1
|
El-Ghazawi K, Eyo UB, Peirce SM. Brain Microvascular Pericyte Pathology Linking Alzheimer's Disease to Diabetes. Microcirculation 2024; 31:e12877. [PMID: 39222475 PMCID: PMC11471384 DOI: 10.1111/micc.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 09/04/2024]
Abstract
The brain microvasculature, which delivers oxygen and nutrients and forms a critical barrier protecting the central nervous system via capillaries, is deleteriously affected by both Alzheimer's disease (AD) and type 2 diabetes (T2D). T2D patients have an increased risk of developing AD, suggesting potentially related microvascular pathological mechanisms. Pericytes are an ideal cell type to study for functional links between AD and T2D. These specialized capillary-enwrapping cells regulate capillary density, lumen diameter, and blood flow. Pericytes also maintain endothelial tight junctions to ensure blood-brain barrier integrity, modulation of immune cell extravasation, and clearance of toxins. Changes in these phenomena have been observed in both AD and T2D, implicating "pericyte pathology" as a common feature of AD and T2D. This review examines the mechanisms of AD and T2D from the perspective of the brain microvasculature, highlighting how pericyte pathology contributes to both diseases. Our review identifies voids in understanding how AD and T2D negatively impact the brain microvasculature and suggests future studies to examine the intersections of these diseases.
Collapse
Affiliation(s)
- Kareem El-Ghazawi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B. Eyo
- Department of Neuroscience, University of Virginia Center for Brain Immunology and Glia School of Medicine, Charlottesville, VA, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Gavanji S, Bakhtari A, Abdel-Latif R, Bencurova E, Othman EM. Experimental approaches for induction of diabetes mellitus and assessment of antidiabetic activity: An in vitro and in vivo methodological review. Fundam Clin Pharmacol 2024; 38:842-861. [PMID: 38747157 DOI: 10.1111/fcp.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Diabetes mellitus poses a global health challenge, driving the need for innovative therapeutic solutions. Experimental methods play a crucial role in evaluating the efficacy of potential antidiabetic drugs, both in vitro and in vivo. Yet concerns about reproducibility persist, necessitating comprehensive reviews. OBJECTIVES This review aims to outline experimental approaches for inducing diabetes and evaluating antidiabetic activity, synthesizing data from authoritative sources and academic literature. METHODS We conducted a systematic search of prominent databases, including PubMed, ScienceDirect, and Scopus, to identify relevant articles spanning from 1943 to the present. A total of 132 articles were selected for inclusion in this review, focusing on in vitro and in vivo experimental validations of antidiabetic treatments. RESULTS Our review highlights the diverse array of experimental methods employed for inducing diabetes mellitus and evaluating antidiabetic interventions. From cell culture assays to animal models, researchers have employed various techniques to study the effectiveness of novel therapeutic agents. CONCLUSION This review provides a comprehensive guide to experimental approaches for assessing antidiabetic activity. By synthesizing data from a range of sources, we offer valuable insights into the current methodologies used in diabetes research. Standardizing protocols and enhancing reproducibility are critical for advancing effective antidiabetic treatments.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Plant Biotechnology, Medicinal Plants Research Centre, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Elena Bencurova
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Eman M Othman
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
4
|
Abioye RO, Udenigwe CC. Structural basis and functional significance of food-derived inhibitors of islet amyloid polypeptide fibrillation toward antidiabetic effects. Curr Opin Food Sci 2024; 56:101146. [DOI: 10.1016/j.cofs.2024.101146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Wirth F, Heitz FD, Seeger C, Combaluzier I, Breu K, Denroche HC, Thevenet J, Osto M, Arosio P, Kerr-Conte J, Verchere CB, Pattou F, Lutz TA, Donath MY, Hock C, Nitsch RM, Grimm J. A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models. Nat Commun 2023; 14:6294. [PMID: 37813862 PMCID: PMC10562398 DOI: 10.1038/s41467-023-41986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
In patients with type 2 diabetes, pancreatic beta cells progressively degenerate and gradually lose their ability to produce insulin and regulate blood glucose. Beta cell dysfunction and loss is associated with an accumulation of aggregated forms of islet amyloid polypeptide (IAPP) consisting of soluble prefibrillar IAPP oligomers as well as insoluble IAPP fibrils in pancreatic islets. Here, we describe a human monoclonal antibody selectively targeting IAPP oligomers and neutralizing IAPP aggregate toxicity by preventing membrane disruption and apoptosis in vitro. Antibody treatment in male rats and mice transgenic for human IAPP, and human islet-engrafted mouse models of type 2 diabetes triggers clearance of IAPP oligomers resulting in beta cell protection and improved glucose control. These results provide new evidence for the pathological role of IAPP oligomers and suggest that antibody-mediated removal of IAPP oligomers could be a pharmaceutical strategy to support beta cell function in type 2 diabetes.
