1
|
Xue Y, Xia Y, Cheng D, Shi T, Mei P, Hong S. Association between genetically proxied PPARG activation and psoriasis vulgaris: a Mendelian randomization study. J DERMATOL TREAT 2024; 35:2381763. [PMID: 39034037 DOI: 10.1080/09546634.2024.2381763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Psoriasis is a common autoimmune disease in clinical practice, and previous observational studies have suggested that PPARG agonists such as Pioglitazone may be potential therapeutic agents. However, due to interference from various confounding factors, different observational studies have not reached a unified conclusion. We aim to evaluate the potential use of PPARG agonists for treating psoriasis from a new perspective through drug-targeted Mendelian randomization (MR) analysis. MATERIALS AND METHODS This study includes data on 8,876 individuals for acute myocardial infarction from GWAS, and LDL cholesterol data from 343,621 Europeans. FinnGen contributed psoriasis vulgaris data for 403,972 individuals. The DrugBank10 databases function to identify genes encoding protein products targeted by active constituents of lipid-modifying targets. A two-sample MR analysis and summary-data-based MR (SMR) analysis estimated the associations between expressions of drug target genes and symptoms of psoriasis vulgaris. A multivariable MR study was further conducted to examine if the observed association was direct association. RESULTS SMR analysis revealed that enhanced PPARG gene expression in the blood (equivalent to a one standard deviation increase) was a protective factor for psoriasis vulgaris (beta = -0.2017, se = 0.0723, p = 0.0053). Besides, there exists an MR association between LDL mediated by PPARG and psoriasis vulgaris outcomes (beta = -3.9169, se = 0.5676, p = 5.17E-12). These results indicate that PPARG is a therapeutic target for psoriasis, suggesting that psoriasis may be a potential indication for PPARG agonists. CONCLUSION This study confirms that therapeutic activation of PPARG helps suppress the development of psoriasis. Psoriasis may be a new indication for PPARG agonists, such as Pioglitazone. In the future, new anti-psoriatic drugs could be developed targeting PPARG.
Collapse
Affiliation(s)
- Yan Xue
- Department of Dermatology, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Yuning Xia
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, China
| | - Donghao Cheng
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, China
| | - Taiyu Shi
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, China
| | - Ping Mei
- Department of Radiology, Anqing Municipal Hospital, Anqing, China
| | - Sheng Hong
- Department of Dermatology, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| |
Collapse
|
2
|
Ray PK, Shabana K, Salahuddin, Kumar R. Synthetic Strategies of Thiazolidine-2,4-dione Derivatives for the Development of New Anti-diabetic Agents: Compressive Review. Curr Top Med Chem 2024; 24:885-928. [PMID: 38500288 DOI: 10.2174/0115680266284283240304071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Thiazolidine-2,4-dione (2,4-TZD) is a flexible pharmacophore and a privileged platform and contains a five-membered ring with a 2-oxygen atom with double bond 2,4- position and one nitrogen atom as well as sulphur containing in the heterocyclic compound. A famous electron-rich nitrogen transporter combines invigorating electronic properties with the prospective for elemental applications. Thiazolidine-2,4-dione analogues have been synthesized using a variety of methods, all of which have shown to have a strong biological effect. OBJECTIVES The study of the biological activity of Thiazolidine-2,4-dione derivatives has been a fascinating field of pharmaceutical chemistry and has many purposes. This derivative described in the literature between 1995 to 2023 was the focus of this study. Thiazolidine-2,4-diones have been discussed in terms of their introduction, general method, synthetic scheme and antidiabetic significance in the current review. CONCLUSION Thiazolidine-2,4-diones are well-known heterocyclic compounds. The synthesis of Thiazolidine-2,4-diones has been described using a variety of methods. Antidiabetic activity has been discovered in several Thiazolidine-2,4-dione derivatives, which enhance further research. The use of Thiazolidine-2,4-diones to treat antidiabetics has piqued researchers' interest in learning more about thiazolidine-2,4-diones.
