1
|
ZFP804A mutant mice display sex-dependent schizophrenia-like behaviors. Mol Psychiatry 2021; 26:2514-2532. [PMID: 33303946 PMCID: PMC8440220 DOI: 10.1038/s41380-020-00972-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Genome-wide association studies uncovered the association of ZNF804A (Zinc-finger protein 804A) with schizophrenia (SZ). In vitro data have indicated that ZNF804A might exert its biological roles by regulating spine and neurite morphogenesis. However, no in vivo data are available for the role of ZNF804A in psychiatric disorders in general, SZ in particular. We generated ZFP804A mutant mice, and they showed deficits in contextual fear and spatial memory. We also observed the sensorimotor gating impairment, as revealed by the prepulse inhibition test, but only in female ZFP804A mutant mice from the age of 6 months. Notably, the PPI difference between the female mutant and control mice was no longer existed with the administration of Clozapine or after the ovariectomy. Hippocampal long-term potentiation was normal in both genders of the mutant mice. Long-term depression was absent in male mutants, but facilitated in the female mutants. Protein levels of hippocampal serotonin-6 receptor and GABAB1 receptor were increased, while those of cortical dopamine 2 receptor were decreased in the female mutants with no obvious changes in the male mutants. Moreover, the spine density was reduced in the cerebral cortex and hippocampus of the mutant mice. Knockdown of ZFP804A impaired the neurite morphogenesis of cortical and hippocampal neurons, while its overexpression enhanced neurite morphogenesis only in the cortical neurons in vitro. Our data collectively support the idea that ZFP804A/ZNF804A plays important roles in the cognitive functions and sensorimotor gating, and its dysfunction may contribute to SZ, particularly in the female patients.
Collapse
|
2
|
Kalyani R, Lee JY, Min H, Yoon H, Kim MH. Genes Frequently Coexpressed with Hoxc8 Provide Insight into the Discovery of Target Genes. Mol Cells 2016; 39:395-402. [PMID: 27025388 PMCID: PMC4870187 DOI: 10.14348/molcells.2016.2311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
Identifying Hoxc8 target genes is at the crux of understanding the Hoxc8-mediated regulatory networks underlying its roles during development. However, identification of these genes remains difficult due to intrinsic factors of Hoxc8, such as low DNA binding specificity, context-dependent regulation, and unknown cofactors. Therefore, as an alternative, the present study attempted to test whether the roles of Hoxc8 could be inferred by simply analyzing genes frequently coexpressed with Hoxc8, and whether these genes include putative target genes. Using archived gene expression datasets in which Hoxc8 was differentially expressed, we identified a total of 567 genes that were positively coexpressed with Hoxc8 in at least four out of eight datasets. Among these, 23 genes were coexpressed in six datasets. Gene sets associated with extracellular matrix and cell adhesion were most significantly enriched, followed by gene sets for skeletal system development, morphogenesis, cell motility, and transcriptional regulation. In particular, transcriptional regulators, including paralogs of Hoxc8, known Hox co-factors, and transcriptional remodeling factors were enriched. We randomly selected Adam19, Ptpn13, Prkd1, Tgfbi, and Aldh1a3, and validated their coexpression in mouse embryonic tissues and cell lines following TGF-β2 treatment or ectopic Hoxc8 expression. Except for Aldh1a3, all genes showed concordant expression with that of Hoxc8, suggesting that the coexpressed genes might include direct or indirect target genes. Collectively, we suggest that the coexpressed genes provide a resource for constructing Hoxc8-mediated regulatory networks.