Collapse
Affiliation(s)
- Fabian Wirth
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
| | | | | | | | - Karin Breu
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
| | - Heather C Denroche
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Departments of Surgery and Pathology & Laboratory Medicine, University of British Columbia, A4-151 950 W 28 Ave, Vancouver, BC, Canada
| | - Julien Thevenet
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Melania Osto
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Julie Kerr-Conte
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Departments of Surgery and Pathology & Laboratory Medicine, University of British Columbia, A4-151 950 W 28 Ave, Vancouver, BC, Canada
| | - François Pattou
- Univ-Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Marc Y Donath
- Clinic for Endocrinology, Diabetes & Metabolism, and Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Christoph Hock
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
- Institute for Regenerative Medicine-IREM, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Roger M Nitsch
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland
- Institute for Regenerative Medicine-IREM, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Jan Grimm
- Neurimmune AG, Wagistrasse 18, 8952, Schlieren, Switzerland.
| |
Collapse
|
6
|
Szunerits S, Abderrahmani A, Boukherroub R. Nanoparticles and Nanocolloidal Carbon: Will They Be the Next Antidiabetic Class That Targets Fibrillation and Aggregation of Human Islet Amyloid Polypeptide in Type 2 Diabetes? Acc Chem Res 2022; 55:2869-2881. [PMID: 36174237 DOI: 10.1021/acs.accounts.2c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nanotechnology is revolutionizing human medicine. Nanoparticles (NPs) are currently used for treating various cancers, for developing vaccines, and for imaging, and other promises offered by NPs might come true soon. Due to the interplay between NPs and proteins, there is more and more evidence supporting the role of NPs for treating amyloid-based diseases. NPs can induce some conformational changes of the adsorbed protein molecules via various molecular interactions, leading to inhibition of aggregation and fibrillation of several and different amyloid proteins. Though an in depth understanding of such interactions between NPs and amyloid structures is still lacking, the inhibition of protein aggregation by NPs represents a new generation of innovative and effective medicines to combat metabolic diseases such as type 2 diabetes (T2D). Here, we lay out advances made in the field of T2D notably for optimizing protein aggregation inhibition strategies. This Account covers discussions about the current understanding of β-cells, the insulin producing cells within the pancreas, under diabetic conditions, notably increased glucose and fatty acid levels, and the implication of these conditions on the formation of human islet amyloid polypeptide (hIAPP) amylin oligomers and aggregates. Owing to the great potential of carbon nanostructures to interfere with protein aggregation, an important part of this Account will be devoted to the state of the art of therapeutic options in the form of emerging nanomaterials-based amyloidosis inhibitors. Our group has recently made some substantial progress in this regard by investigating the impact of glucose and fatty acid concentrations on hIAPP aggregation and β-cell toxicity. Furthermore, the great potential of carbon nanocolloids in reversing hIAPP aggregation under diabetic conditions will be highlighted as the approach has been validated on β-cell cultures from rats. We hope that this Account will evoke new ideas and concepts in this regard. We give some lead references below on pancreatic β-cell aspects and carbon quantum dots for managing diabetics and nanomedicine related aspects, a topic of interest in our laboratory.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| |
Collapse
|
7
|
SORLA mediates endocytic uptake of proIAPP and protects against islet amyloid deposition. Mol Metab 2022; 65:101585. [PMID: 36055578 PMCID: PMC9474563 DOI: 10.1016/j.molmet.2022.101585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Objective Sorting-related receptor with type A repeats (SORLA) is a neuronal sorting receptor that prevents accumulation of amyloid-beta peptides, the main constituent of senile plaques in Alzheimer disease. Recent transcriptomic studies show that SORLA transcripts are also found in beta cells of pancreatic islets, yet the role of SORLA in islets is unknown. Based on its protective role in reducing the amyloid burden in the brain, we hypothesized that SORLA has a similar function in the pancreas via regulation of amyloid formation from islet amyloid polypeptide (IAPP). Methods We generated human IAPP transgenic mice lacking SORLA (hIAPP:SORLA KO) to assess the consequences of receptor deficiency for islet histopathology and function in vivo. Using both primary islet cells and cell lines, we further investigated the molecular mechanisms whereby SORLA controls the cellular metabolism and accumulation of IAPP. Results Loss of SORLA activity in hIAPP:SORLA KO resulted in a significant increase in islet amyloid deposits and associated islet cell death compared to hIAPP:SORLA WT animals. Aggravated islet amyloid deposition was observed in mice fed a normal chow diet, not requiring high-fat diet feeding typically needed to induce islet amyloidosis in mouse models. In vitro studies showed that SORLA binds to and mediates the endocytic uptake of proIAPP, but not mature IAPP, delivering the propeptide to an endolysosomal fate. Conclusions SORLA functions as a proIAPP-specific clearance receptor, protecting against islet amyloid deposition and associated cell death caused by IAPP. SORLA is an endocytic receptor for amyloidogenic peptides expressed in islet beta cells. SORLA mediates cellular clearance of proIAPP. Loss of SORLA activity in mouse models causes spontaneous islet amyloid deposition.
