1
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
2
|
Shin J, Kang E, Park J, Cho B, Jang S. Anti‑inflammatory effect of red ginseng marc, Artemisia scoparia, Paeonia japonica and Angelica gigas extract mixture in LPS‑stimulated RAW 264.7 cells. Biomed Rep 2022; 17:63. [PMID: 35719838 PMCID: PMC9198992 DOI: 10.3892/br.2022.1546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
A normal inflammatory response is essential in protecting the body from foreign substances. However, excessive inflammation contributes to diseases such as oxidative stress, heart disease, and cancer. In this study, we evaluated the anti-inflammatory effects of RAPA (red ginseng marc, Artemisia scoparia Waldst.et Kit, Paeonia japonica Miyabe & Takeda, and Angelica gigas Nakai extract mixture) in LPS-stimulated RAW 264.7 cells (macrophages). RAPA suppressed the expression of inflammatory factors such as iNOS and COX-2 and decreased the production of nitric oxide. In addition, RAPA decreased the expression of the inflammatory cytokines TNF-α and IL-6. Furthermore, RAPA inhibited the phosphorylation of MAPKs such as JNK and ERK as well as IκB and NF-κB. In conclusion, RAPA inhibited production of inflammatory mediators via downregulation of the MAPK and NF-κB signaling pathways in LPS-stimulated RAW 264.7 cells. The results of this study demonstrated that RAPA regulates excessive inflammatory responses at the cellular level. Therefore, it is necessary to investigate whether the same effect is observed in vivo through further research.
Collapse
Affiliation(s)
- Jae Shin
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Eun Kang
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Ji Park
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Byoung Cho
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Seon Jang
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| |
Collapse
|
3
|
García-Martínez T, Martínez-Rodero I, Roncero-Carol J, Vendrell-Flotats M, Gardela J, Gutiérrez-Adán A, Ramos-Ibeas P, Higgins AZ, Mogas T. The Role of Aquaporin 7 in the Movement of Water and Cryoprotectants in Bovine In Vitro Matured Oocytes. Animals (Basel) 2022; 12:ani12040530. [PMID: 35203238 PMCID: PMC8868131 DOI: 10.3390/ani12040530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The permeability of the plasma membrane to water and cryoprotectants is a critical factor in the effective vitrification of oocytes. The goal of this study is to better understand the pathways used to transport water and other cryoprotectants through the plasma membrane of bovine in vitro matured oocytes, with a focus on the role of aquaporin 7 (AQP7). We demonstrated that cryoprotectants stimulated AQP3 and AQP7 but not AQP9 expression in mature bovine oocytes. Dimethyl sulfoxide upregulates AQP3 expression, while ethylene glycol upregulates AQP7 expression in oocytes in a CPA-dependent fashion. We also demonstrated that exogenous expression of aquaglyceroporins such as AQP7 is possible in in vitro matured oocytes. When permeability values for membrane transport of dimethyl sulfoxide, ethylene glycol and sucrose were assessed, we observed that AQP7 overexpressed oocytes are more permeable to water in the presence of dimethyl sulfoxide solution. These biophysical characteristics, together with the use of membrane transport modeling, will allow re-evaluation and possibly improvement of previously described protocols for bovine oocyte cryopreservation. Abstract Aquaglyceroporins are known as channel proteins, and are able to transport water and small neutral solutes. In this study, we evaluate the effect of exposure of in vitro matured bovine oocytes to hyperosmotic solutions containing ethylene glycol (EG), dimethyl sulfoxide (Me2SO) or sucrose on the expression levels of AQP3, AQP7 and AQP9. Moreover, we studied whether artificial protein expression of AQP7 in bovine oocytes increases their permeability to water and cryoprotectants. Exposure to hyperosmotic solutions stimulated AQP3 and AQP7 but not AQP9 expression. Oocytes exposed to hyperosmotic Me2SO solution exhibited upregulated AQP3 expression, while AQP7 expression was upregulated by EG hyperosmotic exposure. Microinjection of oocytes at the germinal vesicle stage with enhanced green fluorescent protein (EGFP) or EGFP+AQP7 cRNAs resulted in the expression of the corresponding proteins in ≈86% of the metaphase-II stage oocytes. AQP7 facilitated water diffusion when bovine MII oocytes were in presence of Me2SO solution but not EG or sucrose solution. However, the overexpression of this aquaporin did not increase membrane permeability to Me2SO or EG. In summary, cryoprotectant-induced increase of AQP3 and AQP7 expression could be one of the mechanisms underlying oocyte tolerance to hyperosmotic stress. Water diffusion appears to be improved when AQP7 overexpressed oocytes are exposed to Me2SO, shortening the time required for oocytes to achieve osmotic balance with cryoprotectant solutions.
