most important set consisted of genes differentially expressed in all dogs with heart failure, despite the ISACHC stage. We identified 71 heart-failure-specific genes which were involved in two statistically significant receptor signalling pathways, namely angiotensinR - > CREB/ELK-SRF/TP53 signalling and ephrinR - > actin signalling. The number of ISACHC1-specific genes was 83; ISACHC2-specific genes - 1247 and ISACHC3-specific - 200. Conclusions The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure seems to reflect the presence of clinical signs of the disease in patients based on the observation that the largest number of differentially expressed genes was identified in ISACHC 2 group of patients. This group consists of dogs just starting to show clinical signs of heart failure. A set of genes was also found to have changed expression in all dogs with heart failure, despite the stage of the disease. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-509) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Hulanicka
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska str, 159c, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
9
|
Gora M, Kiliszek M, Burzynska B. Will global transcriptome analysis allow the detection of novel prognostic markers in coronary artery disease and heart failure? Curr Genomics 2014; 14:388-96. [PMID: 24396272 PMCID: PMC3861890 DOI: 10.2174/1389202911314090006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 11/22/2022] Open
Abstract
Coronary artery disease (CAD) is one of the leading causes of death in the developed countries. Myocardial infarction (MI) is an acute episode of CAD that results in myocardial injury and subsequent heart failure (HF). In the acute phase of MI several risk factors for future cardiovascular events have been found. The molecular mechanisms of these disorders are still unknown, but altered gene expression may play an important role in the development and progression of cardiovascular diseases. High-throughput techniques should greatly facilitate the elucidation of the mechanisms and provide novel insights into the pathophysiology of cardiovascular diseases. In this review we focus on the perspectives of gene-expression profiling conducted on cardiac tissues and blood for the determination of novel diagnostic and prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Monika Gora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kiliszek
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Beata Burzynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
A kinase interacting protein (AKIP1) is a key regulator of cardiac stress. Proc Natl Acad Sci U S A 2013; 110:E387-96. [PMID: 23319652 DOI: 10.1073/pnas.1221670110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.
Collapse
|
11
|
Piran S, Liu P, Morales A, Hershberger RE. Where Genome Meets Phenome: Rationale for Integrating Genetic and Protein Biomarkers in the Diagnosis and Management of Dilated Cardiomyopathy and Heart Failure. J Am Coll Cardiol 2012; 60:283-9. [DOI: 10.1016/j.jacc.2012.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 02/08/2023]
|
12
|
Gaertner A, Schwientek P, Ellinghaus P, Summer H, Golz S, Kassner A, Schulz U, Gummert J, Milting H. Myocardial transcriptome analysis of human arrhythmogenic right ventricular cardiomyopathy. Physiol Genomics 2011; 44:99-109. [PMID: 22085907 DOI: 10.1152/physiolgenomics.00094.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy primarily of the right ventricle characterized through fibrofatty replacement of cardiomyocytes. The genetic etiology in ARVC patients is most commonly caused by dominant inheritance and high genetic heterogeneity. Though histological examinations of ARVC-affected human myocardium reveals fibrolipomatous replacement, the molecular mechanisms leading to loss of cardiomyocytes are largely unknown. We therefore analyzed the transcriptomes of six ARVC hearts and compared our findings to six nonfailing donor hearts (NF). To characterize the ARVC-specific transcriptome, we compared our findings to samples from seven patients with idiopathic dilated cardiomyopathy (DCM). The myocardial DCM and ARVC samples were prepared from hearts explanted during an orthotopic heart transplantation representing myocardium from end-stage heart failure patients (NYHA IV). From each heart, left (LV) and right ventricular (RV) myocardial samples were analyzed by Affymetrix HG-U133 Plus 2.0 arrays, adding up to six sample groups. Unsupervised cluster analyses of the groups revealed a clear separation of NF and cardiomyopathy samples. However, in contrast to the other samples, the analyses revealed no distinct expression pattern in LV and RV of myocardial ARVC samples. We further identified differentially expressed transcripts using t-tests and found transcripts separating diseased and NF ventricular myocardium. Of note, in failing myocardium only ~15-16% of the genes are commonly regulated compared with NF samples. In addition both cardiomyopathies are clearly distinct on the transcriptome level. Comparison of the expression patterns between the failing RV and LV using a paired t-test revealed a lack of major differences between LV and RV gene expression in ARVC hearts. Our study is the first analysis of specific ARVC-related RV and LV gene expression patterns in terminal failing human hearts.