Collapse
Affiliation(s)
- Pushkar Kumar Ray
- Department of Pharmacy, Harlal Institute of Management and Technology (HIMT), Plot no-8, Knowledge Park-1, Greater Noida, Uttar Pradesh, 201310, India
| | - Km Shabana
- Department of Pharmacy, Harlal Institute of Management and Technology (HIMT), Plot no-8, Knowledge Park-1, Greater Noida, Uttar Pradesh, 201310, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, 201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, 201306, India
| |
Collapse
|
3
|
Abdelgawad MA, El-Adl K, El-Hddad SSA, Elhady MM, Saleh NM, Khalifa MM, Khedr F, Alswah M, Nayl AA, Ghoneim MM, Abd El-Sattar NEA. Design, Molecular Docking, Synthesis, Anticancer and Anti-Hyperglycemic Assessments of Thiazolidine-2,4-diones Bearing Sulfonylthiourea Moieties as Potent VEGFR-2 Inhibitors and PPARγ Agonists. Pharmaceuticals (Basel) 2022; 15:ph15020226. [PMID: 35215339 PMCID: PMC8880361 DOI: 10.3390/ph15020226] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Newly designed thiazolidine-2,4-diones 3–7a–c were synthesized, and their anticancer activities were screened against three cancer lines. They showed potent activities against HepG2 compared to the other HCT116 and MCF-7 tumor cell lines. Compounds 7c and 6c were detected as highly effective derivatives against MCF-7 (IC50 = 7.78 and 8.15 µM), HCT116 (IC50 = 5.77 and 7.11 µM) and HepG2 (IC50 = 8.82 and 8.99 µM). The highly effective derivatives 6a–c and 7a–c were tested against VERO normal cell lines. All derivatives were evaluated for their VEGFR-2 inhibitory actions and demonstrated high to low activities, with IC50 values varying from 0.08 to 0.93 µM. Moreover, derivatives 5a–c, 6a–c and 7a–c were assessed to verify their in vitro binding affinities to PPARγ and insulin-secreting activities. Finally, docking studies were performed to explore their affinities and binding modes toward both VEGFR-2 and PPARγ receptors.
Collapse
Affiliation(s)
- Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo 11785, Egypt
- Correspondence: or or
| | | | - Mostafa M. Elhady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| | - Nashwa M. Saleh
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11754, Egypt;
| | - Mohamed M. Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; (M.M.K.); (F.K.)
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Nour E. A. Abd El-Sattar
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt;
| |
Collapse
|
4
|
Kazberuk A, Zareba I, Palka J, Surazynski A. A novel plausible mechanism of NSAIDs-induced apoptosis in cancer cells: the implication of proline oxidase and peroxisome proliferator-activated receptor. Pharmacol Rep 2020; 72:1152-1160. [PMID: 32710395 PMCID: PMC7550302 DOI: 10.1007/s43440-020-00140-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Although pharmaco-epidemiological studies provided evidence for the anticancer potential of non-steroidal anti-inflammatory drugs (NSAIDs), the mechanism of their anti-cancer activity is not known. Several lines of evidence suggest that proline dehydrogenase/proline oxidase (PRODH/POX) may represent a target for NSAIDs-dependent anti-cancer activity. PRODH/POX catalyzes conversion of proline into Δ1-pyrroline-5-carboxylate releasing ATP or reactive oxygen species for autophagy/apoptosis. Since NSAIDs are ligands of peroxisome proliferator-activated receptor (PPARs) and PPARs are implicated in PRODH/POX-dependent apoptosis we provided a hypothesis on the mechanism of NSAIDs-induced apoptosis in cancer cells.
