1
|
Poppe L, Hartman JJ, Romero A, Reagan JD. Structural and Thermodynamic Model for the Activation of Cardiac Troponin. Biochemistry 2022; 61:741-748. [PMID: 35349258 DOI: 10.1021/acs.biochem.2c00084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac troponin is a regulatory protein complex located on the sarcomere that regulates the engagement of myosin on actin filaments. Low-molecular weight modulators of troponin that bind allosterically with the calcium ion have the potential to improve cardiac contractility in patients with reduced cardiac function. Here we propose an approach to the rational design of troponin modulators through the combined use of solution nuclear magnetic resonance and isothermal titration calorimetry methods. In contrast to traditional approaches limited to calcium and activator-bound troponin structures, here we analyzed the structural and thermodynamic impact of an activator in the context of the troponin functional cycle. This led us to propose a rationale for developing an efficacious troponin activator.
Collapse
Affiliation(s)
- Leszek Poppe
- Amgen, Inc., Thousand Oaks, California 91320, United States
| | - James J Hartman
- Cytokinetics, Inc., South San Francisco, California 94080, United States
| | - Antonio Romero
- Cytokinetics, Inc., South San Francisco, California 94080, United States
| | - Jeffrey D Reagan
- Amgen, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
2
|
Aboalgasm H, Ballo R, Gwanyanya A. Organisational alteration of cardiac myofilament proteins by hyperglycaemia in mouse embryonic stem cell-derived cardiomyocytes. J Muscle Res Cell Motil 2021; 42:419-428. [PMID: 34387802 DOI: 10.1007/s10974-021-09607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022]
Abstract
The exposure of the developing foetal heart to hyperglycaemia in mothers with diabetes mellitus is a major risk factor for foetal cardiac complications that lead to heart failure. We studied the effects of hyperglycaemia on the layout of cardiac myofilament proteins in stem cell-derived cardiomyocytes and their possible underlying mechanisms. Mouse embryonic stem cells (mESCs) were differentiated into cardiac-like cells and cultured in media containing baseline- or high glucose concentrations. Cellular biomarkers were detected using Western blot analysis, immunocytochemistry, 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assay, and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay. High glucose decreased the proportion of cardiac troponin T and α-actinin 2 positive mESCs as well as disrupted the α-actinin 2 striated pattern and the distribution of the cardiac myosin heavy chain α- and β isoforms. However, there was no alteration of the cellular EdU uptake nor the expression of the receptor of advanced glycation end-product (RAGE). High glucose also increased the presence of the oxidative stress marker nitrotyrosine as well as the number of TUNEL-stained nuclei in cardiac-like cells. Treatment with the antioxidant N-acetyl cysteine decreased the number of TUNEL-stained cells in high glucose and improved the α-actinin 2 striated pattern. Hyperglycaemia negatively impacted the expression and cellular organisation of cardiac myofilament proteins in mESC-derived cardiomyocytes through oxidative stress. The results add further insights into the pathophysiological mechanisms of cardiac contractile dysfunction in diabetic cardiac developmental disease.
Collapse
Affiliation(s)
- Hamida Aboalgasm
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Robea Ballo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
3
|
Stafford F, Thomson K, Butters A, Ingles J. Hypertrophic Cardiomyopathy: Genetic Testing and Risk Stratification. Curr Cardiol Rep 2021; 23:9. [PMID: 33433738 DOI: 10.1007/s11886-020-01437-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic basis and molecular pathogenesis of hypertrophic cardiomyopathy (HCM) continues to evolve. We describe the genetic basis of HCM, recent advances in genetic testing and the role of genetics in guiding risk stratification and management, both now and in the future. RECENT FINDINGS While initially thought to be an exclusively Mendelian disease, we now know there are important HCM sub-groups. A proportion will have sarcomere variants as the cause of their disease, while others will have genetic variants in genes that can give rise to conditions that can mimic HCM. The role of genetics is primarily for cascade genetic testing, though there is emerging evidence of a role for prognosis and patient management. Genetic testing is a useful addition to management. Genotype may play a greater role in risk stratification, management, treatment and prognosis in future, offering improved outcomes for patients and their families with HCM.
Collapse
Affiliation(s)
- Fergus Stafford
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
| | - Kate Thomson
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Butters
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jodie Ingles
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
4
|
Lumngwena EN, Skatulla S, Blackburn JM, Ntusi NAB. Mechanistic implications of altered protein expression in rheumatic heart disease. Heart Fail Rev 2020; 27:357-368. [PMID: 32653980 DOI: 10.1007/s10741-020-09993-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A β-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.