Collapse
Affiliation(s)
- Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Joan Roncero-Carol
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Avda. Puerta de Hierro 12, Local 10, 28040 Madrid, Spain; (A.G.-A.); (P.R.-I.)
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Avda. Puerta de Hierro 12, Local 10, 28040 Madrid, Spain; (A.G.-A.); (P.R.-I.)
| | - Adam Z. Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331-2702, USA;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (T.G.-M.); (I.M.-R.); (J.R.-C.); (M.V.-F.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|
4
|
Li T, Zhang H, Xu L, Chen X, Feng J, Wu W, Du Y. StMPK7 phosphorylates and stabilizes a potato RNA-binding protein StUBA2a/b to enhance plant defence responses. HORTICULTURE RESEARCH 2022; 9:uhac177. [PMID: 36324643 PMCID: PMC9614683 DOI: 10.1093/hr/uhac177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/02/2022] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in regulating plant immunity. MAPKs usually transduce signals and regulate plant immunity by phosphorylating the downstream defence-related components. Our previous study indicates that StMPK7 positively regulates plant defence to Phytophthora pathogens via SA signalling pathway. However, the downstream component of StMPK7 remains unknown. In this study, we employed GFP-StMPK7 transgenic potato and performed immunoprecipitation-mass spectrometry (IP-MS) to identify the downstream component of StMPK7. We found that an RNA binding protein StUBA2a/b interacted with StMPK7, as revealed by luciferase complementation imaging (LCI) and coimmunoprecipitation (co-IP) assays. Transient expression of StUBA2a/b in Nicociana benthamiana enhanced plant resistance to Phytophthora pathogens, while silencing of UBA2a/b decreased the resistance, suggesting a positive regulator role of UBA2a/b in plant immunity. Similar to StMPK7, StUBA2a/b was also involved in SA signalling pathway and induced SGT1-dependent cell death as constitutively activated (CA)-StMPK7 did. Immune blotting indicated that StMPK7 phosphorylates StUBA2a/b at thr248 and thr408 (T248/408) sites and stabilizes StUBA2a/b. Silencing of MPK7 in N. benthamiana suppressed StUBA2a/b-induced cell death, while co-expression with StMPK7 enhanced the cell death. Besides, StUBA2a/bT248/408A mutant showed decreased ability to trigger cell death and elevate the expression of PR genes, indicating the phosphorylation by StMPK7 enhances the functions of StUBA2a/b. Moreover, CA-StMPK7-induced cell death was largely suppressed by silencing of NbUBA2a/b, genetically implying UBA2a/b acts as the downstream component of StMPK7. Collectively, our results reveal that StMPK7 phosphorylates and stabilizes its downstream substrate StUBA2a/b to enhance plant immunity via the SA signalling pathway.