Collapse
|
8
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
9
|
Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology 2020; 161:bqz028. [PMID: 31796960 PMCID: PMC7028010 DOI: 10.1210/endocr/bqz028] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) mediates the first steps of protein assembly within the secretory pathway and is the site where protein folding and quality control are initiated. The storage and release of Ca2+ are critical physiological functions of the ER. Disrupted ER homeostasis activates the unfolded protein response (UPR), a pathway which attempts to restore cellular equilibrium in the face of ER stress. Unremitting ER stress, and insufficient compensation for it results in beta-cell apoptosis, a process that has been linked to both type 1 diabetes (T1D) and type 2 diabetes (T2D). Both types are characterized by progressive beta-cell failure and a loss of beta-cell mass, although the underlying causes are different. The reduction of mass occurs secondary to apoptosis in the case of T2D, while beta cells undergo autoimmune destruction in T1D. In this review, we examine recent findings that link the UPR pathway and ER Ca2+ to beta cell dysfunction. We also discuss how UPR activation in beta cells favors cell survival versus apoptosis and death, and how ER protein chaperones are involved in regulating ER Ca2+ levels. Abbreviations: BiP, Binding immunoglobulin Protein ER; endoplasmic reticulum; ERAD, ER-associated protein degradation; IFN, interferon; IL, interleukin; JNK, c-Jun N-terminal kinase; KHE, proton-K+ exchanger; MODY, maturity-onset diabetes of young; PERK, PRKR-like ER kinase; SERCA, Sarco/Endoplasmic Reticulum Ca2+-ATPases; T1D, type 1 diabetes; T2D, type 2 diabetes; TNF, tumor necrosis factor; UPR, unfolded protein response; WRS, Wolcott-Rallison syndrome.
Collapse
Affiliation(s)
- Irina X Zhang
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Leslie S Satin
- Department of Pharmacology and Brehm Diabetes Research Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
10
|
Atsmon-Raz Y, Wineman-Fisher V, Baram M, Miller Y. Unique Inversion Events of Residues around the Backbone in the Turn Domain of β-Arches in Amylin Fibrils. ACS Chem Neurosci 2019; 10:1209-1213. [PMID: 30565922 DOI: 10.1021/acschemneuro.8b00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Orientational inversion events of residues along the turn domains of amylin fibrils have been detected. This exceptional phenomenon has been observed in isolated amylin fibrils and in the cross-seeding amylin-Aβ and amylin-NAC fibrils. These new findings provide new avenues for detection of side chain flipping and side chain inversion events in turn domains and loops of various proteins.
Collapse
Affiliation(s)
- Yoav Atsmon-Raz
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Vered Wineman-Fisher
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Michal Baram
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
11
|
Lv W, Zhang J, Jiao A, Wang B, Chen B, Lin J. Resveratrol attenuates hIAPP amyloid formation and restores the insulin secretion ability in hIAPP-INS1 cell line via enhancing autophagy. Can J Physiol Pharmacol 2019; 97:82-89. [PMID: 30312115 DOI: 10.1139/cjpp-2016-0686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been proved that human islet amyloid polypeptide (hIAPP), the main constituent of islet amyloid deposition, is one of the important factors that can induce type 2 diabetes or graft failure after islet transplantation. As there is no research on whether resveratrol degrading the amyloid deposition by its special chemical structure or enhancing autophagy had been published, we decided to detect the function of resveratrol in degrading the amyloid deposition in pancreatic beta cells. We established stable hIAPP-INS1 cell line via transfecting INS1 cells by lentivirus that overexpresses hIAPP. Our research demonstrates that amyloid deposition existed in hIAPP-INS1 cell by the thioflavin S fluorescent staining, meanwhile the function of insulin secretion of hIAPP-INS1 cells was decreased significantly (p < 0.01). After treatment with resveratrol (20 μM) for 24 h, amyloid deposition in hIAPP-INS1 cells was decreased significantly, and the insulin secretion was restored significantly (p < 0.01). Once inhibited the autophagy of hIAPP-INS1 cells by 3-methyladenine for 24 h, resveratrol does not effectively remove hIAPP deposits again, and cannot improve the function of insulin secretion. These results provide a novel thought that resveratrol can degrade the amyloid deposition in type 2 diabetes and the graft after islet transplantation.