Collapse
Affiliation(s)
- Evelyn N Lumngwena
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa.
- Centre for the Study of Emerging and Re-emerging Infections (CREMER), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaounde, Cameroon.
| | - Sebastian Skatulla
- Department of Civil Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
- Hatter instititute for Cardiovascualar research in Africa, Departmenent of Medicine, 4th floor Chris Barnard Building, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic Cardiomyopathy: An Overview of Genetics and Management. Biomolecules 2019; 9:E878. [PMID: 31888115 PMCID: PMC6995589 DOI: 10.3390/biom9120878] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically heterogeneous cardiac muscle disorder with a diverse natural history, characterized by unexplained left ventricular hypertrophy (LVH), with histopathological hallmarks including myocyte enlargement, myocyte disarray and myocardial fibrosis. Although these features can cause significant cardiac symptoms, many young individuals with HCM are asymptomatic or mildly symptomatic. Sudden cardiac death (SCD) may occur as the initial clinical manifestation. Over the past few decades, HCM has been considered a disease of sarcomere, and typically as an autosomal dominant disease with variable expressivity and incomplete penetrance. Important insights into the genetic landscape of HCM have enhanced our understanding of the molecular pathogenesis, empowered gene-based diagnostic testing to identify at-risk individuals, and offered potential targets for the development of therapeutic agents. This article reviews the current knowledge on the clinical genetics and management of HCM.
Collapse
Affiliation(s)
- Polakit Teekakirikul
- Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Cardiovascular Genomics and Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjuan Zhu
- Centre for Cardiovascular Genomics and Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Division of Medical Sciences, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Helen C. Huang
- Department of Medicine (Cardiology), University of California, Los Angeles, CA 90095, USA
| | - Erik Fung
- Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Laboratory for Heart Failure + Circulation Research, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital and Gerald Choa Cardiac Research Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically heterogeneous cardiac muscle disorder with a diverse natural history, characterized by unexplained left ventricular hypertrophy (LVH), with histopathological hallmarks including myocyte enlargement, myocyte disarray and myocardial fibrosis. Although these features can cause significant cardiac symptoms, many young individuals with HCM are asymptomatic or mildly symptomatic. Sudden cardiac death (SCD) may occur as the initial clinical manifestation. Over the past few decades, HCM has been considered a disease of sarcomere, and typically as an autosomal dominant disease with variable expressivity and incomplete penetrance. Important insights into the genetic landscape of HCM have enhanced our understanding of the molecular pathogenesis, empowered gene-based diagnostic testing to identify at-risk individuals, and offered potential targets for the development of therapeutic agents. This article reviews the current knowledge on the clinical genetics and management of HCM.
Collapse
|
7
|
Coronary arterial vasculature in the pathophysiology of hypertrophic cardiomyopathy. Pflugers Arch 2018; 471:769-780. [PMID: 30370501 DOI: 10.1007/s00424-018-2224-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Alterations in the coronary vascular system are likely associated with a mismatch between energy demand and energy supply and critical in triggering the cascade of events that leads to symptomatic hypertrophic cardiomyopathy. Targeting the early events, particularly vascular remodeling, may be a key approach to developing effective treatments. Improvement in our understanding of hypertrophic cardiomyopathy began with the results of early biophysical studies, proceeded to genetic analyses pinpointing the mutational origin, and now pertains to imaging of the metabolic and flow-related consequences of such mutations. Microvascular dysfunction has been an ongoing hot topic in the imaging of genetic cardiomyopathies marked by its histologically significant remodeling and has proven to be a powerful asset in determining prognosis for these patients as well as enlightening scientists on a potential pathophysiological cascade that may begin early during the developmental process. Here, we discuss questions that continue to remain on the mechanistic processes leading to microvascular dysfunction, its correlation to the morphological changes in the vessels, and its contribution to disease progression.