Collapse
Affiliation(s)
- Ruthala Kalyani
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Hyehyun Min
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| | - Heejei Yoon
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 06351,
Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Lab., Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
Korea
| |
Collapse
|
3
|
Mallas EJ, Carletti F, Chaddock CA, Woolley J, Picchioni MM, Shergill SS, Kane F, Allin MP, Barker GJ, Prata DP. Genome-wide discovered psychosis-risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder. PeerJ 2016; 4:e1570. [PMID: 26966642 PMCID: PMC4782689 DOI: 10.7717/peerj.1570] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be conferred through it inducing abnormalities in white matter microstructure.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Francesco Carletti
- Department of Neuroradiology, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Christopher A. Chaddock
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - James Woolley
- Psychological Medicine, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Marco M. Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
- St Andrew’s Academic Department, St Andrew’s Healthcare, Northampton, United Kingdom
| | - Sukhwinder S. Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Fergus Kane
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Matthew P.G. Allin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
| | - Diana P. Prata
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, University of London, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Wei Q, Li M, Kang Z, Li L, Diao F, Zhang R, Wang J, Zheng L, Wen X, Zhang J, Zhao J, Huang R. ZNF804A rs1344706 is associated with cortical thickness, surface area, and cortical volume of the unmedicated first episode schizophrenia and healthy controls. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:265-73. [PMID: 25921517 DOI: 10.1002/ajmg.b.32308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/18/2015] [Indexed: 01/25/2023]
Abstract
The effects of ZNF804A rs1344706, a prominent susceptibility gene for schizophrenia, on gray matter (GM) structure in unmedicated schizophrenia (SZ) patients are still unknown, although several previous studies investigated the effects in medicated SZ patients and healthy controls (HC). Analyzing cortical thickness, surface area, and GM volume simultaneously may provide a more precise and complete picture of the effects. We genotyped 59 unmedicated first episode SZ patients and 60 healthy controls for the ZNF804A single nucleotide polymorphism (SNP) rs1344706, and examined between-group differences in cortical thickness, surface area, and cortical volume using a full-factorial 2 × 2 analysis of variance (ANOVA). We found the risk allele (T) in ZNF804A rs1344706, compared to the non-risk allele (G), was associated with thinner cortex in the bilateral precuneus, left precentral gyrus, and several other regions, associated with a smaller cortical surface area in the left superior parietal, precuneus cortex and left superior frontal, and associated with a lower cortical volume in the left superior frontal, left precentral, and right precuneus in SZ patients. In contrast, in the controls, the T allele was associated with the increased cortical measurements compared to the G allele in the same regions as those mentioned above. ZNF804A rs1344706 has significant, but different, effects on cortical thickness, surface area, and cortical volume in multiple regions of the brain cortex. Our findings suggest that ZNF804A rs1344706 may aggravate the risk for schizophrenia by exerting its effects on cortical thickness, surface area, and cortical volume in these brain regions.
Collapse
Affiliation(s)
- Qinling Wei
- Departmentof Psychiatry, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China.,Mental Health Institute, the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, P. R. China
| | - Meng Li
- Brain Imaging Center, Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, P. R. China
| | - Zhuang Kang
- Graduate School of Southern Medical University, Guangzhou, P. R. China.,Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Leijun Li
- Departmentof Psychiatry, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Feici Diao
- Departmentof Psychiatry, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ruibin Zhang
- Brain Imaging Center, Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, P. R. China
| | - Junjing Wang
- Brain Imaging Center, Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, P. R. China
| | - Liangrong Zheng
- Departmentof Psychiatry, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xue Wen
- Brain Imaging Center, Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, P. R. China
| | - Jinbei Zhang
- Departmentof Psychiatry, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jingping Zhao
- Mental Health Institute, the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, P. R. China
| | - Ruiwang Huang
- Brain Imaging Center, Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
5
|
Schultz CC, Nenadic I, Riley B, Vladimirov VI, Wagner G, Koch K, Schachtzabel C, Mühleisen TW, Basmanav B, Nöthen MM, Deufel T, Kiehntopf M, Rietschel M, Reichenbach JR, Cichon S, Schlösser RGM, Sauer H. ZNF804A and cortical structure in schizophrenia: in vivo and postmortem studies. Schizophr Bull 2014; 40:532-41. [PMID: 24078172 PMCID: PMC3984519 DOI: 10.1093/schbul/sbt123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent evidence indicated that the ZNF804A (rs1344706) risk allele A is associated with better cognitive performance in patients with schizophrenia. Moreover, it has been demonstrated that ZNF804A may also be related to relatively intact gray matter volume in patients. To further explore these putatively protective effects, the impact of ZNF804A on cortical thickness and folding was examined in this study. To elucidate potential molecular mechanisms, an allelic-specific gene expression study was also carried out. Magnetic resonance imaging cortical thickness and folding were computed in 55 genotyped patients with schizophrenia and 40 healthy controls. Homozygous risk allele carriers (AA) were compared with AC/CC carriers. ZNF804A gene expression was analyzed in a prefrontal region using postmortem tissue from another cohort of 35 patients. In patients, AA carriers exhibited significantly thicker cortex in prefrontal and temporal regions and less disturbed superior temporal cortical folding, whereas the opposite effect was observed in controls, ie, AA carrier status was associated with thinner cortex and more severe altered cortical folding. Along with this, our expression analysis revealed that the risk allele is associated with lower prefrontal ZNF804A expression in patients, whereas the opposite effect in controls has been observed by prior analyses. In conclusion, our analyses provide convergent support for the hypothesis that the schizophrenia-associated ZNF804A variant mediates protective effects on cortex structure in patients. In particular, the allele-specific expression profile in patients might constitute a molecular mechanism for the observed protective influence of ZNF804A on cortical thickness and folding and potentially other intermediate phenotypes.