Collapse
Affiliation(s)
- Wu Lv
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jialin Zhang
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ao Jiao
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Bowen Wang
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Baomin Chen
- Department of Hepatobiliary and Transplantation Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jie Lin
- Department of General Surgery, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
12
|
Mo XD, Gao LP, Wang QJ, Yin J, Jing YH. Lipid accelerating the fibril of islet amyloid polypeptide aggravated the pancreatic islet injury in vitro and in vivo. Lipids Health Dis 2018. [PMID: 29523142 PMCID: PMC5845206 DOI: 10.1186/s12944-018-0694-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The fibrillation of islet amyloid polypeptide (IAPP) triggered the amyloid deposition, then enhanced the loss of the pancreatic islet mass. However, it is not clear what factor is the determinant in development of the fibril formation. The aim of this study is to investigate the effects of lipid on IAPP fibril and its injury on pancreatic islet. Methods The fibril form of human IAPP (hIAPP) was tested using thioflavin-T fluorescence assay and transmission electron microscope technology after incubated with palmitate for 5 h at 25 °C. The cytotoxicity of fibril hIAPP was evaluated in INS-1 cells through analyzing the leakage of cell membrane and cell apoptosis. Type 2 diabetes mellitus (T2DM) animal model was induced with low dose streptozotocin combined the high-fat diet feeding for two months in rats. Plasma biochemistry parameters were measured before sacrificed. Pancreatic islet was isolated to evaluate their function. Results The results showed that co-incubation of hIAPP and palmitate induced more fibril form. Fibril hIAPP induced cell lesions including cell membrane leakage and cell apoptosis accompanied insulin mRNA decrease in INS-1 cell lines. In vivo, Plasma glucose, triglyceride, rIAPP and insulin increased in T2DM rats compared with the control group. In addition, IAPP and insulin mRNA increased in pancreatic islet of T2DM rats. Furthermore, T2DM induced the reduction of insulin receptor expression and cleaved caspase-3 overexpression in pancreatic islet. Conclusions Results in vivo and in vitro suggested that lipid and IAPP plays a synergistic effect on pancreatic islet cell damage, which implicated in enhancing the IAPP expression and accelerating the fibril formation of IAPP.
Collapse
Affiliation(s)
- Xiao-Dan Mo
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Qing-Jun Wang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, No. 199 of Donggang West Road, Lanzhou City, Gansu Province, 730000, People's Republic of China.
| |
Collapse
|
13
|
Zhu D, Gong G, Wang W, Du W. Disaggregation of human islet amyloid polypeptide fibril formation by ruthenium polypyridyl complexes. J Inorg Biochem 2017; 170:109-116. [DOI: 10.1016/j.jinorgbio.2017.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/21/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
|
14
|
Genser L, Casella Mariolo JR, Castagneto-Gissey L, Panagiotopoulos S, Rubino F. Obesity, Type 2 Diabetes, and the Metabolic Syndrome. Surg Clin North Am 2016; 96:681-701. [DOI: 10.1016/j.suc.2016.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Singh V, Saluja N. Phylogenetic and promoter analysis of islet amyloid polypeptide gene causing type 2 diabetes in mammalian species. Int J Diabetes Dev Ctries 2016. [DOI: 10.1007/s13410-016-0508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Montane J, de Pablo S, Obach M, Cadavez L, Castaño C, Alcarraz-Vizán G, Visa M, Rodríguez-Comas J, Parrizas M, Servitja JM, Novials A. Protein disulfide isomerase ameliorates β-cell dysfunction in pancreatic islets overexpressing human islet amyloid polypeptide. Mol Cell Endocrinol 2016; 420:57-65. [PMID: 26607804 DOI: 10.1016/j.mce.2015.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023]
Abstract
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits in islets of type 2 diabetic patients. hIAPP misfolding and aggregation is one of the factors that may lead to β-cell dysfunction and death. Endogenous chaperones are described to be important for the folding and functioning of proteins. Here, we examine the effect of the endoplasmic reticulum chaperone protein disulfide isomerase (PDI) on β-cell dysfunction. Among other chaperones, PDI was found to interact with hIAPP in human islet lysates. Furthermore, intrinsically recovered PDI levels were able to restore the effect of high glucose- and palmitate-induced β-cell dysfunction by increasing 3.9-fold the glucose-stimulated insulin secretion levels and restoring insulin content up to basal control values. Additionally, PDI transduction decreased induced apoptosis by glucolipotoxic conditions. This approach could reveal a new therapeutic target and aid in the development of strategies to improve β-cell dysfunction in type 2 diabetic patients.
