1
|
Barilo J, Ratsimor M, Chan A, Hembruff H, Basta S. Polarized Tissue-Derived Macrophages Display Enhanced M2d Phenotype after Prolonged Stimulation with Adenosine A 2A Receptor Agonist in the Presence of LPS. FRONT BIOSCI-LANDMRK 2025; 30:27638. [PMID: 40018944 DOI: 10.31083/fbl27638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Macrophages (Mφ) are innate immune cells known for their different activation phenotypes, classically described as falling within two broad categories, M1 and M2. The latter were originally described as alternatively activated M2 cells to differentiate them from classically activated M1 cells. M2 cells were later classified into M2a (interleukin (IL)-4), M2b (immune complex), M2c (IL-10) and M2d (5-(N-ethylcarboxamido) adenosine (NECA) + lipopolysaccharide (LPS)) based on their inducing stimuli. Considering the established role of M2d/tumour-associated macrophage (TAM) cells within cancer initiation and proliferation, expanding on the knowledge of M2d characteristics can provide fundamental information for Mφ targeted immunotherapy. The precise characterization of M2d cells derived from tissues has not been described in detail. METHODS Our study focused on spleen-derived macrophages (SpM), which were also compared to bone marrow-derived macrophages (BMDMs). RESULTS By investigating different conditions for M2d-specific stimulation and employing various assays including functional tests, we show how Mφ M2d (NECA + LPS) polarization can be affected by prolonged culture conditions to induce a phenotype that was clearly different from M2a cells. CONCLUSION This work offers new insights into the properties of primary M2d Mφ following extended stimulation with LPS and NECA.
Collapse
Affiliation(s)
- Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Mariane Ratsimor
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Agnes Chan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Hannah Hembruff
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
2
|
Karim M, Singh G, Thakur S, Rana A, Rub A, Akhter Y. Evaluating complete surface-associated and secretory proteome of Leishmania donovani for discovering novel vaccines and diagnostic targets. Arch Microbiol 2022; 204:604. [PMID: 36069945 DOI: 10.1007/s00203-022-03219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
The protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult. The availability of complete L. donovani genome/proteome data allows for the development of specific and efficient vaccine candidates using the reverse vaccinology method, while utilizing the unique sequential and structural features of potential antigenic proteins to induce protective T cell and B cell responses. Such shortlisted candidates may then be tested quickly for their efficacy in the laboratory and later in clinical settings. These antigens will also be useful for designing antigen-based next-generation sero-diagnostic assays. L. donovani's cell surface-associated proteins and secretory proteins are among the first interacting entities to be exposed to the host immune machinery. As a result, potential antigenic epitope peptides derived from these proteins could serve as competent vaccine components. We used a stepwise filtering-based in silico approach to identify the entire surface-associated and secretory proteome of L. donovani, which may provide rationally selected most exposed antigenic proteins. Our study identified 12 glycosylphosphatidylinositol-anchored proteins, 45 transmembrane helix-containing proteins, and 73 secretory proteins as potent antigens unique to L. donovani. In addition, we used immunoinformatics to identify B and T cell epitopes in them. Out of the shortlisted surface-associated and secretory proteome, 66 protein targets were found to have the most potential overlapping B cell and T cell epitopes (linear and conformational; MHC class I and MHC class II).
Collapse
Affiliation(s)
- Munawwar Karim
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Garima Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
3
|
Seaver K, Kourko O, Gee K, Greer PA, Basta S. IL-27 Improves Prophylactic Protection Provided by a Dead Tumor Cell Vaccine in a Mouse Melanoma Model. Front Immunol 2022; 13:884827. [PMID: 35529885 PMCID: PMC9069009 DOI: 10.3389/fimmu.2022.884827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The protocol used to induce cell death for generating vaccines from whole tumor cells is a critical consideration that impacts vaccine efficacy. Here we compared how different protocols used to induce cell death impacted protection provided by a prophylactic whole tumor cell vaccine in a mouse melanoma model. We found that melanoma cells exposed to γ-irradiation or lysis combined with UV-irradiation (LyUV) provided better protection against tumor challenge than lysis only or cells exposed to UV-irradiation. Furthermore, we found that the immunoregulatory cytokine, IL-27 enhanced protection against tumor growth in a dose-dependent manner when combined with either LyUV or γ-irradiated whole tumor cell vaccine preparations. Taken together, this data supports the use of LyUV as a potential protocol for developing whole tumor cell prophylactic cancer vaccines. We also showed that IL-27 can be used at low doses as a potent adjuvant in combination with LyUV or γ-irradiation treated cancer cells to improve the protection provided by a prophylactic cancer vaccine in a mouse melanoma model.