Collapse
Affiliation(s)
| | | | - Liwen Xu
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Xiaokang Chen
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Jiashu Feng
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | - Weijun Wu
- College of Horticulture, Northwest A&F University and State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, China
| | | |
Collapse
|
5
|
Cansado J, Soto T, Franco A, Vicente-Soler J, Madrid M. The Fission Yeast Cell Integrity Pathway: A Functional Hub for Cell Survival upon Stress and Beyond. J Fungi (Basel) 2021; 8:jof8010032. [PMID: 35049972 PMCID: PMC8781887 DOI: 10.3390/jof8010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
The survival of eukaryotic organisms during environmental changes is largely dependent on the adaptive responses elicited by signal transduction cascades, including those regulated by the Mitogen-Activated Protein Kinase (MAPK) pathways. The Cell Integrity Pathway (CIP), one of the three MAPK pathways found in the simple eukaryote fission of yeast Schizosaccharomyces pombe, shows strong homology with mammalian Extracellular signal-Regulated Kinases (ERKs). Remarkably, studies over the last few decades have gradually positioned the CIP as a multi-faceted pathway that impacts multiple functional aspects of the fission yeast life cycle during unperturbed growth and in response to stress. They include the control of mRNA-stability through RNA binding proteins, regulation of calcium homeostasis, and modulation of cell wall integrity and cytokinesis. Moreover, distinct evidence has disclosed the existence of sophisticated interplay between the CIP and other environmentally regulated pathways, including Stress-Activated MAP Kinase signaling (SAPK) and the Target of Rapamycin (TOR). In this review we present a current overview of the organization and underlying regulatory mechanisms of the CIP in S. pombe, describe its most prominent functions, and discuss possible targets of and roles for this pathway. The evolutionary conservation of CIP signaling in the dimorphic fission yeast S. japonicus will also be addressed.
Collapse
|
6
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Doğru S, Yaşar E, Yeşilkaya A. Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death. J Recept Signal Transduct Res 2021; 42:293-301. [PMID: 34057027 DOI: 10.1080/10799893.2021.1931320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hyperuricemia may be a risk factor for cardiovascular diseases such as hypertension and atherosclerosis, but the mechanisms underlying uric acid-induced pathological conditions remain unknown. In this study, we investigated the effect of short time and long-term administration of increasing uric acid concentrations on cell viability, proliferative and apoptotic pathways in vascular smooth muscle cells (VSMCs). Cell viability/proliferation was determined with WST-1 assay. Expression levels of mitogen-activated protein kinases (MAPKs) (phosphorylated (p)-p38 and p-p44/42 MAPK), extrinsic (caspase 3, caspase 8), and intrinsic (B-cell lymphoma-extra-large (Bcl-xL)) apoptotic pathway proteins were measured by Western blotting. In order to assess the proliferative effects of uric acid incubations on VSMCs, we monitored the proliferative/apoptosis signaling pathways for up to 24 h. Our results indicated that uric acid increases cell viability at time and dose-dependently in VSMCs. Immunoblotting results showed that uric acid treatment elevated the expression level of p-p38 MAPK but did markedly reduce the protein levels of p-p44/42, compared with all the uric acid doses-treated VSMCs, especially at 1 h. Uric acid stimulation increased caspase-3 protein levels and decreased Bcl-xL, but did not alter caspase-8 protein expression at the same dose and time. Furthermore, low uric acid incubations (0-7.5 mg/dL) did not affect any signaling pathways for long time points (6-24 h). In conclusion, our study demonstrates for the first time that VSMCs induced with uric acid can affect cell viability, proliferative, and apoptosis pathways at the widest time and dose range. These findings provide a better understanding of the uric acid effects related to vascular impairments.