Collapse
Affiliation(s)
- Carl Christoph Schultz
- *To whom correspondence should be addressed; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07740 Jena, Germany; tel: +49-3641-9-35665, fax: +49-3641-9-35444, e-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fernandes CPD, Westlye LT, Giddaluru S, Christoforou A, Kauppi K, Adolfsson R, Nilsson LG, Nyberg L, Lundervold AJ, Reinvang I, Steen VM, Le Hellard S, Espeseth T. Lack of association of the rs1344706 ZNF804A variant with cognitive functions and DTI indices of white matter microstructure in two independent healthy populations. Psychiatry Res 2014; 222:60-6. [PMID: 24636489 DOI: 10.1016/j.pscychresns.2014.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/08/2023]
Abstract
The rs1344706 single nucleotide polymorphism within intron 2 of the ZNF804A gene is strongly associated with schizophrenia and bipolar disorder. This variant has also been associated in some studies with a range of cognitive and neuroimaging phenotypes, but several studies have reported no effect on the same phenotypes in other samples. Here, we genotyped 670 healthy adult Norwegian subjects and 1753 healthy adult Swedish subjects for rs1344706, and tested for associations with cognitive phenotypes including general intellectual abilities, memory functions and cognitive inhibition. We also tested whether rs1344706 is associated with white matter microstructural properties using diffusion tensor imaging (DTI) data from 250 to 340 of the Norwegian and Swedish subjects, respectively. Whole-brain voxel-wise statistical modeling of the effect of the ZNF804A variant on two DTI indices, fractional anisotropy (FA) and radial diffusivity (RD), was performed using tract-based spatial statistics (TBSS), and commonly reported effect sizes were calculated within several large-scale white matter pathways based on neuroanatomical atlases. No significant associations were found between rs1344706 and the cognitive traits or white matter microstructure. We conclude that the rs1344706 SNP has no significant effect on these phenotypes in our two reasonably powered samples.
Collapse
Affiliation(s)
- Carla Patricia Duarte Fernandes
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Tjelta Westlye
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre For Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Sudheer Giddaluru
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Andrea Christoforou
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Division of Psychiatry, Umeå University, Umeå, Sweden
| | - Lars-Göran Nilsson
- Department of Psychology, Stockholm University and Stockholm Brain Institute, Uppsala, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Department of Integrative Medical Biology, Physiology Section, and Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Astri Johansen Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Kavli Research Centre for Aging and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, Oslo N-0317, Norway
| | - Vidar Martin Steen
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Stéphanie Le Hellard
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thomas Espeseth
- K.G. Jebsen Centre for Psychosis Research, Norwegian Centre For Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo N-0317, Norway.