Collapse
Affiliation(s)
- Joel Montane
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sara de Pablo
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mercè Obach
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Lisa Cadavez
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Carlos Castaño
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Gema Alcarraz-Vizán
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Montserrat Visa
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Júlia Rodríguez-Comas
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Marcelina Parrizas
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Joan Marc Servitja
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
17
|
Kong S, Ruan J, Xin L, Fan J, Xia J, Liu Z, Mu Y, Yang S, Li K. Multi‑transgenic minipig models exhibiting potential for hepatic insulin resistance and pancreatic apoptosis. Mol Med Rep 2015; 13:669-80. [PMID: 26648014 PMCID: PMC4686100 DOI: 10.3892/mmr.2015.4582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022] Open
Abstract
There are currently no multi‑transgenic minipig models of diabetes for the regulation of multiple genes involved in its pathogenesis. The foot and mouth disease virus 2A (F2A)‑mediated polycistronic system possesses several advantages, and the present study developed a novel multi‑transgenic minipig model associated with diabetes using this system. The tissue‑specific polycistronic system used in the present study consisted of two expression cassettes, separated by an insulator: (i) 11‑β‑hydroxysteroid dehydrogenase 1 (11β‑HSD1), driven by the porcine liver‑specific apolipoprotein E promoter; (ii) human islet amyloid polypeptide (hIAPP) and C/EBP homologous protein (CHOP), linked to the furin digested site and F‑2A, driven by the porcine pancreas‑specific insulin promoter. In the present study, porcine fetal fibroblasts were transfected with this vector. Following somatic cell nuclear transfer using 10 cell clones and the transplantation of 1,459 embryos in total, three Landrace x Yorkshire surrogates became pregnant and delivered three Wuzhishan piglets. Genomic polymerase chain reaction (PCR) demonstrated that the piglets were multi‑transgenic. Reverse transcription‑quantitative PCR confirmed that 11β‑HSD1 transcription was upregulated in the targeted liver. Similarly, hIAPP and CHOP were expressed at high levels, compared with the control (P<0.05 and P<0.01) in the pancreas, consistent with the western blotting and immunohistochemistry results. The primary results also showed that overexpression of 11β‑HSD1 in the liver increased the liver fat lipid parameters; and the levels of hIAPP and CHOP in the pancreatic islet cells, leading to delayed β‑cell development and apoptosis. This novel tissue‑specific polycistronic system offers a promising starting point for efficiently mimicking multigenic metabolic disease.
Collapse
Affiliation(s)
- Siyuan Kong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Junhua Fan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
18
|
Choi TS, Lee JW, Jin KS, Kim HI. Amyloid fibrillation of insulin under water-limited conditions. Biophys J 2015; 107:1939-1949. [PMID: 25418175 DOI: 10.1016/j.bpj.2014.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 09/10/2014] [Indexed: 02/08/2023] Open
Abstract
Amyloid fibrillation in water-organic mixtures has been widely studied to understand the effect of protein-solvent interactions on the fibrillation process. In this study, we monitored insulin fibrillation in formamide and its methyl derivatives (formamide, N-methyl formamide, N,N-dimethyl formamide) in the presence and absence of water. These model solvent systems mimic the cellular environment by providing denaturing conditions and a hydrophobic environment with limited water content. Thioflavin T (ThT) assay revealed that binary mixtures of water with formamide and its methyl derivatives enhanced fibrillation rates and ?-sheet abundance, whereas organic solvents suppressed insulin fibrillation. We utilized solution small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC) to investigate the correlation between protein-solvent interactions and insulin fibrillation. SAXS experiments combined with simulated annealing of the protein indicated that the degree of denaturation of the hydrophobic core region at residues B11-B17 determines the fibrillation rate. In addition, DSC experiments suggested a crucial role of hydrophobic interactions in the fibrillation process. These results imply that an environment with limited water, which imitates a lipid membrane system, accelerates protein denaturation and the formation of intermolecular hydrophobic interactions during amyloid fibrillation.