Collapse
Affiliation(s)
- Kyle Seaver
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Olena Kourko
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Peter A. Greer
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- *Correspondence: Sameh Basta,
| |
Collapse
|
4
|
Naorem RS, Pangabam BD, Bora SS, Goswami G, Barooah M, Hazarika DJ, Fekete C. Identification of Putative Vaccine and Drug Targets against the Methicillin-Resistant Staphylococcus aureus by Reverse Vaccinology and Subtractive Genomics Approaches. Molecules 2022; 27:2083. [PMID: 35408485 PMCID: PMC9000511 DOI: 10.3390/molecules27072083] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/23/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
| | - Bandana Devi Pangabam
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
| | - Sudipta Sankar Bora
- DBT—North East Centre for Agricultural Biotechnology (DBT-AAU Center), Assam Agricultural University, Jorhat 785013, India;
| | - Gunajit Goswami
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785008, India;
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
- DBT—North East Centre for Agricultural Biotechnology (DBT-AAU Center), Assam Agricultural University, Jorhat 785013, India;
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
| | - Csaba Fekete
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
| |
Collapse
|
5
|
Moratin H, Ickrath P, Scherzad A, Meyer TJ, Naczenski S, Hagen R, Hackenberg S. Investigation of the Immune Modulatory Potential of Zinc Oxide Nanoparticles in Human Lymphocytes. NANOMATERIALS 2021; 11:nano11030629. [PMID: 33802496 PMCID: PMC7999554 DOI: 10.3390/nano11030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NP) are commonly used for a variety of applications in everyday life. In addition, due to its versatility, nanotechnology supports promising approaches in the medical sector. NP can act as drug-carriers in the context of targeted chemo- or immunotherapy, and might also exhibit autonomous immune-modulatory characteristics. Knowledge of potential immunosuppressive or stimulating effects of NP is indispensable for the safety of consumers as well as patients. In this study, primary human peripheral blood lymphocytes of 9 donors were treated with different sub-cytotoxic concentrations of ZnO-NP for the duration of 1, 2, or 3 days. Flow cytometry was performed to investigate changes in the activation profile and the proportion of T cell subpopulations. ZnO-NP applied in this study did not induce any significant alterations in the examined markers, indicating their lack of impairment in terms of immune modulation. However, physicochemical characteristics exert a major influence on NP-associated bioactivity. To allow a precise simulation of the complex molecular processes of immune modulation, a physiological model including the different components of an immune response is needed.
Collapse
Affiliation(s)
- Helena Moratin
- Correspondence: (H.M.); (P.I.); Tel.: +49-931-201-21323 (H.M.)
| | - Pascal Ickrath
- Correspondence: (H.M.); (P.I.); Tel.: +49-931-201-21323 (H.M.)
| | | | | | | | | | | |
Collapse
|
6
|
Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers (Basel) 2020; 12:cancers12123773. [PMID: 33333816 PMCID: PMC7765190 DOI: 10.3390/cancers12123773] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancer becomes one of the major public health problems globally and the burden is expected to be increasing. Currently, both the medical and research communities have attempted an approach to nonconventional cancer therapies that can limit damage or loss of healthy tissues and be able to fully eradicate the cancer cells. In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. Immunotherapy of cancer must activate the host’s anti-tumor response by enhancing the innate immune system and the effector cell number, while, minimizing the host’s suppressor mechanisms. However, many immunotherapies are still limited by poor therapeutic targeting and unwanted side effects. Hence, a deeper understanding of tumor immunology and antitumor immune responses is essential for further improvement of cancer immunotherapy. In addition, effective delivery systems are required to deliver immunotherapeutic agents to the site of interest (such as: to Tumor microenvironments, to Antigen-Presenting Cells, and to the other immune systems) to enhance their efficacy by minimizing off-targeted and unwanted cytotoxicity. Abstract In the last few decades, cancer immunotherapy becomes an important tactic for cancer treatment. However, some immunotherapy shows certain limitations including poor therapeutic targeting and unwanted side effects that hinder its use in clinics. Recently, several researchers are exploring an alternative methodology to overcome the above limitations. One of the emerging tracks in this field area is nano-immunotherapy which has gone through rapid progress and revealed considerable potentials to solve limitations related to immunotherapy. Targeted and stimuli-sensitive biocompatible nanoparticles (NPs) can be synthesized to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity and to enhance the survival rate of cancer patients. In this review, we have discussed cancer immunotherapy and the application of NPs in cancer immunotherapy, as a carrier of immunotherapeutic agents and as a direct immunomodulator.