| |
Collapse
|
7
|
Wei Q, Kang Z, Diao F, Guidon A, Wu X, Zheng L, Li L, Guo X, Hu M, Zhang J, Liu C, Zhao J. No association of ZNF804A rs1344706 with white matter integrity in schizophrenia: a tract-based spatial statistics study. Neurosci Lett 2012; 532:64-9. [PMID: 23147122 DOI: 10.1016/j.neulet.2012.10.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/13/2012] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Altered brain connectivity has been widely considered as a genetic risk mechanism for schizophrenia. Of the many susceptibility genes identified so far, ZNF804A (rs1344706) is the first common genetic variant associated with schizophrenia on a genome-wide level. Previous fMRI studies have found that carriers of rs1344706 exhibit altered functional connectivity. However, the relationship between ZNF804A and white matter structural connectivity in patients of schizophrenia remains unknown. In this study, 100 patients with schizophrenia and 69 healthy controls were genotyped at the single nucleotide polymorphism rs1344706. Diffusion tensor imaging (DTI) was conducted and analyzed with tract-based spatial statistics. Systematic statistical analysis was conducted on multiple diffusion indices, including fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity. Unpaired two-sample t-test revealed significant differences in fractional anisotropy and diffusivity between schizophrenia and control groups. A two-way ANOVA analysis was conducted to assess the main effects of and the interaction between schizophrenia and ZNF804A. Although significant main effects of the diagnosis of schizophrenia were found on radial diffusivity, no association between the ZNF804A (rs1344706) and white matter connectivity was found in the entire group of subjects or in a selected subgroup of age-matched subjects (n=72).
Collapse
Affiliation(s)
- Qinling Wei
- Mental Health Institute of The Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang R, Yan JD, Valenzuela RK, Lu SM, Du XY, Zhong B, Ren J, Zhao SH, Gao CG, Wang L, Guo TW, Ma J. Further evidence for the association of genetic variants of ZNF804A with schizophrenia and a meta-analysis for genome-wide significance variant rs1344706. Schizophr Res 2012; 141:40-7. [PMID: 22871346 DOI: 10.1016/j.schres.2012.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/19/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022]
Abstract
Recent accumulating evidence has indicated that ZNF804A (zinc finger protein 804A) may be one of the most robustly implicated genes in schizophrenia. In this report, we examined ZNF804A single nucleotide polymorphisms (SNPs) encompassing exon 4 by performing an association study that used a Han Chinese sample comprised of 492 schizophrenia patients and 516 healthy control subjects. A meta-analysis based on previous studies was also performed. For markers rs4667000 and rs1366842, significant differences in allele frequencies were found between cases and controls (Mantel-Haenszel corrected P=0.014 and P=0.025, respectively). Analysis of haplotype rs61739290-rs1366842 showed significant association with schizophrenia (global P=0.0018). Moreover, several other two-, three-, and four-SNP tests of haplotype association were also significant. A meta-analysis comprised of studies that utilized sample sets of either European and/or Han Chinese origin revealed statistically significant associations for two SNPs (rs1366842, P=0.002; and rs3731834, P=0.03) and schizophrenia. In addition, we observed a significant association between marker rsl344706 and schizophrenia (P<1.0×10(-5)) in combined populations. When we separately analyzed the studies by population, consistent and significant differences were found between cases and controls both in the European samples (P<1.0×10(-4)) and in the Chinese samples (P=0.03). In summary, we have added new evidence supporting the association between ZNF804A and schizophrenia in our Han Chinese sample. Further functional exploration of ZNF804A will greatly help us to elucidate the pathogenesis of schizophrenia and find promising new approaches for the treatment of this disorder.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren A, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris D, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012; 149:525-37. [PMID: 22521361 PMCID: PMC3340505 DOI: 10.1016/j.cell.2012.03.028] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/27/2012] [Accepted: 03/28/2012] [Indexed: 01/18/2023]
Abstract
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Collapse
Affiliation(s)
- Michael E. Talkowski
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | | | - Ian Blumenthal
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Vamsee Pillalamarri
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Colby Chiang
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Adrian Heilbut
