1
|
Diez A, Arrieta-Aguirre I, Carrano G, Fernandez-de-Larrinoa I, Moragues MD. A novel Candida albicans Als3, Hwp1 and Met6 derived complex peptide protects mice against hematogenously induced candidiasis. Vaccine 2024; 42:125990. [PMID: 38789371 DOI: 10.1016/j.vaccine.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Candida albicans can cause superficial or systemic infections in humans, particularly in immunocompromised individuals. Vaccination strategies targeting specific antigens of C. albicans have shown promise in providing protection against invasive candidiasis. This study aimed to evaluate the immuno-protective capacity of a KLH conjugated complex peptide, 3P-KLH, containing epitopes from C. albicans antigens Als3, Hwp1, and Met6 in a murine model of hematogenously induced candidiasis. Mice immunized with 3P-KLH raised a specific antibody response, and protection against C. albicans infection was assessed. Immunized mice exhibited significantly lower fungal load in their kidneys compared to the control group. Moreover, 37.5 % of immunized mice survived 21 days after the infection, while all control animals died within the first nine days. These findings suggest that the 3P-KLH complex peptide, targeting C. albicans key antigens, elicits a protective immune response and reduces the severity of systemic Candida infection. In addition, the high binding affinity of the selected epitopes with MHC II alleles further supports the potential immunogenicity of this peptide in humans. This research provides insights into the development of novel immunotherapeutic approaches against invasive candidiasis.
Collapse
Affiliation(s)
- Ander Diez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain; Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ines Arrieta-Aguirre
- Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain.
| | - Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
2
|
Bregón-Villahoz M, Menéndez-Manjón P, Carrano G, Díez-Villalba A, Arrieta-Aguirre I, Fernandez-de-Larrinoa I, Moragues MD. Candida albicans cDNA library screening reveals novel potential diagnostic targets for invasive candidiasis. Diagn Microbiol Infect Dis 2024; 109:116311. [PMID: 38657353 DOI: 10.1016/j.diagmicrobio.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
The detection of patterns associated with the invasive form of Candida albicans, such as Candida albicans germ tube antibodies (CAGTA), is a useful complement to blood culture for Invasive Candidiasis (IC) diagnosis. As CAGTA are detected by a non-standardisable and non-automatable technique, a Candida albicans cDNA expression library was screened with CAGTA isolated from serum of an animal model of invasive candidiasis, and five protein targets were identified: hyphally regulated cell wall protein 1 (Hyr1), enolase 1 (Eno1), coatomer subunit gamma (Sec21), a metallo-aminopeptidase (Ape2) and cystathionine gamma-lyase (Cys3). Homology with proteins from other organisms rules out Cys3 as a good biomarker while Sec21 results suggest that it is not in the germ tubes surface but secreted to the external environment. Our analysis propose Ape2, Sec21 and a region of Hyr1 different from the one currently being studied for immunoprotection as potential biomarker candidates for the diagnosis of IC.
Collapse
Affiliation(s)
- Marta Bregón-Villahoz
- Department of Nursing I, University of the Basque Country UPV/EHU, Spain; Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | - Pilar Menéndez-Manjón
- Department of Nursing I, University of the Basque Country UPV/EHU, Spain; Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | - Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | - Ander Díez-Villalba
- Department of Nursing I, University of the Basque Country UPV/EHU, Spain; Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Spain
| | | | | | | |
Collapse
|
3
|
Vahedi F, Ghasemi Y, Atapour A, Zomorodian K, Ranjbar M, Monabati A, Nezafat N, Savardashtaki A. B-Cell Epitope Mapping from Eight Antigens of Candida albicans to Design a Novel Diagnostic Kit: An Immunoinformatics Approach. Int J Pept Res Ther 2022; 28:110. [PMID: 35669279 PMCID: PMC9136830 DOI: 10.1007/s10989-022-10413-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Invasive candidiasis is an emerging fungal infection and a leading cause of morbidity in health care facilities. Despite advances in antifungal therapy, increased antifungal drug resistance in Candida albicans has enhanced patient fatality. The most common method for Candida albicans diagnosing is blood culture, which has low sensitivity. Therefore, there is an urgent need to establish a valid diagnostic method. Our study aimed to use the bioinformatics approach to design a diagnostic kit for detecting Candida albicans with high sensitivity and specificity. Eight antigenic proteins of Candida albicans (HYR1, HWP1, ECE1, ALS, EAP1, SAP1, BGL2, and MET6) were selected. Next, a construct containing different immunodominant B-cell epitopes was derived from the antigens and connected using a suitable linker. Different properties of the final construct, such as physicochemical properties, were evaluated. Moreover, the designed construct underwent 3D modeling, reverse translation, and codon optimization. The results confirmed that the designed construct could identify Candida albicans with high sensitivity and specificity in serum samples of patients with invasive candidiasis. However, experimental studies are needed for final confirmation.