Collapse
|
7
|
Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. paratuberculosis peptide vaccine. Vaccine 2020; 38:2016-2025. [PMID: 31902643 DOI: 10.1016/j.vaccine.2019.12.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/28/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
Studies in cattle show CD8 cytotoxic T cells (CTL), with the ability to kill intracellular bacteria, develop following stimulation of monocyte-depleted peripheral blood mononuclear cells (mdPBMC) with antigen presenting cells (APC, i.e. conventional dendritic cells [cDC] and monocyte-derived DC [MoDC]) pulsed with MMP, a membrane protein from Mycobacterium avium subsp. paratuberculosis (Map) encoded by MAP2121c. CTL activity was diminished if CD4 T cells were depleted from mdPBMC before antigen (Ag) presentation by APC, suggesting simultaneous cognate recognition of MMP epitopes presented by MHC I and MHC II molecules to CD4 and CD8 T cells is essential for development of CTL activity. To explore this possibility, studies were conducted with mdPBMC cultures in the presence of monoclonal antibodies (mAbs) specific for MHC class I and MHC class II molecules. The CTL response of mdPBMC to MMP-pulsed APC was completely blocked in the presence of mAbs to both MHC I and II molecules and also blocked in the presence of mAbs to either MHC I or MHC II alone. The results demonstrate simultaneous cognate recognition of Ag by CD4 and CD8 T cells is essential for delivery of CD4 T cell help to CD8 T cells to elicit development of CTL.
Collapse
|
8
|
Gambhir V, Yildiz C, Mulder R, Siddiqui S, Guzzo C, Szewczuk M, Gee K, Basta S. The TLR2 agonists lipoteichoic acid and Pam3CSK4 induce greater pro-inflammatory responses than inactivated Mycobacterium butyricum. Cell Immunol 2012; 280:101-7. [DOI: 10.1016/j.cellimm.2012.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 11/30/2022]
|
9
|
Gambhir V, Kim J, Siddiqui S, Taylor M, Byford V, Petrof EO, Jones G, Basta S. Influence of 1,25-dihydroxy vitamin D3 on TLR4-induced activation of antigen presenting cells is dependent on the order of receptor engagement. Immunobiology 2011; 216:988-96. [PMID: 21529994 DOI: 10.1016/j.imbio.2011.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/15/2011] [Accepted: 03/30/2011] [Indexed: 12/17/2022]
Abstract
The vitamin D metabolite, 1,25-(OH)₂D₃, binds the vitamin D receptor (VDR) to exert its regulatory effects at the transcription level. VDR is expressed in professional antigen-presenting cells (pAPCs), such as macrophages (Mø) and dendritic cells (DCs). We show for the first time that the 24-hydroxylase enzyme is activated in bone marrow-derived dendritic cell (BMDC), due to 1,25(OH)₂D₃ stimulation which resulted in the induction of its gene, CYP24A1. Furthermore, we provide evidence that the influence of 1,25-(OH)₂D₃ on TLR-4-L-induced activation of pAPC is dependent on the order of VDR and TLR-4 engagement. Thus, pre-treatment of pAPC with 1,25-(OH)₂D₃ partially inhibited LPS-induced nitric oxide (NO) production. However, these inhibitory effects were not observed when LPS and 1,25-(OH)₂D₃ were added simultaneously or when LPS preceded 1,25-(OH)₂D₃. Moreover, we found that 1,25-(OH)₂D₃ pre-treatment of pAPCs did not cause general suppression since it interfered with NO levels but not with the cytokines IL-6 or TNF-α. Consequently, engagement of VDR by 1,25-(OH)₂D₃ can partially interfere with TLR-4-L-induced activation of pAPCs only when it occurs before TLR-4 stimulation.
Collapse
Affiliation(s)
- Vandana Gambhir
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|