Collapse
Affiliation(s)
- Anna Gaertner
- Herz- und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Bad Oeynhausen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Molecular Signatures of End-Stage Heart Failure. J Card Fail 2011; 17:867-74. [DOI: 10.1016/j.cardfail.2011.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 12/31/2022]
|
14
|
Barth AS, Kumordzie A, Frangakis C, Margulies KB, Cappola TP, Tomaselli GF. Reciprocal transcriptional regulation of metabolic and signaling pathways correlates with disease severity in heart failure. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:475-83. [PMID: 21828333 PMCID: PMC3398805 DOI: 10.1161/circgenetics.110.957571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Systolic heart failure (HF) is a complex systemic syndrome that can result from a wide variety of clinical conditions and gene mutations. Despite phenotypic similarities, characterized by ventricular dilatation and reduced contractility, the extent of common and divergent gene expression between different forms of HF remains a matter of intense debate. METHODS AND RESULTS Using a meta-analysis of 28 experimental (mouse, rat, dog) and human HF microarray studies, we demonstrate that gene expression changes are characterized by a coordinated and reciprocal regulation of major metabolic and signaling pathways. In response to a wide variety of stressors in animal models of HF, including ischemia, pressure overload, tachypacing, chronic isoproterenol infusion, Chagas disease, and transgenic mouse models, major metabolic pathways are invariably downregulated, whereas cell signaling pathways are upregulated. In contrast to this uniform transcriptional pattern that recapitulates a fetal gene expression program in experimental animal models of HF, human HF microarray studies displayed a greater heterogeneity, with some studies even showing upregulation of metabolic and downregulation of signaling pathways in end-stage human hearts. These discrepant results between animal and human studies are due to a number of factors, prominently cardiac disease and variable exposure to cold cardioplegic solution in nonfailing human samples, which can downregulate transcripts involved in oxidative phosphorylation (OXPHOS), thus mimicking gene expression patterns observed in failing samples. Additionally, β-blockers and ACE inhibitor use in end-stage human HF was associated with higher levels of myocardial OXPHOS transcripts, thus partially reversing the fetal gene expression pattern. In human failing samples, downregulation of metabolism was associated with hemodynamic markers of disease severity. CONCLUSIONS Irrespective of the etiology, gene expression in failing myocardium is characterized by downregulation of metabolic transcripts and concomitant upregulation of cell signaling pathways. Gene expression changes along this metabolic-signaling axis in mammalian myocardium are a consistent feature in the heterogeneous transcriptional response observed in phenotypically similar models of HF.