Collapse
|
8
|
Cuello F, Wittig I, Lorenz K, Eaton P. Oxidation of cardiac myofilament proteins: Priming for dysfunction? Mol Aspects Med 2018; 63:47-58. [PMID: 30130564 DOI: 10.1016/j.mam.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Oxidants are produced endogenously and can react with and thereby post-translationally modify target proteins. They have been implicated in the redox regulation of signal transduction pathways conferring protection, but also in mediating oxidative stress and causing damage. The difference is that in scenarios of injury the amount of oxidants generated is higher and/or the duration of oxidant exposure sustained. In the cardiovascular system, oxidants are important for blood pressure homeostasis, for unperturbed cardiac function and also contribute to the observed protection during ischemic preconditioning. In contrast, oxidative stress accompanies all major cardiovascular pathologies and has been attributed to mediate contractile dysfunction in part by inducing oxidative modifications in myofilament proteins. However, the proportion to which oxidative modifications of contractile proteins are beneficial or causatively mediate disease progression needs to be carefully reconsidered. These antithetical aspects will be discussed in this review with special focus on direct oxidative post-translational modifications of myofilament proteins that have been described to occur in vivo and to regulate actin-myosin interactions in the cardiac myocyte sarcomere, the methodologies for detection of oxidative post-translational modifications in target proteins and the feasibility of antioxidant therapy strategies as a potential treatment for cardiac disorders.
Collapse
Affiliation(s)
- Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Germany
| | - Kristina Lorenz
- Comprehensive Heart Failure Center, Würzburg, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. Dortmund, West German Heart and Vascular Center, Essen, Germany
| | - Philip Eaton
- King's British Heart Foundation Centre, King's College London, UK
| |
Collapse
|
9
|
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 2018; 113:29. [PMID: 29905892 PMCID: PMC6003982 DOI: 10.1007/s00395-018-0688-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation-contraction and also excitation-transcription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after several post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflammatory processes in the heart.
Collapse
Affiliation(s)
- Jan Beckendorf
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department for Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Nánási P, Komáromi I, Almássy J. Perspectives of a myosin motor activator agent with increased selectivity. Can J Physiol Pharmacol 2018; 96:676-680. [PMID: 29792814 DOI: 10.1139/cjpp-2017-0741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Clinical treatment of heart failure is still not fully solved. A novel class of agents, the myosin motor activators, acts directly on cardiac myosin resulting in an increased force generation and prolongation of contraction. Omecamtiv mecarbil, the lead molecule of this group, is now in human phase 3 displaying promising clinical performance. However, omecamtiv mecarbil is not selective to myosin, because it readily binds to and activates cardiac ryanodine receptors (RyR-2), an effect that may cause complications in case of overdose. In this study, in silico analysis was performed to investigate the docking of omecamtiv mecarbil and other structural analogues to cardiac myosin heavy chain and RyR-2 to select the structure that has a higher selectivity to myosin over RyR-2. In silico docking studies revealed that omecamtiv mecarbil has comparable affinity to myosin and RyR-2: the respective Kd values are 0.60 and 0.87 μmol/L. Another compound, CK-1032100, has much lower affinity to RyR-2 than omecamtiv mecarbil, while it still has a moderate affinity to myosin. It was concluded that further research starting from the chemical structure of CK-1032100 may result a better myosin activator burdened probably less by the RyR-2 binding side effect. It also is possible, however, that the selectivity of omecamtiv mecarbil to myosin over RyR-2 cannot be substantially improved, because similar moieties seem to be responsible for the high affinity to both myosin and RyR-2.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- b Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- c Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Land S, Park-Holohan SJ, Smith NP, Dos Remedios CG, Kentish JC, Niederer SA. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J Mol Cell Cardiol 2017; 106:68-83. [PMID: 28392437 DOI: 10.1016/j.yjmcc.2017.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022]
Abstract
Experimental data from human cardiac myocytes at body temperature is crucial for a quantitative understanding of clinically relevant cardiac function and development of whole-organ computational models. However, such experimental data is currently very limited. Specifically, important measurements to characterize changes in tension development in human cardiomyocytes that occur with perturbations in cell length are not available. To address this deficiency, in this study we present an experimental data set collected from skinned human cardiac myocytes, including the passive and viscoelastic properties of isolated myocytes, the steady-state force calcium relationship at different sarcomere lengths, and changes in tension following a rapid increase or decrease in length, and after constant velocity shortening. This data set is, to our knowledge, the first characterization of length and velocity-dependence of tension generation in human skinned cardiac myocytes at body temperature. We use this data to develop a computational model of contraction and passive viscoelasticity in human myocytes. Our model includes troponin C kinetics, tropomyosin kinetics, a three-state crossbridge model that accounts for the distortion of crossbridges, and the cellular viscoelastic response. Each component is parametrized using our experimental data collected in human cardiomyocytes at body temperature. Furthermore we are able to confirm that properties of length-dependent activation at 37°C are similar to other species, with a shift in calcium sensitivity and increase in maximum tension. We revise our model of tension generation in the skinned isolated myocyte to replicate reported tension traces generated in intact muscle during isometric tension, to provide a model of human tension generation for multi-scale simulations. This process requires changes to calcium sensitivity, cooperativity, and crossbridge transition rates. We apply this model within multi-scale simulations of biventricular cardiac function and further refine the parametrization within the whole organ context, based on obtaining a healthy ejection fraction. This process reveals that crossbridge cycling rates differ between skinned myocytes and intact myocytes.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King's College London, UK.