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Carl Ernst
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Carrie Hanscom
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Elizabeth Rossin
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - Amelia Lindgren
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
| | - Shahrin Pereira
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
| | - Douglas Ruderfer
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Andrew Kirby
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - Stephan Ripke
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - David Harris
- Division of Clinical Genetics, Children’s Hospital of Boston, Boston, MA
| | - Ji-Hyun Lee
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Kyungsoo Ha
- Cancer Research Center, Georgia Health Sciences University, Augusta, GA
| | - Hyung-Goo Kim
- Department of OB/GYN, IMMAG, Georgia Health Sciences University, Augusta, GA
| | - Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Andrea L. Gropman
- Department of Neurology, Children’s National Medical Center, Washington, DC, USA
- Department of Neurology, George Washington University of Health Sciences, Washington, DC, USA
| | - Diane Lucente
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Katherine Sims
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
| | - Toshiro K. Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Mark L. Borowsky
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | | | - Bradley Quade
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Kasper Lage
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
- Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Judith Miles
- Departments of Pediatrics, Medical Genetics & Pathology, The Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri Hospitals and Clinics, Columbia, MO
| | - Bai-Lin Wu
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
- Children’s Hospital and Institutes of Biomedical Science, Fudan University, Shanghai, China
| | - Yiping Shen
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
- Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
- Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Benjamin Neale
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
| | - Lisa G. Shaffer
- Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA
| | - Mark J. Daly
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
- Autism Consortium of Boston, Boston, MA
| | - Cynthia C. Morton
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - James F. Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Autism Consortium of Boston, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Fornito A, Bullmore ET. Connectomic intermediate phenotypes for psychiatric disorders. Front Psychiatry 2012; 3:32. [PMID: 22529823 PMCID: PMC3329878 DOI: 10.3389/fpsyt.2012.00032] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/23/2012] [Indexed: 12/18/2022] Open
Abstract
Psychiatric disorders are phenotypically heterogeneous entities with a complex genetic basis. To mitigate this complexity, many investigators study so-called intermediate phenotypes (IPs) that putatively provide a more direct index of the physiological effects of candidate genetic risk variants than overt psychiatric syndromes. Magnetic resonance imaging (MRI) is a particularly popular technique for measuring such phenotypes because it allows interrogation of diverse aspects of brain structure and function in vivo. Much of this work however, has focused on relatively simple measures that quantify variations in the physiology or tissue integrity of specific brain regions in isolation, contradicting an emerging consensus that most major psychiatric disorders do not arise from isolated dysfunction in one or a few brain regions, but rather from disturbed interactions within and between distributed neural circuits; i.e., they are disorders of brain connectivity. The recent proliferation of new MRI techniques for comprehensively mapping the entire connectivity architecture of the brain, termed the human connectome, has provided a rich repertoire of tools for understanding how genetic variants implicated in mental disorder impact distinct neural circuits. In this article, we review research using these connectomic techniques to understand how genetic variation influences the connectivity and topology of human brain networks. We highlight recent evidence from twin and imaging genetics studies suggesting that the penetrance of candidate risk variants for mental illness, such as those in SLC6A4, MAOA, ZNF804A, and APOE, may be higher for IPs characterized at the level of distributed neural systems than at the level of spatially localized brain regions. The findings indicate that imaging connectomics provides a powerful framework for understanding how genetic risk for psychiatric disease is expressed through altered structure and function of the human connectome.