Collapse
Affiliation(s)
- Farzaneh Vahedi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Parasitology & Mycology, School of Medicines, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Saucedo-Campa DO, Martínez-Rocha AL, Ríos-Castro E, Alba-Fierro CA, Escobedo-Bretado MA, Cuéllar-Cruz M, Ruiz-Baca E. Proteomic Analysis of Sporothrix schenckii Exposed to Oxidative Stress Induced by Hydrogen Peroxide. Pathogens 2022; 11:pathogens11020230. [PMID: 35215174 PMCID: PMC8880468 DOI: 10.3390/pathogens11020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sporothrix schenckii modulates the expression of its cell wall proteins (CWPs) in response to reactive oxygen species (ROS) generated by the phagocytic cells of the human host, which allows it to evade and escape the immune system. In this study, we performed a comparative proteomic analysis of the CW of S. schenckii after exposure and nonexposure to H2O2. Several CWPs involved in CW remodeling and fungal pathogenesis that modulated their expression in response to this oxidizing agent were identified, as were a number of antioxidant enzymes and atypical CWPs, called moonlighting proteins, such as the Hsp70-5, lipase 1 (Lip1), enolase (Eno), and pyruvate kinase (Pk). Moreover, RT-qPCR assays demonstrated that the transcription of genes HSP70-5, LIP1, ENO, and PK is regulated in response to the oxidant. The results indicated that S. schenckii differentially expressed CWPs to confer protection against ROS upon this fungus. Furthermore, among these proteins, antioxidant enzymes and interestingly, moonlighting-like CWPs play a role in protecting the fungus from oxidative stress (OS), allowing it to infect human host cells.
Collapse
Affiliation(s)
- Dulce O. Saucedo-Campa
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Ana L. Martínez-Rocha
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Emmanuel Ríos-Castro
- Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad de Genómica, Proteómica y Metabolómica, LaNSE, Ciudad de Mexico 07360, Mexico;
| | - Carlos A. Alba-Fierro
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Miguel A. Escobedo-Bretado
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Guanajuato 36050, Mexico;
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas (Unidad Durango), Universidad Juárez del Estado de Durango, Av. Veterinaria S/N, Durango 34120, Mexico; (D.O.S.-C.); (A.L.M.-R.); (C.A.A.-F.); (M.A.E.-B.)
- Correspondence:
| |
Collapse
|
5
|
Shukla M, Chandley P, Kaur H, Ghosh AK, Rudramurthy SM, Rohatgi S. Expression and Purification along with Evaluation of Serological Response and Diagnostic Potential of Recombinant Sap2 Protein from C. parapsilosis for Use in Systemic Candidiasis. J Fungi (Basel) 2021; 7:jof7120999. [PMID: 34946982 PMCID: PMC8708535 DOI: 10.3390/jof7120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Systemic candidiasis is the fourth most common bloodstream infection in ICU patients worldwide. Although C. albicans is a predominant species causing systemic candidiasis, infections caused by non-albicans Candida (NAC) species are increasingly becoming more prevalent globally along with the emergence of drug resistance. The diagnosis of systemic candidiasis is difficult due to the absence of significant clinical symptoms in patients. We investigated the diagnostic potential of recombinant secreted aspartyl proteinase 2 (rSap2) from C. parapsilosis for the detection of Candida infection. The rSap2 protein was successfully cloned, expressed and purified using Ni-NTA chromatography under denaturing conditions using an E. coli-based prokaryotic expression system, and refolded using a multi-step dialysis procedure. Structural analysis by CD and FTIR spectroscopy revealed the refolded protein to be in its near native conformation. Immunogenicity analysis demonstrated the rSap2 protein to be highly immunogenic as evident from significantly high titers of Sap2-specific antibodies in antigen immunized Balb/c mice, compared to sham-immunized controls. The diagnostic potential of rSap2 protein was evaluated using immunoblotting and ELISA assays using proven candidiasis patient serum and controls. Immunoblotting results indicate that reactivity to rSap2 was specific to candidiasis patient sera with no cross reactivity observed in healthy controls. Increased levels of anti-Sap2-specific Ig, IgG and IgM antibodies were observed in candidiasis patients compared to controls and was similar in sensitivity obtained when whole Candida was used as coating antigen. In summary, the rSap2 protein from C. parapsilosis has the potential to be used in the diagnosis of systemic candidiasis, providing a rapid, convenient, accurate and cost-effective strategy.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (M.S.); (P.C.)