| | - So-Jin Park-Holohan
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, UK
| | - Nicolas P Smith
- Department of Engineering Science, University of Auckland, New Zealand
| | | | - Jonathan C Kentish
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, UK
| | | |
Collapse
|
12
|
Klassen MP, Peters CJ, Zhou S, Williams HH, Jan LY, Jan YN. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 2017; 6. [PMID: 28328397 PMCID: PMC5362267 DOI: 10.7554/elife.20851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022] Open
Abstract
While the signals and complexes that coordinate the heartbeat are well established, how the heart maintains its electromechanical rhythm over a lifetime remains an open question with significant implications to human health. Reasoning that this homeostatic challenge confronts all pulsatile organs, we developed a high resolution imaging and analysis toolset for measuring cardiac function in intact, unanesthetized Drosophila melanogaster. We demonstrate that, as in humans, normal aging primarily manifests as defects in relaxation (diastole) while preserving contractile performance. Using this approach, we discovered that a pair of two-pore potassium channel (K2P) subunits, largely dispensable early in life, are necessary for terminating contraction (systole) in aged animals, where their loss culminates in fibrillatory cardiac arrest. As the pumping function of its heart is acutely dispensable for survival, Drosophila represents a uniquely accessible model for understanding the signaling networks maintaining cardiac performance during normal aging.
Collapse
Affiliation(s)
- Matthew P Klassen
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Christian J Peters
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Shiwei Zhou
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Hannah H Williams
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lily Yeh Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
13
|
Gresham KS, Stelzer JE. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. J Physiol 2016; 594:669-86. [PMID: 26635197 DOI: 10.1113/jp270959] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS β-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the β-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased β-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. β-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following β-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in β-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the β-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced β-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
14
|
Chang AN, Kamm KE, Stull JT. Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol 2016; 101:35-43. [PMID: 27742556 DOI: 10.1016/j.yjmcc.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022]
Abstract
Maintenance of contractile performance of the heart is achieved in part by the constitutive 40% phosphorylation of myosin regulatory light chain (RLC) in sarcomeres. The importance of this extent of RLC phosphorylation for optimal cardiac performance becomes apparent when various mouse models and resultant phenotypes are compared. The absence or attenuation of RLC phosphorylation results in poor performance leading to heart failure, whereas increased RLC phosphorylation is associated with cardiac protection from stresses. Although information is limited, RLC phosphorylation appears compromised in human heart failure which is consistent with data from mouse studies. The extent of cardiac RLC phosphorylation is determined by the balanced activities of cardiac myosin light chain kinases and phosphatases, the regulatory mechanisms of which are now emerging. This review thusly focuses on kinases that may participate in phosphorylating RLC to make the substrate for cardiac myosin light chain phosphatases, in addition to providing perspectives on the family of myosin light chain phosphatases and involved signaling mechanisms. Because biochemical and physiological information about cardiac myosin light chain phosphatase is sparse, such studies represent an emerging area of investigation in health and disease.
Collapse
Affiliation(s)
- Audrey N Chang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kristine E Kamm
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James T Stull
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Nánási P, Váczi K, Papp Z. The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Can J Physiol Pharmacol 2016; 94:1033-1039. [PMID: 27322915 DOI: 10.1139/cjpp-2015-0573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure became a leading cause of mortality in the past few decades with a progressively increasing prevalence. Its current therapy is restricted largely to the suppression of the sympathetic activity and the renin-angiotensin system in combination with diuretics. This restrictive strategy is due to the potential long-term adverse effects of inotropic agents despite their effective influence on cardiac function when employed for short durations. Positive inotropes include inhibitors of the Na+/K+ pump, β-receptor agonists, and phosphodiesterase inhibitors. Theoretically, Ca2+ sensitizers may also increase cardiac contractility without resulting in Ca2+ overload; nevertheless, their mechanism of action is frequently complicated by other pleiotropic effects. Recently, a new positive inotropic agent, the myosin activator omecamtiv mecarbil, has been developed. Omecamtiv mecarbil binds directly to β-myosin heavy chain and enhances cardiac contractility by increasing the number of the active force-generating cross-bridges, presumably without major off-target effects. This review focuses on recent in vivo and in vitro results obtained with omecamtiv mecarbil, and discusses its mechanism of action at a molecular level. Based on clinical data, omecamtiv mecarbil is a promising new tool in the treatment of systolic heart failure.