Collapse
Affiliation(s)
- Andreas S Barth
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ami Kumordzie
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Constantine Frangakis
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas P Cappola
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gordon F Tomaselli
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Ricci M, Lincoln J. Molecular markers of cardiomyopathy in cyanotic pediatric heart disease. PROGRESS IN PEDIATRIC CARDIOLOGY 2011. [DOI: 10.1016/j.ppedcard.2011.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Gene expression profiling in peripheral blood nuclear cells in patients with refractory ischaemic end-stage heart failure. J Appl Genet 2011; 51:353-68. [PMID: 20720311 DOI: 10.1007/bf03208866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional analysis of up- and down-regulated genes might reveal whether peripheral blood cells may be considered as a material of diagnostic or prognostic value in patients with end-stage heart failure (HF). The aim of the present study was to compare the transcriptomic profile of peripheral blood nuclear cells from 6 male patients with ischaemic end-stage HF with those of 6 male patients with asymptomatic cardiac dysfunction. The expression of genes in peripheral blood nuclear cells in both groups of patients was measured using whole-genome oligonucleotide microarrays utilizing 35 035 oligonucleotide probes. Microarray analyses revealed 130 down-regulated genes and 15 up-regulated genes in the patients with end-stage HF. Some of the down-regulated genes belonged to the pathways that other studies have shown to be down-regulated in cardiomyopathy. We also identified up-regulated genes that have been correlated with HF severity (CXCL16) and genes involved in the regulation of expression of platelet activation factor receptor (PTAFR, RBPSUH, MCC, and PSMA7). In conclusion, the identification of genes that are differentially expressed in peripheral blood nuclear cells of patients with HF supports the suggestion that this diagnostic approach may be useful in searching for the molecular predisposition for development of severe refractory HF in patients with post-infarction asymptomatic abnormalities and remodelling of the left ventricle. These results need further investigation and validation.
Collapse
|
17
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research. Rev Esp Cardiol 2010; 62:305-13. [PMID: 19268076 DOI: 10.1016/s1885-5857(09)71561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.
Collapse
Affiliation(s)
- Arantxa González
- Area de Ciencias Cardiovasculares, Centro de Investigación Médica, Universidad de Navarra, 31008 Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schwientek P, Ellinghaus P, Steppan S, D'Urso D, Seewald M, Kassner A, Cebulla R, Schulte-Eistrup S, Morshuis M, Röfe D, El Banayosy A, Körfer R, Milting H. Global gene expression analysis in nonfailing and failing myocardium pre- and postpulsatile and nonpulsatile ventricular assist device support. Physiol Genomics 2010; 42:397-405. [DOI: 10.1152/physiolgenomics.00030.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical unloading by ventricular assist devices (VAD) leads to significant gene expression changes often summarized as reverse remodeling. However, little is known on individual transcriptome changes during VAD support and its relationship to nonfailing hearts (NF). In addition no data are available for the transcriptome regulation during nonpulsatile VAD support. Therefore we analyzed the gene expression patterns of 30 paired samples from VAD-supported (including 8 nonpulsatile VADs) and 8 nonfailing control hearts (NF) using the first total human genome array available. Transmural myocardial samples were collected for RNA isolation. RNA was isolated by commercial methods and processed according to chip-manufacturer recommendations. cRNA were hybridized on Affymetrix HG-U133 Plus 2.0 arrays, providing coverage of the whole human genome Array. Data were analyzed using Microarray Analysis Suite 5.0 (Affymetrix) and clustered by Expressionist software (Genedata). We found 352 transcripts were differentially regulated between samples from VAD implantation and NF, whereas 510 were significantly regulated between VAD transplantation and NF (paired t-test P < 0.001, fold change ≥1.6). Remarkably, only a minor fraction of 111 transcripts was regulated in heart failure (HF) and during VAD support. Unsupervised hierarchical clustering of paired VAD and NF samples revealed separation of HF and NF samples; however, individual differentiation of VAD implantation and VAD transplantation was not accomplished. Clustering of pulsatile and nonpulsatile VAD did not lead to robust separation of gene expression patterns. During VAD support myocardial gene expression changes do not indicate reversal of the HF phenotype but reveal a distinct HF-related pattern. Transcriptome analysis of pulsatile and nonpulsatile VAD-supported hearts did not provide evidence for a pump mode-specific transcriptome pattern.