Collapse
Affiliation(s)
- Adam Kazberuk
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Ilona Zareba
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
5
|
Bedrose S, Turin CG, Lavis VR, Kim ST, Thosani SN. A CASE OF ACQUIRED GENERALIZED LIPODYSTROPHY ASSOCIATED WITH PEMBROLIZUMAB IN A PATIENT WITH METASTATIC MALIGNANT MELANOMA. AACE Clin Case Rep 2020; 6:e40-e45. [PMID: 32524008 DOI: 10.4158/accr-2019-0234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/06/2019] [Indexed: 12/17/2022] Open
Abstract
Objective To describe an unusual immune-related adverse event (irAE), acquired generalized lipodystrophy (AGL), from checkpoint inhibitor therapy in a patient treated with pembrolizumab. Methods This is a case report of a 67-year-old male with metastatic melanoma who was treated with pembrolizumab. Prior to pembrolizumab, the patient was treated with another immune-checkpoint inhibitor and developed autoimmune hemolytic anemia. After starting pembrolizumab, he developed a scrotal mass consistent with panniculitis and after several subsequent cycles, he developed AGL. Results Loss of subcutaneous fat, unexplained weight loss in combination with worsening insulin resistance and worsening hypertriglyceridemia after initiation of pembrolizumab were consistent with AGL. Autoimmune disorders and other etiologies were ruled out. Despite this irAE, the patient continued to receive pembrolizumab given stabilization of melanoma with treatment. Conclusion We report the second case of a patient who developed AGL secondary to pembrolizumab, and the fourth case to report such complication secondary to antiprogrammed cell death receptor-1 inhibitors. As use of checkpoint inhibitors becomes more common to treat several types of cancer, it is vital for clinicians to recognize these rare irreversible complications that are not frequently reported in clinical trials.
Collapse
|
6
|
Deshpande A, Toshniwal H, Joshi S, Jani RH. A Prospective, Multicentre, Open-Label Single-Arm Exploratory Study to Evaluate Efficacy and Safety of Saroglitazar on Hypertriglyceridemia in HIV Associated Lipodystrophy. PLoS One 2016; 11:e0146222. [PMID: 26789842 PMCID: PMC4720399 DOI: 10.1371/journal.pone.0146222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 12/14/2015] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE This study was designed to explore the efficacy and safety of saroglitazar 4 mg on hypertriglyceridemia in patients with HIV associated lipodystrophy. METHODS During this 12-week prospective, multi-centric, open-label, single arm exploratory study, 50 patients were enrolled to receive saroglitazar 4 mg orally once daily in the morning before breakfast. The primary efficacy endpoint was the percent change in triglyceride (TG) levels from baseline to Week 6 and Week 12. The secondary efficacy endpoints were assessment of low-density-lipoprotein (LDL), very-low-density-lipoprotein (VLDL), high-density-lipoprotein (HDL), non-HDL cholesterol, total cholesterol, apo-lipoprotein (Apo) A1, Apo B, and C-peptide and fasting insulin for HOMA beta and HOMA IR. Safety assessment was performed during the study. RESULTS Saroglitazar 4 mg significantly decreased the serum TG levels from baseline at Week 6 (percent change: -40.98; 95% CI: -50.82, -31.15) and Week 12 (percent change -45.11; 95% CI: -52.37, -37.86). Reduction in VLDL cholesterol (percent change: -46.33; 95% CI: -52.89, -39.76) and total cholesterol (percent change: 7.37; 95% CI: 1.96, 12.78) was observed at week 12 from baseline. Saroglitazar increased HDL cholesterol (percent change: 34.56, 95% CI: 22.22, 46.90), Apo A1 (percent change: 33.16; 95% CI: 18.69, 47.63) and Apo B (percent change: 10.55, 95% CI: 2.86, 18.25) levels at week 12 from baseline. Saroglitazar treatment led to increase in the C-peptide (percent change: 59.42, 95% CI: 48.78, 70.06), fasting insulin levels (percent change: 47.10; 95% CI: 38.63, 55.57), HOMA of beta cell function for C-peptide (percent change: 71.67; 95% CI: 39.09, 104.26) and HOMA of insulin resistance for C-peptide (percent change: 58.29, 95% CI: 46.74, 69.83) at week 12 from baseline. Saroglitazar treatment was safe and well tolerated in this study. CONCLUSION Overall, the observed changes in lipid profile after 12 weeks of saroglitazar treatment were in the direction of improvement in patients with HIV associated lipodystrophy. TRIAL REGISTRATION Clinical Trial Registry of India Phase II/CTRI/2010/091/000107.