Collapse
Affiliation(s)
- Péter Nánási
- a Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Váczi
- b Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- c Division of Clinical Physiology, Department of Cardiology, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
17
|
Ramirez-Correa GA, Ma J, Slawson C, Zeidan Q, Lugo-Fagundo NS, Xu M, Shen X, Gao WD, Caceres V, Chakir K, DeVine L, Cole RN, Marchionni L, Paolocci N, Hart GW, Murphy AM. Removal of Abnormal Myofilament O-GlcNAcylation Restores Ca2+ Sensitivity in Diabetic Cardiac Muscle. Diabetes 2015; 64:3573-87. [PMID: 26109417 PMCID: PMC4587639 DOI: 10.2337/db14-1107] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/14/2015] [Indexed: 11/13/2022]
Abstract
Contractile dysfunction and increased deposition of O-linked β-N-acetyl-d-glucosamine (O-GlcNAc) in cardiac proteins are a hallmark of the diabetic heart. However, whether and how this posttranslational alteration contributes to lower cardiac function remains unclear. Using a refined β-elimination/Michael addition with tandem mass tags (TMT)-labeling proteomic technique, we show that CpOGA, a bacterial analog of O-GlcNAcase (OGA) that cleaves O-GlcNAc in vivo, removes site-specific O-GlcNAcylation from myofilaments, restoring Ca(2+) sensitivity in streptozotocin (STZ) diabetic cardiac muscles. We report that in control rat hearts, O-GlcNAc and O-GlcNAc transferase (OGT) are mainly localized at the Z-line, whereas OGA is at the A-band. Conversely, in diabetic hearts O-GlcNAc levels are increased and OGT and OGA delocalized. Consistent changes were found in human diabetic hearts. STZ diabetic hearts display increased physical interactions of OGA with α-actin, tropomyosin, and myosin light chain 1, along with reduced OGT and increased OGA activities. Our study is the first to reveal that specific removal of O-GlcNAcylation restores myofilament response to Ca(2+) in diabetic hearts and that altered O-GlcNAcylation is due to the subcellular redistribution of OGT and OGA rather than to changes in their overall activities. Thus, preventing sarcomeric OGT and OGA displacement represents a new possible strategy for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Genaro A Ramirez-Correa
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| | - Quira Zeidan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nahyr S Lugo-Fagundo
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mingguo Xu
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Viviane Caceres
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Khalid Chakir
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lauren DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert N Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anne M Murphy
- Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, Hill JA, Baker AJ, Kamm KE, Stull JT. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 2015; 290:10703-16. [PMID: 25733667 DOI: 10.1074/jbc.m115.642165] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Collapse
Affiliation(s)
| | | | - Patrick M Cowley
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | - Robert D Gerard
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jose R Pinto
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Joseph A Hill
- Internal Medicine (Cardiology), and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anthony J Baker
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | | |
Collapse
|
19
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
20
|
Roma-Rodrigues C, Fernandes AR. Genetics of hypertrophic cardiomyopathy: advances and pitfalls in molecular diagnosis and therapy. APPLICATION OF CLINICAL GENETICS 2014; 7:195-208. [PMID: 25328416 PMCID: PMC4199654 DOI: 10.2147/tacg.s49126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary disease of the cardiac muscle that occurs mainly due to mutations (>1,400 variants) in genes encoding for the cardiac sarcomere. HCM, the most common familial form of cardiomyopathy, affecting one in every 500 people in the general population, is typically inherited in an autosomal dominant pattern, and presents variable expressivity and age-related penetrance. Due to the morphological and pathological heterogeneity of the disease, the appearance and progression of symptoms is not straightforward. Most HCM patients are asymptomatic, but up to 25% develop significant symptoms, including chest pain and sudden cardiac death. Sudden cardiac death is a dramatic event, since it occurs without warning and mainly in younger people, including trained athletes. Molecular diagnosis of HCM is of the outmost importance, since it may allow detection of subjects carrying mutations on HCM-associated genes before development of clinical symptoms of HCM. However, due to the genetic heterogeneity of HCM, molecular diagnosis is difficult. Currently, there are mainly four techniques used for molecular diagnosis of HCM, including Sanger sequencing, high resolution melting, mutation detection using DNA arrays, and next-generation sequencing techniques. Application of these methods has proven successful for identification of mutations on HCM-related genes. This review summarizes the features of these technologies, highlighting their strengths and weaknesses. Furthermore, current therapeutics for HCM patients are correlated with clinically observed phenotypes and are based on the alleviation of symptoms. This is mainly due to insufficient knowledge on the mechanisms involved in the onset of HCM. Tissue engineering alongside regenerative medicine coupled with nanotherapeutics may allow fulfillment of those gaps, together with screening of novel therapeutic drugs and target delivery systems.