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (M.S.); (P.C.)
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (H.K.); (A.K.G.); (S.M.R.)
| | - Anup K. Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (H.K.); (A.K.G.); (S.M.R.)
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India; (H.K.); (A.K.G.); (S.M.R.)
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (M.S.); (P.C.)
- Correspondence:
| |
Collapse
|
6
|
Biomarkers for the diagnosis of invasive candidiasis in immunocompetent and immunocompromised patients. Diagn Microbiol Infect Dis 2021; 101:115509. [PMID: 34384954 DOI: 10.1016/j.diagmicrobio.2021.115509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 01/05/2023]
Abstract
Blood culture methods show low sensitivity, so reliable non-culture diagnostic tests are needed to help clinicians with the introduction, de-escalation, and discontinuation of antifungal therapy in patients with suspected invasive candidiasis (IC). We evaluated different biomarkers for the diagnosis of IC in immunocompetent and immunocompromised patients at risk for developing invasive fungal diseases. The specificity of Candida albicans germ-tube antibodies (CAGTA) detection was high (89%-100%), but sensitivity did not exceed 61% even after raising the cut-off from 1/160 to 1/80. We developed enzyme-linked immunoassays detecting antibodies against C. albicans proteins (Als3-N, Hwp1-N, or Met6) that resulted more sensitive (66%-92%) but less specific than CAGTA assay. The combination of 1,3-beta-D-glucan (BDG) detection and CAGTA results provided the highest diagnostic usefulness in immunocompetent patients. However, in immunocompromised patients, anti-Met6 antibodies was the best biomarker, both, alone or in combination with BDG.
Collapse
|
7
|
Elamin Elhasan LM, Hassan MB, Elhassan RM, Abdelrhman FA, Salih EA, Ibrahim H A, Mohamed AA, Osman HS, Khalil MSM, Alsafi AA, Idris AB, Hassan MA. Epitope-Based Peptide Vaccine Design against Fructose Bisphosphate Aldolase of Candida glabrata: An Immunoinformatics Approach. J Immunol Res 2021; 2021:8280925. [PMID: 34036109 PMCID: PMC8116159 DOI: 10.1155/2021/8280925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Candida glabrata is a human opportunistic pathogen that can cause life-threatening systemic infections. Although there are multiple effective vaccines against fungal infections and some of these vaccines are engaged in different stages of clinical trials, none of them have yet been approved by the FDA. AIM Using immunoinformatics approach to predict the most conserved and immunogenic B- and T-cell epitopes from the fructose bisphosphate aldolase (Fba1) protein of C. glabrata. Material and Method. 13 C. glabrata fructose bisphosphate aldolase protein sequences (361 amino acids) were retrieved from NCBI and presented in several tools on the IEDB server for prediction of the most promising epitopes. Homology modeling and molecular docking were performed. RESULT The promising B-cell epitopes were AYFKEH, VDKESLYTK, and HVDKESLYTK, while the promising peptides which have high affinity to MHC I binding were AVHEALAPI, KYFKRMAAM, QTSNGGAAY, RMAAMNQWL, and YFKEHGEPL. Two peptides, LFSSHMLDL and YIRSIAPAY, were noted to have the highest affinity to MHC class II that interact with 9 alleles. The molecular docking revealed that the epitopes QTSNGGAAY and LFSSHMLDL have the lowest binding energy to MHC molecules. CONCLUSION The epitope-based vaccines predicted by using immunoinformatics tools have remarkable advantages over the conventional vaccines in that they are more specific, less time consuming, safe, less allergic, and more antigenic. Further in vivo and in vitro experiments are needed to prove the effectiveness of the best candidate's epitopes (QTSNGGAAY and LFSSHMLDL). To the best of our knowledge, this is the first study that has predicted B- and T-cell epitopes from the Fba1 protein by using in silico tools in order to design an effective epitope-based vaccine against C. glabrata.