Collapse
Affiliation(s)
- Alka Deshpande
- Grant Medical College & Sir J.J. Group of Hospitals, Mumbai, Maharashtra, India
| | | | - Shashank Joshi
- Joshi Clinic, 12, Golden Palace, Behind Union Bank of India, Turner Road, Bandra West, Mumbai, India
| | - Rajendrakumar H. Jani
- Clinical R & D, Cadila Healthcare Limited, Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moriaya, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Gupta M, Mahajan VK, Mehta KS, Chauhan PS, Rawat R. Peroxisome proliferator-activated receptors (PPARs) and PPAR agonists: the 'future' in dermatology therapeutics? Arch Dermatol Res 2015; 307:767-780. [PMID: 25986745 DOI: 10.1007/s00403-015-1571-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 05/05/2015] [Indexed: 01/10/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors and comprise three different isoforms namely PPARα, PPARγ, and PPARβ/δ with PPARβ/δ being the predominant subtype in human keratinocytes. After binding with specific ligands, PPARs regulate gene expression, cell growth and differentiation, apoptosis, inflammatory responses, and tumorogenesis. PPARs also modulate a wide variety of skin functions including keratinocyte proliferation, epidermal barrier formation, wound healing, melanocyte proliferation, and sebum production. Recent studies have shown the importance of PPARs in the pathogenesis of many dermatological disorders. Clinical trials have suggested possible role of PPAR agonists in the management of various dermatoses ranging from acne vulgaris, psoriasis, hirsutism, and lipodystrophy to cutaneous malignancies including melanoma. This article is intended to be a primer for dermatologists in their understanding of clinical relevance of PPARs and PPAR agonists in dermatology therapeutics.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| | - Vikram K Mahajan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India.
| | - Karaninder S Mehta
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| | - Pushpinder S Chauhan
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| | - Ritu Rawat
- Department of Dermatology, Venereology and Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, 176001, Himachal Pradesh, India
| |
Collapse
|
8
|
Abstract
Lipodystrophies are a genetically heterogeneous group of disorders characterized by loss of subcutaneous adipose tissue and metabolic dysfunction, including insulin resistance, increased levels of free fatty acids, abnormal adipocytokine secretion, and ectopic fat deposition, which are also observed in patients with visceral obesity and/or type 2 diabetes mellitus. Pathophysiological, biochemical, and genetic studies suggest that impairment in multiple adipose tissue functions, including adipocyte maturation, lipid storage, formation and/or maintenance of the lipid droplet, membrane composition, DNA repair efficiency, and insulin signaling, results in severe metabolic and endocrine consequences, ultimately leading to specific lipodystrophic phenotypes. In this review, recent evidences on the causes and metabolic processes of lipodystrophies will be presented, proposing a disease model that could be potentially informative for better understanding of common metabolic diseases in humans, including obesity, metabolic syndrome, and type 2 diabetes.
Collapse
Affiliation(s)
- Romina Ficarella
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare, n. 11, 70124, Bari, Italy,
| | | | | |
Collapse
|
9
|
Mondal D, Liu K, Hamblin M, Lasky JA, Agrawal KC. Nelfinavir suppresses insulin signaling and nitric oxide production by human aortic endothelial cells: protective effects of thiazolidinediones. Ochsner J 2013; 13:76-90. [PMID: 23533049 PMCID: PMC3603192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND In human immunodeficiency virus 1 (HIV-1)-infected individuals, exposure to a protease inhibitor (PI)-based highly active antiretroviral therapy (HAART) regimen increases cardiovascular disease and endothelial dysfunction. However, the mechanisms of PI-induced effects on endothelial cells (ECs) are not known. Furthermore, strategies to suppress these deleterious outcomes of PIs need to be developed. Insulin-induced PI3K/Akt signaling and endothelial nitric oxide (NO)-synthase (eNOS) phosphorylation regulates NO production by ECs that maintain vascular homeostasis. We evaluated whether nelfinavir (NEL), a potent HIV-1 PI that suppresses Akt phosphorylation, can alter insulin-induced NO production in human aortic endothelial cells (HAECs) and whether insulin sensitization of HAECs via the peroxisome proliferator-activated receptor-gamma agonists, thiazolidinediones, can ameliorate these side effects. METHODS Real-time NO production in HAECs was monitored by fluorimetric dyes DAF-FM DA and DAF-2 DA. Immunodetection studies were used to determine the phosphorylation of Akt, eNOS, insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1), and PI3K/p85α. Expression of eNOS messenger RNA was measured by reverse transcription polymerase chain reaction. RESULTS In vitro exposure (72 hours) of HAECs to NEL (0.25-2 μg/mL) decreased both basal (2.5-fold) and insulin-induced NO production (4- to 5-fold). NEL suppressed insulin-induced phosphorylation of both Akt and eNOS at serine residues 473 and 1177, respectively. NEL decreased tyrosine phosphorylation of IR-β, IRS-1, and PI3K. Coexposure to troglitazone (TRO; 250 nM) ameliorated the suppressive effects of NEL on insulin signaling and NO production. Coexposure to TRO also increased eNOS expression in NEL-treated HAECs. CONCLUSION Our findings indicate that treatment with potent insulin sensitizers may protect against PI-mediated endothelial dysfunction during long-term HAART.