Collapse
Affiliation(s)
- Tae Su Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jong Wha Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Kyeong Sik Jin
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
19
|
Zhang M, Hu R, Liang G, Chang Y, Sun Y, Peng Z, Zheng J. Structural and Energetic Insight into the Cross-Seeding Amyloid Assemblies of Human IAPP and Rat IAPP. J Phys Chem B 2014; 118:7026-36. [DOI: 10.1021/jp5022246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mingzhen Zhang
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan University, Chung Li, Taoyuan 320, Taiwan
| | - Yan Sun
- Department
of Biochemical Engineering and Key Laboratory of Systems Bioengineering
of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhenmeng Peng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
20
|
Amylin uncovered: a review on the polypeptide responsible for type II diabetes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826706. [PMID: 23607096 PMCID: PMC3626316 DOI: 10.1155/2013/826706] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/21/2013] [Indexed: 11/17/2022]
Abstract
Amylin is primarily responsible for classifying type II diabetes as an amyloid (protein misfolding) disease as it has great potential to aggregate into toxic nanoparticles, thereby resulting in loss of pancreatic β-cells. Although type II diabetes is on the increase each year, possibly due to bad eating habits of modern society, research on the culprit for this disease is still in its early days. In addition, unlike the culprit for Alzheimer's disease, amyloid β-peptide, amylin has failed to receive attention worthy of being featured in an abundance of review articles. Thus, the aim of this paper is to shine the spotlight on amylin in an attempt to put it onto the top of researchers' to-do list since the secondary complications of type II diabetes have far-reaching and severe consequences on public health both in developing and fully developed countries alike. This paper will cover characteristics of the amylin aggregates, mechanisms of toxicity, and a particular focus on inhibitors of toxicity and techniques used to assess these inhibitors.
Collapse
|
21
|
Abstract
OBJECTIVE Deposition of cell toxic islet amyloid is a frequent finding in type 2 diabetes and also in transplanted human islets, where it is a possible explanation for their long-term failure. One suggested reason for amyloid in transplanted islets is that their low vascular density results in a disturbed local clearance of islet amyloid polypeptide (IAPP). To test this hypothesis we analysed accumulation of amyloid in microencapsulated islets, which exemplify a non-vascularised islet graft. METHODS Isolated islets from human or transgenic mice expressing human IAPP were microencapsulated in alginate and cultured in vitro or transplanted under the kidney capsule of normoglycemic nude mice. The degree of amyloid was determined after Congo red staining and subcellular alterations were analysed with electron microscopy. RESULTS Insulin and IAPP secretion from transgenic mouse islets were markedly increased during stimulation with glucose after one week of culture, but encapsulated islets in general released less insulin. Amyloid was detected after both one and three weeks of culture in the transgenic mouse islets and the encapsulated islets were most affected. After transplantation, electron microscopy displayed both intra- and extracellular amyloid in microencapsulated as well as in non-encapsulated human and transgenic mouse islet grafts. However, amyloid was more frequent in the encapsulated grafts. CONCLUSION Micro-encapsulation of pancreatic islets might serve as an important tool for studies of amyloid formation under enhanced circumstances.
Collapse
Affiliation(s)
- Sara Bohman
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
22
|
Zhao J, Yu X, Liang G, Zheng J. Heterogeneous Triangular Structures of Human Islet Amyloid Polypeptide (Amylin) with Internal Hydrophobic Cavity and External Wrapping Morphology Reveal the Polymorphic Nature of Amyloid Fibrils. Biomacromolecules 2011; 12:1781-94. [DOI: 10.1021/bm2001507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiang Yu
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Guizhao Liang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- Key Laboratory of Biorheological Science and Technology Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
23
|
Li XL, Xu G, Chen T, Wong YS, Zhao HL, Fan RR, Gu XM, Tong PC, Chan JC. Phycocyanin protects INS-1E pancreatic beta cells against human islet amyloid polypeptide-induced apoptosis through attenuating oxidative stress and modulating JNK and p38 mitogen-activated protein kinase pathways. Int J Biochem Cell Biol 2009; 41:1526-35. [PMID: 19166964 DOI: 10.1016/j.biocel.2009.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 12/20/2022]
|