Collapse
Affiliation(s)
- Lina Mohamed Elamin Elhasan
- Faculty of Science and Technology, Department of Biotechnology, Omdurman Islamic University, Khartoum, Sudan
| | - Mohamed B. Hassan
- Faculty of Medicine and Health Science, Omdurman Islamic University, Khartoum, Sudan
| | - Reham M. Elhassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sudan International University, Khartoum, Sudan
| | | | - Essam A. Salih
- Biology and Technology Department, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan
| | - Asma Ibrahim H
- Faculty of Pharmacy, National Ribat University, Khartoum, Sudan
| | - Amna A. Mohamed
- Al-Neelain Medical Research Center, Al-Neelain University, Khartoum, Sudan
| | - Hozaifa S. Osman
- Faculty of Medicine and Health Science, Omdurman Islamic University, Khartoum, Sudan
| | | | - Athar A. Alsafi
- Faculty of Science and Technology, Department of Biotechnology, Omdurman Islamic University, Khartoum, Sudan
| | - Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Hassan
- Department of Biotechnology, Africa City of Technology, Khartoum, Sudan
- Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
8
|
Freeman Weiss Z, Leon A, Koo S. The Evolving Landscape of Fungal Diagnostics, Current and Emerging Microbiological Approaches. J Fungi (Basel) 2021; 7:jof7020127. [PMID: 33572400 PMCID: PMC7916227 DOI: 10.3390/jof7020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections are increasingly recognized in immunocompromised hosts. Current diagnostic techniques are limited by low sensitivity and prolonged turnaround times. We review emerging diagnostic technologies and platforms for diagnosing the clinically invasive disease caused by Candida, Aspergillus, and Mucorales.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
- Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
- Correspondence:
| | - Armando Leon
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| | - Sophia Koo
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| |
Collapse
|
9
|
Medrano-Díaz CL, Vega-González A, Ruiz-Baca E, Moreno A, Cuéllar-Cruz M. Moonlighting proteins induce protection in a mouse model against Candida species. Microb Pathog 2018; 124:21-29. [PMID: 30118801 DOI: 10.1016/j.micpath.2018.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 11/27/2022]
Abstract
In recent years, C. albicans and C. glabrata have been identified as the main cause of candidemia and invasive candidiasis in hospitalized and immunocompromised patients. In order to colonize the human host, these fungi express several virulence factors such as the response to oxidative stress and the formation of biofilms. In the expression of these virulence factors, the cell wall of C. albicans and C. glabrata is of fundamental importance. As the outermost structure of the yeast, the cell wall is the first to come in contact with the reactive oxygen species (ROS) generated during the respiratory outbreak, and in the formation of biofilms, it is the first to adhere to organs or medical devices implanted in the human host. In both processes, several cell wall proteins (CWP) are required, since they promote attachment to human cells or abiotic surfaces, as well as to detoxify ROS. In our working group we have identified moonlighting CWP in response to oxidative stress as well as in the formation of biofilms. Having identified moonlighting CWP in Candida species in response to two virulence factors indicates that these proteins may possibly be immunodominant. The aim of the present work was to evaluate whether proteins of this type such as fructose-bisphosphate aldolase (Fba1), phosphoglycerate kinase (Pgk) and pyruvate kinase (Pk), could confer protection in a mouse model against C. albicans and C. glabrata. For this, recombinant proteins His6-Fba1, His6-Pgk and His6-Pk were constructed and used to immunize several groups of mice. The immunized mice were infected with C. albicans or C. glabrata, and subsequently the liver, spleen and kidney were extracted and the number of CFU was determined. Our results showed that Pk confers immunity to mice against C. albicans, while Fba1 to C. glabrata. This data allows us to conclude that the moonlighting CWP, Fba1 and Pk confer in vivo protection in a specific way against each species of Candida. This makes them promising candidates for developing specific vaccines against these pathogens.