Collapse
Affiliation(s)
| | - Kai Liu
- Department of Pharmacology and
| | | | - Joseph A. Lasky
- Section of Pulmonary Diseases, Tulane University Medical Center, New Orleans, LA
| | | |
Collapse
|
10
|
Gutierrez AD, Balasubramanyam A. Dysregulation of glucose metabolism in HIV patients: epidemiology, mechanisms, and management. Endocrine 2012; 41:1-10. [PMID: 22134974 PMCID: PMC3417129 DOI: 10.1007/s12020-011-9565-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/07/2011] [Indexed: 02/06/2023]
Abstract
HIV-infected patients on highly active antiretroviral therapy (HAART) have increased prevalence of a number of chronic metabolic disorders of multifactorial but unclear etiology. These include disorders of lipid metabolism with or without lipodystrophy, insulin resistance, and an increased prevalence of impaired glucose tolerance, diabetes mellitus, and cardiometabolic syndrome. While much attention has been focused on the lipid and cardiovascular disorders, few investigations have attempted to characterize the prevalence, incidence, etiology, mechanisms, and management of glycemic disorders in HIV patients. In this review, we have focused specifically on a comprehensive assessment of dysglycemia in the context of HIV infection and HAART.
Collapse
Affiliation(s)
- Absalon D. Gutierrez
- Translational Metabolism Unit, Diabetes and Endocrinology Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine; Houston, Texas, USA
| | - Ashok Balasubramanyam
- Translational Metabolism Unit, Diabetes and Endocrinology Research Center, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine; Houston, Texas, USA
- Endocrine Service, Ben Taub General Hospital, Houston, Texas, USA
| |
Collapse
|
11
|
Magkos F, Mantzoros CS. Body fat redistribution and metabolic abnormalities in HIV-infected patients on highly active antiretroviral therapy: novel insights into pathophysiology and emerging opportunities for treatment. Metabolism 2011; 60:749-53. [PMID: 20965525 PMCID: PMC3036773 DOI: 10.1016/j.metabol.2010.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Serum FGF21 levels are elevated in association with lipodystrophy, insulin resistance and biomarkers of liver injury in HIV-1-infected patients. AIDS 2010; 24:2629-37. [PMID: 20935553 DOI: 10.1097/qad.0b013e3283400088] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE HIV-1-infected patients with lipodystrophy show insulin resistance, dyslipidemia and other signs of metabolic syndrome. Fibroblast growth factor-21 (FGF21) is a novel metabolic regulator that has been suggested to exert beneficial effects on metabolic homeostasis and insulin sensitivity. Our goal was to determine the relationship between FGF21 levels and metabolic alterations in these patients. RESEARCH DESIGN AND METHODS Serum FGF21 levels were analyzed in 179 individuals belonging to four groups: HIV-1-infected, antiretroviral-treated patients that have developed lipodystrophy (n = 59); HIV-1-infected, antiretroviral-treated patients without lipodystrophy (n = 45); untreated (naive) HIV-1-infected patients (n = 41); and healthy control individuals (n = 34). Serum FGF21 levels were correlated with parameters indicative of altered fat distribution, metabolic and cardiovascular risk, and in relation to HIV-1 infection and antiretroviral treatment regimens. RESULTS Serum FGF21 levels were increased in all HIV-1-infected patients, but the increases were most marked in those with lipodystrophy. FGF21 levels showed a strong positive correlation with indicators of lipodystrophy (trunk/apendicular fat ratio, waist-to-hip ratio), insulin resistance (fasting glucose, HOMA-R), dyslipidemia (low-density lipoprotein cholesterol), and liver injury (γ-glutamyltransferase). CONCLUSIONS FGF21 levels are increased in HIV-1-infected patients, especially in those with lipodystrophy, and this increase is closely associated with insulin resistance, metabolic syndrome and makers of liver damage. Further research will be required to determine whether the increase in FGF21 levels is caused by a compensatory response or resistance to FGF21, and to establish the potential of FGF21 as a biomarker of altered metabolism in HIV-1-infected, antiretroviral-treated patients.