Collapse
Affiliation(s)
- Alex Fornito
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Carlton SouthVIC, Australia
| | - Edward T. Bullmore
- Brain Mapping Unit, Behavioural and Clinical Neurosciences Institute, University of CambridgeCambridge, UK
- GlaxoSmithKline Clinical Unit Cambridge, Addenbrooke’s HospitalCambridge, UK
| |
Collapse
|
11
|
Kuswanto CN, Woon PS, Zheng XB, Qiu A, Sitoh YY, Chan YH, Liu J, Williams H, Ong WY, Sim K. Genome-wide supported psychosis risk variant in ZNF804A gene and impact on cortico-limbic WM integrity in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:255-62. [PMID: 22328493 DOI: 10.1002/ajmg.b.32032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/19/2012] [Indexed: 11/06/2022]
Abstract
Genome-wide association, case association genetic and meta-analytic studies have highlighted ZNF804A as a robust genome-wide supported susceptibility gene for schizophrenia (SCZ). In view of the possible involvement of ZNF804A gene in early neurodevelopment and cellular processes including oligodendrocyte proliferation and differentiation, we examined the effect of ZNF804A on brain WM (WM) integrity in patients with SCZ. Based on extant data in healthy controls (HC), we hypothesized that ZNF804A risk variant rs1344706 is associated with lower fractional anisotropy (FA) in brain regions within cortico-limbic circuits, namely frontal, parietal, medial temporal lobes, and cingulate gyri in SCZ. A total of 200 Chinese participants (125 patients with DSM-IV diagnosis of SCZ and 75 controls) were genotyped using blood samples, a subset of 153 participants (89 patients with DSM-IV diagnosis of SCZ and 64 controls) underwent structural magnetic resonance imaging and diffusion tensor imaging (DTI). There are significant effects of diagnosis (left cingulate gyrus: Adjusted F(1,149) = 9.36, P = 0.003) and diagnosis-genotype interactions (left parietal lobe: Adjusted F(1,147) = 7.39, P = 0.007; right parietal lobe: Adjusted F(1,147) = 6.95, P = 0.009; right medial temporal lobe: Adjusted F(1,147) = 8.79, P = 0.004; left cingulate gyrus: Adjusted F(1,147) = 8.02, P = 0.005). Specifically, we found that patients with SCZ who are risk T homozygotes have lower FA in bilateral parietal lobes, and left cingulate gyrus compared with G carriers. Compared with risk T homozygotes in HC, patients with SCZ who are risk T homozygotes have decreased FA in bilateral parietal lobes, and left cingulate gyrus as well as right medial temporal lobe. Our findings suggest that ZNF804A risk variant influence WM integrity involving cortico-limbic brain regions in SCZ and highlight the importance of investigating the impact of genome-wide supported risk factors on intermediate phenotypes with potential to shed light on the neurobiology of SCZ.
Collapse
|
12
|
Wei Q, Kang Z, Diao F, Shan B, Li L, Zheng L, Guo X, Liu C, Zhang J, Zhao J. Association of the ZNF804A gene polymorphism rs1344706 with white matter density changes in Chinese schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:122-7. [PMID: 21911029 DOI: 10.1016/j.pnpbp.2011.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/19/2011] [Accepted: 08/31/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND ZNF804A gene polymorphism rs1344706, the first genetic risk variant to achieve genome wide significance for schizophrenia, has been linked to neural functional connectivity. Dysconnectivity of WM may be the primary pathological mechanism of schizophrenia. Association of this variant with regional WM density has not been investigated in schizophrenic patients. METHODS 69 healthy controls and 80 patients with schizophrenia underwent genotyping of rs1344706 SNPs, and were examined for WM density (T1-weighted MRI). The association of rs1344706 with WM changes in schizophrenia patients and healthy controls was analyzed using a full-factorial 2×2 analysis of variance. RESULTS 1. There was an interaction on WM density in the left prefrontal lobe between the rs1344706 genotype and schizophrenic diagnosis, where the risk T allele carriers presented higher WM density in the schizophrenia patients and lower WM density in healthy controls in comparison with the non-risk allele carriers. 2. The risk allele was associated with an increased WM density of the bilateral hippocampus in both the patients and the healthy group. LIMITATION The influence of antipsychotics to the white matter in schizophrenic patients was not fully eliminated. CONCLUSIONS The ZNF804A variant may confer risk for schizophrenia by exerting its effects on the WM in the left prefrontal lobe together with other risk factors for schizophrenia.