Collapse
Affiliation(s)
- César Luis Medrano-Díaz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico
| | - Arturo Vega-González
- Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Estela Ruiz-Baca
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Abel Moreno
- Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, C.P. 36050, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
10
|
He ZX, Shi LC, Ran XY, Li W, Wang XL, Wang FK. Development of a Lateral Flow Immunoassay for the Rapid Diagnosis of Invasive Candidiasis. Front Microbiol 2016; 7:1451. [PMID: 27679622 PMCID: PMC5020066 DOI: 10.3389/fmicb.2016.01451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Early and accurate diagnosis of invasive candidiasis (IC) is very important. In this study, a lateral flow immunoassay (LFIA) was developed to detect antibody against Candida albicans enolase (Eno). Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L) was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L) and goat anti IgG (1.0 mg/L) were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was used to detect anti Eno in 38 sera from clinically proven IC patients, as well as in 50 healthy control subjects. Compared with an indirect ELISA designed as a reference test, the specificity and sensitivity of the LFIA were 98.2 and 84.8%, respectively. Excellent agreement between the results obtained by ELISA and the LFIA (κ = 0.851) was observed in this study. In addition, the agreement between the blood culture results and LFIA test is strong (κ = 0.658). The data presented in the study indicate that the LFIA test is a suitable tool for the serological surveillance of IC in the field or in poorly equipped laboratories.
Collapse
Affiliation(s)
- Zheng-Xin He
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Lan-Chun Shi
- Department of Biochemistry, Bethune Medical NCO School of PLA Shijiazhuang, China
| | - Xiang-Yang Ran
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Wei Li
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Xian-Ling Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| | - Fu-Kun Wang
- Department of Clinical Laboratory, Bethune International Peace Hospital of PLA Shijiazhuang, China
| |
Collapse
|
11
|
Ardizzoni A, Posteraro B, Baschieri MC, Bugli F, Sáez-Rosòn A, Manca L, Cacaci M, Paroni Sterbini F, De Waure C, Sevilla MJ, Peppoloni S, Sanguinetti M, Moragues MD, Blasi E. An antibody reactivity-based assay for diagnosis of invasive candidiasis using protein array. Int J Immunopathol Pharmacol 2014; 27:403-12. [PMID: 25280031 DOI: 10.1177/039463201402700310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increased incidence of invasive candidiasis and of patients at risk requires early diagnosis and treatment to improve prognosis and survival. The aim of this study was to set up a ten-protein array-based immunoassay to assess the IgG antibody responses against ten well-known immunogenic C. albicans proteins (Bgl2, Eno1, Pgk1, Pdc11, Fba1, Adh1, Als3, Hwp1, Hsp90 and Grp2) in 51 patients with invasive candidiasis (IC) and in 38 culture-negative controls (non-IC). Antibody levels were higher against Bgl2, Eno1, Pgk1, Als3, Hwp1 and Grp2, than against Adh1, Pdc11, Fba1 and Hsp90, irrespectively of the patient group considered. Moreover, the IgG levels against Bgl2, Eno1, Pgk1 and Grp2 were significantly higher in IC than in non-IC patients. Furthermore, the ROC curves generated by the analysis of the antibody responses against Bgl2, Grp2 and Pgk1 displayed AUC values above 0.7, thus discriminating IC and non-IC patients. According to these results, the employment of the microarray immunoassay (a rapid, sensitive and multiparametric system), in parallel with conventional diagnostics, can help to spot IC patients. This ultimately will allow to initiate an early, focused and optimized antifungal therapy.
Collapse
Affiliation(s)
- A Ardizzoni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - B Posteraro
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M C Baschieri
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - F Bugli
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - A Sáez-Rosòn
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - L Manca
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Cacaci
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - F Paroni Sterbini
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - C De Waure
- Institute of Public Health, Catholic University of the Sacred Heart, Rome Italy
| | - M J Sevilla
- Department of Immunology, Microbiology and Parasitology, País Vasco/Euskal Herriko University, Leioa, Spain
| | - S Peppoloni
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - M Sanguinetti
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - M D Moragues
- Infirmary I, País Vasco/Euskal Herriko Universiy, Leioa, Spain
| | - E Blasi
- Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
12
|
Cuéllar-Cruz M, López-Romero E, Ruiz-Baca E, Zazueta-Sandoval R. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr Microbiol 2014; 69:733-9. [PMID: 25002360 DOI: 10.1007/s00284-014-0651-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Invasive candidiasis is associated with high mortality in immunocompromised and hospitalized patients. Candida albicans is the main pathological agent followed by Candida glabrata, Candida krusei, Candida parapsilosis, and Candida tropicalis. These pathogens colonize different host tissues in humans as they are able to neutralize the reactive species generated from nitrogen and oxygen during the respiratory burst. Among the enzymatic mechanisms that Candida species have developed to protect against free radicals are enzymes with antioxidant and immunodominant functions such as flavohemoglobins, catalases, superoxide dismutases, glutathione reductases, thioredoxins, peroxidases, heat-shock proteins, and enolases. These mechanisms are under transcriptional regulation by factors such as Cta4p, Cwt1p, Yap1p, Skn7p, Msn2p, and Msn4p. However, even though it has been proposed that all Candida species have similar enzymatic systems, it has been observed that they respond differentially to various types of stress. These differential responses may explain the colonization of different organs by each species. Here, we review the enzymatic mechanisms developed by C. albicans and C. glabrata species in response to oxidative and nitrosative stresses. Lack of experimental information for other pathogenic species limits a comparative approach among different organisms.