Collapse
Affiliation(s)
- Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal ; Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Clowes C, Boylan MGS, Ridge LA, Barnes E, Wright JA, Hentges KE. The functional diversity of essential genes required for mammalian cardiac development. Genesis 2014; 52:713-37. [PMID: 24866031 PMCID: PMC4141749 DOI: 10.1002/dvg.22794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
Abstract
Genes required for an organism to develop to maturity (for which no other gene can compensate) are considered essential. The continuing functional annotation of the mouse genome has enabled the identification of many essential genes required for specific developmental processes including cardiac development. Patterns are now emerging regarding the functional nature of genes required at specific points throughout gestation. Essential genes required for development beyond cardiac progenitor cell migration and induction include a small and functionally homogenous group encoding transcription factors, ligands and receptors. Actions of core cardiogenic transcription factors from the Gata, Nkx, Mef, Hand, and Tbx families trigger a marked expansion in the functional diversity of essential genes from midgestation onwards. As the embryo grows in size and complexity, genes required to maintain a functional heartbeat and to provide muscular strength and regulate blood flow are well represented. These essential genes regulate further specialization and polarization of cell types along with proliferative, migratory, adhesive, contractile, and structural processes. The identification of patterns regarding the functional nature of essential genes across numerous developmental systems may aid prediction of further essential genes and those important to development and/or progression of disease. genesis 52:713–737, 2014.
Collapse
Affiliation(s)
- Christopher Clowes
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
23
|
Yar S, Monasky MM, Solaro RJ. Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Arch 2014; 466:1189-97. [PMID: 24488009 DOI: 10.1007/s00424-014-1457-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
Abstract
In this review, we address the following question: Are modifications at the level of sarcomeric proteins in acquired heart failure early inducers of altered cardiac dynamics and signaling leading to remodeling and progression to decompensation? There is no doubt that most inherited cardiomyopathies are caused by mutations in proteins of the sarcomere. We think this linkage indicates that early changes at the level of the sarcomeres in acquired cardiac disorders may be significant in triggering the progression to failure. We consider evidence that there are rate-limiting mechanisms downstream of the trigger event of Ca(2+) binding to troponin C, which control cardiac dynamics. We discuss new perspectives on how modifications in these mechanisms may be of relevance to redox signaling in diastolic heart failure, to angiotensin II signaling via β-arrestin, and to remodeling related to altered structural rigidity of tropomyosin. We think that these new perspectives provide a rationale for future studies directed at a more thorough understanding of the question driving our review.
Collapse
Affiliation(s)
- Sumeyye Yar
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, M/C 901, Chicago, IL, 60612, USA
| | | | | |
Collapse
|
24
|
Sommese RF, Nag S, Sutton S, Miller SM, Spudich JA, Ruppel KM. Effects of troponin T cardiomyopathy mutations on the calcium sensitivity of the regulated thin filament and the actomyosin cross-bridge kinetics of human β-cardiac myosin. PLoS One 2013; 8:e83403. [PMID: 24367593 PMCID: PMC3867432 DOI: 10.1371/journal.pone.0083403] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/13/2013] [Indexed: 11/20/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.