Collapse
Affiliation(s)
- Patrick Schwientek
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
- Centrum für Biotechnologie, Universität Bielefeld, Germany
| | | | - Sonja Steppan
- Bayer-Schering Pharma AG, Target Discovery, Wuppertal; and
| | | | | | - Astrid Kassner
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Ramona Cebulla
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Sebastian Schulte-Eistrup
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Michiel Morshuis
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Daniela Röfe
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Aly El Banayosy
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Reiner Körfer
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| | - Hendrik Milting
- Herz- und Diabeteszentrum NRW, Klinik für Thorax- und Kardiovaskularchirurgie, Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Ruhr Universität Bochum, Bad Oeynhausen
| |
Collapse
|
19
|
Marín-García J. Basic Mechanisms Mediating Cardiomyopathy and Heart Failure in Aging. HEART FAILURE 2010. [PMCID: PMC7121883 DOI: 10.1007/978-1-60761-147-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Biological aging represents the major risk factor for the development of heart failure (HF), malignancies, and neurodegenerative diseases. While risk factors such as lifestyle patterns, genetic traits, blood lipid levels, and diabetes can contribute to its development, advancing age remains the most determinant predictor of cardiac disease. Several parameters of left ventricular function may be affected with aging, including increased duration of systole, decreased sympathetic stimulation, and increased left ventricle ejection time, while compliance decreases. In addition, changes in cardiac phenotype with diastolic dysfunction, reduced contractility, left ventricular hypertrophy, and HF, all increase in incidence with age. Given the limited capacity that the heart has for regeneration, reversing or slowing the progression of these abnormalities poses a major challenge. In this chapter, we present a discussion on the molecular and cellular mechanisms involved in the pathogenesis of cardiomyopathies and HF in aging and the potential involvement of specific genes identified as primary mediators of these diseases.
Collapse
|
20
|
Cooper LT, Onuma OK, Sagar S, Oberg AL, Mahoney DW, Asmann YW, Liu P. Genomic and Proteomic Analysis of Myocarditis and Dilated Cardiomyopathy. Heart Fail Clin 2010; 6:75-85. [DOI: 10.1016/j.hfc.2009.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Edelman LB, Toia G, Geman D, Zhang W, Price ND. Two-transcript gene expression classifiers in the diagnosis and prognosis of human diseases. BMC Genomics 2009; 10:583. [PMID: 19961616 PMCID: PMC2797819 DOI: 10.1186/1471-2164-10-583] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 12/05/2009] [Indexed: 11/15/2022] Open
Abstract
Background Identification of molecular classifiers from genome-wide gene expression analysis is an important practice for the investigation of biological systems in the post-genomic era - and one with great potential for near-term clinical impact. The 'Top-Scoring Pair' (TSP) classification method identifies pairs of genes whose relative expression correlates strongly with phenotype. In this study, we sought to assess the effectiveness of the TSP approach in the identification of diagnostic classifiers for a number of human diseases including bacterial and viral infection, cardiomyopathy, diabetes, Crohn's disease, and transformed ulcerative colitis. We examined transcriptional profiles from both solid tissues and blood-borne leukocytes. Results The algorithm identified multiple predictive gene pairs for each phenotype, with cross-validation accuracy ranging from 70 to nearly 100 percent, and high sensitivity and specificity observed in most classification tasks. Performance compared favourably with that of pre-existing transcription-based classifiers, and in some cases was comparable to the accuracy of current clinical diagnostic procedures. Several diseases of solid tissues could be reliably diagnosed through classifiers based on the blood-borne leukocyte transcriptome. The TSP classifier thus represents a simple yet robust method to differentiate between diverse phenotypic states based on gene expression profiles. Conclusion Two-transcript classifiers have the potential to reliably classify diverse human diseases, through analysis of both local diseased tissue and the immunological response assayed through blood-borne leukocytes. The experimental simplicity of this method results in measurements that can be easily translated to clinical practice.
Collapse
Affiliation(s)
- Lucas B Edelman
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Rizwan Sarwar
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Rd, London, W12 0NN, UK
| | | |
Collapse
|
23
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. La genómica y la proteómica en la investigación de la insuficiencia cardiaca. Rev Esp Cardiol (Engl Ed) 2009. [DOI: 10.1016/s0300-8932(09)70375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|