Collapse
Affiliation(s)
- Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Mexico,
| | | | | | | |
Collapse
|
13
|
|
14
|
Li FQ, Ma CF, Shi LN, Lu JF, Wang Y, Huang M, Kong QQ. Diagnostic value of immunoglobulin G antibodies against Candida enolase and fructose-bisphosphate aldolase for candidemia. BMC Infect Dis 2013; 13:253. [PMID: 23725337 PMCID: PMC3673856 DOI: 10.1186/1471-2334-13-253] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 05/28/2013] [Indexed: 01/07/2023] Open
Abstract
Background The yeast Candida is one of the most frequent pathogens isolated from bloodstream infections and is associated with significant morbidity and mortality. Problems with clinical and microbiological diagnosis of invasive candidiasis (IC) have prompted the development of non-culture-based laboratory methods. Previous reports suggest that serological detection of antibodies might be useful for diagnosing systemic candidiasis. Methods Diagnosis of IC using antibodies against recombinant Candida albicans enolase (Eno) and fructose-bisphosphate aldolase (Fba1) was evaluated. Using recombinant Eno and Fba1 as coating antigens, enzyme-linked immunosorbent assays (ELISAs) were used to analyze sera from patients with candidemia (n = 101), Candida colonization (n = 50), bacteremia (n = 84), invasive aspergillosis (n = 40); and from healthy controls (n = 200). Results The results demonstrated that ELISA detection of anti-Eno and anti-Fba1 IgG distinguished IC from other pathogenic infections in patients and healthy individuals. The sensitivity, specificity, and positive and negative predictive values were 72.3%, 94.7%, 78.5% and 93% for anti-Eno, and 87.1%, 92.8%, 76.5% and 96.4% for anti-Fba1 antibodies, respectively. Combining these two tests improved sensitivity up to 90.1% and negative predictive value up to 97.1%, with specificity and positive predictive values of 90.6% and 72.2%. The tests were specific to the Candida genus and antibody titers were higher for candidemia patients than for controls. Positive antibody tests were obtained before blood culture results for 42.2% of patients for anti-Eno and 51.1% for anti-Fba1. Conclusion These data suggest that tests that detect IgG antibodies against Candida enolase and fructose-bisphosphate aldolase, especially when used in combination, could be a powerful tool for diagnosing IC.
Collapse
Affiliation(s)
- Fang-Qiu Li
- Laboratory of Molecular Biology, Institute of Medical Laboratory Sciences, Jinling Hospital, School of Medicine Nanjing University, Nanjing 210002, P R China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Identification of Candida albicans heat shock proteins and Candida glabrata and Candida krusei enolases involved in the response to oxidative stress. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0138-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractIn the past two decades, Candida species have become the second leading cause of invasive mycosis in immunocompromised patients. In order to colonize their hosts, these microorganisms express adhesins and cell wall proteins that allow them to adhere and neutralize the reactive oxygen species produced by phagocytic cells during the respiratory burst. However, the precise mechanism by which Candida cell wall proteins change their expression in response to oxidative stress has not been described. In an attempt to understand this change in response to oxidative stress, in this study, three Candida species, namely, C. albicans, C. glabrata and C. krusei, were exposed to increasing concentrations of H2O2 and induced cell wall proteins were identified by two-dimensional gel electrophoresis and peptide mass fingerprinting. Sequence analysis of differential proteins led to the identification of two heat-shock proteins in C. albicans, two enolases in C. glabrata and one enolase in C. krusei. Enolases may be involved in the protection of pathogenic cells against oxidative stress as suggested by the decrease in their expression when they were exposed to high concentrations of H2O2. To our knowledge, this is the first demonstration that expression of these proteins changes in response to oxidative stress in different Candida species. This knowledge can eventually facilitate both an early diagnosis and a more efficient treatment of this mycosis.