Collapse
|
13
|
The HIV-1/HAART associated metabolic syndrome – Novel adipokines, molecular associations and therapeutic implications. J Infect 2010; 61:101-13. [DOI: 10.1016/j.jinf.2010.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/18/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
14
|
Caron-Debarle M, Lagathu C, Boccara F, Vigouroux C, Capeau J. HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med 2010; 16:218-29. [DOI: 10.1016/j.molmed.2010.03.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/09/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
|
15
|
Boccara F, Auclair M, Cohen A, Lefèvre C, Prot M, Bastard JP, Capeau J, Caron-Debarle M. HIV protease inhibitors activate the adipocyte renin angiotensin system. Antivir Ther 2010; 15:363-75. [DOI: 10.3851/imp1533] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Current world literature. Curr Opin Lipidol 2009; 20:512-9. [PMID: 19935200 DOI: 10.1097/mol.0b013e328334096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Abstract
PURPOSE OF REVIEW To review recent advances in the understanding of the mechanism of action of thiazolidinediones (TZDs) in humans. RECENT FINDINGS The liver is characterized by excess fat accumulation due to nonalcoholic causes (non-alcoholic fatty liver disease) in most patients with the metabolic syndrome and type 2 diabetes. Simple steatosis can progress to nonalcoholic steatohepatitis (NASH) and cirrhosis. Both of the commercially available antihyperglycemic TZD agonists, pioglitazone and rosiglitazone, are markedly effective in reducing liver fat content by 30-50% and sensitizing the liver to insulin. This reduces the amount of endogenous and exogenous insulin needed to inhibit hepatic glucose production. Decreases in liver fat are closely correlated with increases in serum adiponectin, which is an insulin-sensitizing adipokine produced exclusively by adipose tissue. Both TZDs are equally effective in reducing liver fat. Regarding lipid metabolism, enhanced hepatic insulin sensitivity would be predicted to lower VLDL and serum triglycerides and increase HDL-cholesterol. Pioglitazone and rosiglitazone have different effects on serum lipids, which cannot be attributed to simple insulin sensitization. Very recently, TZDs have been shown to reduce not only steatosis but possibly also hepatocellular damage in NASH. SUMMARY Given the uncertainties in benefits of TZDs in reducing cardiovascular disease in type 2 diabetes, as well as other side-effects (heart failure, fractures), TZDs may in the future be increasingly used in patients with nonalcoholic steatohepatitis.
Collapse
|
18
|
Elfaki DAH, Bjornsson E, Lindor KD. Review article: nuclear receptors and liver disease--current understanding and new therapeutic implications. Aliment Pharmacol Ther 2009; 30:816-25. [PMID: 19706148 DOI: 10.1111/j.1365-2036.2009.04104.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The important role of nuclear receptors and their contribution to liver function in both physiological and pathological conditions has come to attention in recent years and has advanced our understanding of several liver diseases. These findings led to the introduction of targeting nuclear receptors as treatment strategies for various liver diseases. AIMS To review the new insights brought by the study of nuclear receptors to our understanding of the molecular basis of various liver diseases, and to summarize some of the recent studies that evaluated the efficacy of targeting nuclear receptor as a new approach in treating liver diseases. METHODS Review of articles, using PubMed and article references. RESULTS Nuclear receptor ligands in patients with liver diseases have been associated with a variety of toxicities. Some clinical results have not met the expectations predicted from animal experiments. Mechanistic explanations at the molecular level are needed for preventing toxicity and improving outcomes from nuclear receptor ligands. CONCLUSION The use of various nuclear receptor ligands in liver diseases is a promising approach that can benefit many patients suffering from these devastating diseases. However, we are far from a full understanding of the molecular mechanisms by which these receptors work.
Collapse
Affiliation(s)
- D A H Elfaki
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55901, USA
| | | | | |
Collapse
|