Collapse
Affiliation(s)
- Qinling Wei
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang R, Valenzuela RK, Lu S, Meng L, Guo T, Du X, Kang W, Ma J. Is the conserved mammalian region of ZNF804A locus associated with schizophrenia? A population-based genetics analysis. Schizophr Res 2011; 133:159-64. [PMID: 21993378 DOI: 10.1016/j.schres.2011.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/23/2011] [Accepted: 09/17/2011] [Indexed: 01/13/2023]
Abstract
Recently, several genome-wide association studies (GWASs) have reproduced the significant association of the single nucleotide polymorphism (SNP) rs1344706 (located in intron 2 of the zinc finger protein 804A (ZNF804A) on chromosome 2q32.1) with schizophrenia. Bioinformatic analysis of the chromosome segment around rs1344706 suggests that a short conserved mammalian region exists approximately 3kb downstream of rs1344706. In the present work, we studied all SNPs in this conserved mammalian region and performed genetic analyses on samples from Chinese schizophrenia patients (n = 516) and compared control subjects (n = 520). Significant association between an allele of rs13423388 and schizophrenia was found (P = 0.0012). Haplotype analysis of the three SNPs rs4666998, rs13423388, and rs56280129 showed significant associations with schizophrenia (global P = 0.00001). Furthermore, we performed a four-SNP haplotype analysis which included the SNPs from the three-SNP haplotype analysis and rs1344706 (global P = 0.0005), and found that haplotype GCCG was associated with schizophrenia (P = 0.003). In summary, the present study adds new evidence for an association between the conserved mammalian region of the ZNF804A gene and schizophrenia. Further research is needed to clarify the transcriptional regulation of ZNF804A gene and to relate this to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ruthala K, Gadi J, Lee JY, Yoon H, Chung HJ, Kim MH. Hoxc8 downregulates Mgl1 tumor suppressor gene expression and reduces its concomitant function on cell adhesion. Mol Cells 2011; 32:273-9. [PMID: 21773674 PMCID: PMC3887630 DOI: 10.1007/s10059-011-0069-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/30/2022] Open
Abstract
Hoxc8 is a homeobox gene family member, which is essential for growth and differentiation. Mgl1, a mouse homologue of the Drosophila tumor suppressor gene lgl, was previously identified as a possible target of Hoxc8. However, the biological effects and underlying molecular mechanism of Hoxc8 regulation on Mgl1 has not been fully established. The endogenous expression patterns of Hoxc8 were inversely correlated with those of Mgl1 in different types of cells and tissues. Here we showed that Hoxc8 overexpression downregulated the Mgl1 mRNA expression. Characterization of the ~2 kb Mgl1 promoter region revealed that the upstream sequence contains several putative Hox core binding sites and chromatin immunoprecipitation assay confirmed that Hoxc8 directly binds to the 5' upstream region of Mgl1. The promoter activity of this region was diminished by Hoxc8 expression but resumed by knockdown of Hoxc8 using siRNA against Hoxc8. Functional study of Mgl1 in C3H10T1/2 cells revealed a significant reduction in cell adhesion upon expression of Hoxc8. Taken together, our data suggest that Hoxc8 downregulates Mgl1 expression via direct binding to the promoter region, which in turn reduces cell adhesion and concomitant cell migration.
Collapse
Affiliation(s)
| | - Jogeswar Gadi
- Institute of Endocrinology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | |
Collapse
|
15
|
Donohoe G, Morris DW, Corvin A. The psychosis susceptibility gene ZNF804A: associations, functions, and phenotypes. Schizophr Bull 2010; 36:904-9. [PMID: 20688871 PMCID: PMC2930340 DOI: 10.1093/schbul/sbq080] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the first gene to have achieved genome-wide significance for psychosis, ZNF804A has predictably been a subject of intense research activity. We review the evidence to date for the association between schizophrenia and the original risk variant rs1344706 identified as well as additional common and rare variants at this locus. We describe the still scant literature on the biological function of ZNF804A and discuss the efforts being made to characterize and refine the associated phenotype using imaging and neuropsychological approaches. We conclude that ZNF804A is robustly, if modestly, associated with schizophrenia risk, with much work still remaining to elucidate its role in schizophrenia biology.
Collapse
Affiliation(s)
- Gary Donohoe
- Department of Psychiatry, Trinity College Dublin, Trinity Health Sciences Building, St. James's Hospital, Dublin 8, Ireland.
| | - Derek W. Morris
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Health Sciences Building, St. James’s Hospital, Dublin 8, Ireland,Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Trinity Health Sciences Building, St. James’s Hospital, Dublin 8, Ireland,Institute of Molecular Medicine, Trinity College Dublin, Ireland,Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| |
Collapse
|