Collapse
|
16
|
Sorgo AG, Heilmann CJ, Brul S, de Koster CG, Klis FM. Beyond the wall:Candida albicanssecret(e)s to survive. FEMS Microbiol Lett 2012; 338:10-7. [DOI: 10.1111/1574-6968.12049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 01/12/2023] Open
Affiliation(s)
- Alice G. Sorgo
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Clemens J. Heilmann
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Stanley Brul
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Chris G. de Koster
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
17
|
|
18
|
Quindós G, Eraso E, López-Soria LM, Ezpeleta G. [Invasive fungal disease: conventional or molecular mycological diagnosis?]. Enferm Infecc Microbiol Clin 2011; 30:560-71. [PMID: 22206948 DOI: 10.1016/j.eimc.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/31/2022]
Abstract
Diagnosis of invasive mycoses is a difficult challenge due to the limitations and low sensitivity of traditional microbiology methods which lead to diagnostic and therapeutic delays. The aim of this review is to summarise the state of the art of the molecular diagnosis of invasive fungal disease and to clarify its current role in the clinical practice. Conventional microbiological methods could be complemented with molecular methods in the rapid and definitive identification of fungal isolates. Biomarkers (β-glucan, galactomannan) are very useful in immunocompromised patients and have been included as probable invasive mycoses by the EORTC/MSG. Nucleic acid detection is currently used as a complementary tool for diagnosis. However, PCR can be very useful in mould invasive mycoses. Finally, the combined detection using biomarkers can improve the diagnosis. However, their applicability in the microbiology laboratory is not so easy and further studies are required for the appropriate evaluation of its clinical usefulness.
Collapse
Affiliation(s)
- Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, España.
| | | | | | | |
Collapse
|
19
|
Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. EUKARYOTIC CELL 2011; 10:1071-81. [PMID: 21622905 DOI: 10.1128/ec.05011-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluconazole at 0.5 mg/liter, showing reduced biomass formation, severely reduced ergosterol levels, and almost complete inhibition of hyphal growth. There was no evidence of cell leakage. Mass spectrometric analysis of the secretome showed that its composition was strongly affected and included 17 fluconazole-specific secretory proteins. Relative quantification of (14)N-labeled query walls relative to a reference standard mixture of (15)N-labeled yeast and hyphal walls in combination with immunological analysis revealed considerable fluconazole-induced changes in the wall proteome as well. They were, however, similar for both surface-grown and planktonic cultures. Two major trends emerged: (i) decreased incorporation of hypha-associated wall proteins (Als3, Hwp1, and Plb5), consistent with inhibition of hyphal growth, and (ii) increased incorporation of putative wall repair-related proteins (Crh11, Pga4, Phr1, Phr2, Pir1, and Sap9). As exposure to the wall-perturbing drug Congo red led to a similar response, these observations suggested that fluconazole affects the wall. In keeping with this, the resistance of fluconazole-treated cells to wall-perturbing compounds decreased. We propose that fluconazole affects the integrity of both the cellular membranes and the fungal wall and discuss its potential consequences for antifungal therapy. We also present candidate proteins from the secretome for clinical marker development.
Collapse
|
20
|
Sensoy G, Belet N. Invasive Candida infections in solid organ transplant recipient children. Expert Rev Anti Infect Ther 2011; 9:317-24. [PMID: 21417871 DOI: 10.1586/eri.11.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Solid organ transplantation (SOT) is now an accepted therapy for many end-stage organ disorders and fungal infections are the principal cause of infection-related mortality in SOT recipients. Among invasive fungal infections, Candida species are the most common pathogens identified, associated with high mortality rates. The epidemiology and clinical manifestations of Candida infections vary with the type of organ transplantation. This article reviews invasive Candida infections in pediatric SOT recipients.
Collapse
Affiliation(s)
- Gülnar Sensoy
- Department of Pediatric Infectious Diseases, Ondokuz Mayıs University Hospital, Kurupelit, Samsun, Turkey.
| | | |
Collapse
|