Collapse
Affiliation(s)
- Ruth F. Sommese
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Suman Nag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shirley Sutton
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan M. Miller
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KR); (JS)
| | - Kathleen M. Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (KR); (JS)
| |
Collapse
|
25
|
Posttranslational modifications of cardiac troponin T: An overview. J Mol Cell Cardiol 2013; 63:47-56. [DOI: 10.1016/j.yjmcc.2013.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/18/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
|
26
|
Structural basis for the in situ Ca(2+) sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges. Arch Biochem Biophys 2013; 537:198-209. [PMID: 23896515 DOI: 10.1016/j.abb.2013.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/21/2022]
Abstract
The in situ structural coupling between the cardiac troponin (cTn) Ca(2+)-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca(2+) titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca(2+)-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force-Ca(2+) relationship. N-cTnC opening still occurred steeply during Ca(2+) titrations in the presence of 1mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca(2+)-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca(2+) levels, treatment with ADP·Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca(2+) titrations in the presence of ADP·Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca(2+) with increased Ca(2+)-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca(2+)-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI.
Collapse
|
27
|
Lu QW, Wu XY, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:91-101. [PMID: 23610579 PMCID: PMC3627712 DOI: 10.3969/j.issn.1671-5411.2013.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/13/2012] [Accepted: 01/30/2013] [Indexed: 01/25/2023]
Abstract
Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in the Ca(2+)-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn mutations have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca(2+) sensitivity, while DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myofilament Ca(2+) sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and cellular pathogenic mechanisms of the three types of inherited cardiomyopathy.
Collapse
Affiliation(s)
- Qun-Wei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
28
|
Abstract
We focus here on the modulation of thin filament activity by cardiac troponin I phosphorylation as an integral and adaptive mechanism in cardiac homeostasis and as a mechanism vulnerable to maladaptive response to stress. We discuss a current concept of cardiac troponin I function in the A-band region of the sarcomere and potential signaling to cardiac troponin I in a network involving the ends of the thin filaments at the Z-disk and the M-band regions. The cardiac sarcomere represents a remarkable set of interacting proteins that functions not only as a molecular machine generating the heartbeat but also as a hub of signaling. We review how phosphorylation signaling to cardiac troponin I is integrated, with parallel signals controlling excitation-contraction coupling, hypertrophy, and metabolism.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
29
|
Teekakirikul P, Padera RF, Seidman JG, Seidman CE. Hypertrophic cardiomyopathy: translating cellular cross talk into therapeutics. ACTA ACUST UNITED AC 2013; 199:417-21. [PMID: 23109667 PMCID: PMC3483129 DOI: 10.1083/jcb.201207033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with serious adverse outcomes, including heart failure, arrhythmias, and sudden cardiac death. The discovery that mutations in sarcomere protein genes cause HCM has enabled the development of mouse models that recapitulate clinical manifestations of disease. Studies in these models have provided unexpected insights into the biophysical and biochemical properties of mutated contractile proteins and may help to improve clinical diagnosis and management of patients with HCM.
Collapse
|
30
|
Avner BS, Shioura KM, Scruggs SB, Grachoff M, Geenen DL, Helseth DL, Farjah M, Goldspink PH, Solaro RJ. Myocardial infarction in mice alters sarcomeric function via post-translational protein modification. Mol Cell Biochem 2011; 363:203-15. [PMID: 22160857 DOI: 10.1007/s11010-011-1172-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/23/2011] [Indexed: 01/17/2023]
Abstract
Myocardial physiology in the aftermath of myocardial infarction (MI) before remodeling is an under-explored area of investigation. Here, we describe the effects of MI on the cardiac sarcomere with focus on the possible contributions of reactive oxygen species. We surgically induced MI in 6-7-month-old female CD1 mice by ligation of the left anterior descending coronary artery. Data were collected 3-4 days after MI or sham (SH) surgery. MI hearts demonstrated ventricular dilatation and systolic dysfunction upon echo cardiographic analysis. Sub-maximum Ca-activated tension in detergent-extracted fiber bundles from papillary muscles increased significantly in the preparations from MI hearts. Ca(2+) sensitivity increased after MI, whereas cooperativity of activation decreased. To assess myosin enzymatic integrity we measured splitting of Ca-ATP in myofibrillar preparations, which demonstrated a decline in Ca-ATPase activity of myofilament myosin. Biochemical analysis demonstrated post-translational modification of sarcomeric proteins. Phosphorylation of cardiac troponin I and myosin light chain 2 was reduced after MI in papillary samples, as measured using a phospho-specific stain. Tropomyosin was oxidized after MI, forming disulfide products detectable by diagonal non-reducing-reducing SDS-PAGE. Our analysis of myocardial protein oxidation post-MI also demonstrated increased S-glutathionylation. We functionally linked protein oxidation with sarcomere function by treating skinned fibers with the sulfhydryl reducing agent dithiothreitol, which reduced Ca(2+) sensitivity in MI, but not SH, samples. Our data indicate important structural and functional alterations to the cardiac sarcomere after MI, and the contribution of protein oxidation to this process.
Collapse
Affiliation(s)
- Benjamin S Avner
- Department of Physiology and Biophysics, (M/C 901), College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612-7342, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Solaro RJ, Stull JT. Thematic minireview series on signaling in cardiac sarcomeres in health and disease. J Biol Chem 2011; 286:9895. [PMID: 21257756 DOI: 10.1074/jbc.r110.214403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
32
|
Solaro RJ, Kobayashi T. Protein phosphorylation and signal transduction in cardiac thin filaments. J Biol Chem 2011; 286:9935-40. [PMID: 21257760 DOI: 10.1074/jbc.r110.197731] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
33
|
Labeit S, Ottenheijm CAC, Granzier H. Nebulin, a major player in muscle health and disease. FASEB J 2010; 25:822-9. [PMID: 21115852 DOI: 10.1096/fj.10-157412] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nebulin is a giant 600- to 900-kDa filamentous protein that is an integral component of the skeletal muscle thin filament. Its functions have remained largely nebulous because of its large size and the difficulty in extracting nebulin in a native state from muscle. Recent improvements in the field, especially the development of knockout mouse models deficient in nebulin (NEB-KO mice), indicate now that nebulin performs a surprisingly wide range of functions. In addition to a major role in thin-filament length specification, nebulin also functions in the regulation of muscle contraction, as indicated by the findings that muscle fibers deficient in nebulin have a higher tension cost, and develop less force due to reduced myofilament calcium sensitivity and altered crossbridge cycling kinetics. In addition, the function of nebulin extends to a role in calcium homeostasis. These novel functions indicate that nebulin might have evolved in vertebrate skeletal muscles to develop high levels of muscle force efficiently. Finally, the NEB-KO mouse models also highlight the role of nebulin in the assembly and alignment of the Z disks. Notably, rapid progress in understanding the roles of nebulin in vivo provides clinically important insights into how nebulin deficiency in patients with nemaline myopathy contributes to debilitating muscle weakness.
Collapse
Affiliation(s)
- Siegfried Labeit
- Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
34
|
Sumandea CA, Garcia-Cazarin ML, Bozio CH, Sievert GA, Balke CW, Sumandea MP. Cardiac troponin T, a sarcomeric AKAP, tethers protein kinase A at the myofilaments. J Biol Chem 2010; 286:530-41. [PMID: 21056973 DOI: 10.1074/jbc.m110.148684] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efficient and specific phosphorylation of PKA substrates, elicited in response to β-adrenergic stimulation, require spatially confined pools of PKA anchored in proximity of its substrates. PKA-dependent phosphorylation of cardiac sarcomeric proteins has been the subject of intense investigations. Yet, the identity, composition, and function of PKA complexes at the sarcomeres have remained elusive. Here we report the identification and characterization of a novel sarcomeric AKAP (A-kinase anchoring protein), cardiac troponin T (cTnT). Using yeast two-hybrid technology in screening two adult human heart cDNA libraries, we identified the regulatory subunit of PKA as interacting with human cTnT bait. Immunoprecipitation studies show that cTnT is a dual specificity AKAP, interacting with both PKA-regulatory subunits type I and II. The disruptor peptide Ht31, but not Ht31P (control), abolished cTnT/PKA-R association. Truncations and point mutations identified an amphipathic helix domain in cTnT as the PKA binding site. This was confirmed by a peptide SPOT assay in the presence of Ht31 or Ht31P (control). Gelsolin-dependent removal of thin filament proteins also reduced myofilament-bound PKA-type II. Using a cTn exchange procedure that substitutes the endogenous cTn complex with a recombinant cTn complex we show that PKA-type II is troponin-bound in the myofilament lattice. Displacement of PKA-cTnT complexes correlates with a significant decrease in myofibrillar PKA activity. Taken together, our data propose a novel role for cTnT as a dual-specificity sarcomeric AKAP.
Collapse
Affiliation(s)
- C Amelia Sumandea
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|