Collapse
Affiliation(s)
- Segün Doğru
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| | - Ekrem Yaşar
- Department of Biophysics, Medical School of Akdeniz University, Antalya, Turkey
| | - Akın Yeşilkaya
- Department of Biochemistry, Medical School of Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Baek A, Jung SH, Pyo S, Kim SY, Jo S, Kim L, Lee EY, Kim SH, Cho SR. 3'-Sialyllactose Protects SW1353 Chondrocytic Cells From Interleukin-1β-Induced Oxidative Stress and Inflammation. Front Pharmacol 2021; 12:609817. [PMID: 33912037 PMCID: PMC8072478 DOI: 10.3389/fphar.2021.609817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a major degenerative joint disease. Oxidative stress and inflammation play key roles in the pathogenesis of OA. 3'-Sialyllactose (3'-SL) is derived from human milk and is known to regulate a variety of biological functions related to immune homeostasis. This study aimed to investigate the therapeutic mechanisms of 3'-SL in interleukin-1β (IL-1β)-treated SW1353 chondrocytic cells. 3'-SL potently suppressed IL-1β-induced oxidative stress by increasing the levels of enzymatic antioxidants. 3'-SL significantly reversed the IL-1β mediated expression levels of reactive oxygen species in IL-1β-stimulated chondrocytic cells. In addition, 3'-SL could reverse the increased levels of inflammatory markers such as nitrite, prostaglandin E2, inducible nitric oxide synthase, cyclooxygenase-2, IL-1β, and IL-6 in IL-1β-stimulated chondrocytic cells. Moreover, 3'-SL significantly inhibited the apoptotic process, as indicated by the downregulation of the pro-apoptotic protein Bax, upregulation of the anti-apoptotic protein Bcl-2 expression, and significant reduction in the number of TUNEL-positive cells in the IL-1β-treated chondrocytic cells. Furthermore, 3'-SL reversed cartilage destruction by decreasing the release of matrix metalloproteinases (MMP), such as MMP1, MMP3, and MMP13. In contrast, 3'-SL significantly increased the expression levels of matrix synthesis proteins, such as collagen II and aggrecan, in IL-1β-treated chondrocytic cells. 3'-SL dramatically suppressed the activation of mitogen-activated protein kinases (MAPK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways, which are related to the pathogenesis of OA. Taken together, our data suggest that 3'-SL alleviates IL-1β-induced OA pathogenesis via inhibition of activated MAPK and PI3K/AKT/NF-κB signaling cascades with the downregulation of oxidative stress and inflammation. Therefore, 3'-SL has the potential to be used as a natural compound for OA therapy owing to its ability to activate the antioxidant defense system and suppress inflammatory responses.
Collapse
Affiliation(s)
- Ahreum Baek
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - So Hee Jung
- Department of Rehabilitation Medicine, The Graduate School Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Seongmoon Jo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Eun Young Lee
- Department of Rehabilitation Medicine, The Graduate School Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. J Proteomics 2021; 240:104189. [PMID: 33757882 DOI: 10.1016/j.jprot.2021.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.
Collapse
|
10
|
Krismer K, Bird MA, Varmeh S, Handly ED, Gattinger A, Bernwinkler T, Anderson DA, Heinzel A, Joughin BA, Kong YW, Cannell IG, Yaffe MB. Transite: A Computational Motif-Based Analysis Platform That Identifies RNA-Binding Proteins Modulating Changes in Gene Expression. Cell Rep 2020; 32:108064. [PMID: 32846122 PMCID: PMC8204639 DOI: 10.1016/j.celrep.2020.108064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/28/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in regulating gene expression by modulating splicing, RNA stability, and protein translation. Stimulus-induced alterations in RBP function contribute to global changes in gene expression, but identifying which RBPs are responsible for the observed changes remains an unmet need. Here, we present Transite, a computational approach that systematically infers RBPs influencing gene expression through changes in RNA stability and degradation. As a proof of principle, we apply Transite to RNA expression data from human patients with non-small-cell lung cancer whose tumors were sampled at diagnosis or after recurrence following treatment with platinum-based chemotherapy. Transite implicates known RBP regulators of the DNA damage response and identifies hnRNPC as a new modulator of chemotherapeutic resistance, which we subsequently validated experimentally. Transite serves as a framework for the identification of RBPs that drive cell-state transitions and adds additional value to the vast collection of publicly available gene expression datasets.
Collapse
Affiliation(s)
- Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA; Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Molly A Bird
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shohreh Varmeh
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Erika D Handly
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Anna Gattinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Thomas Bernwinkler
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Daniel A Anderson
- Synthetic Biology Center, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andreas Heinzel
- Department for Medical and Bioinformatics, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
| | - Brian A Joughin
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yi Wen Kong
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA.
| | - Ian G Cannell
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Divisions of Acute Care Surgery, Trauma and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol 2020; 16:496-513. [PMID: 32641743 DOI: 10.1038/s41584-020-0455-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
Cell death is a vital process that occurs in billions of cells in the human body every day. This process helps maintain tissue homeostasis, supports recovery from acute injury, deals with infection and regulates immunity. Cell death can also provoke inflammatory responses, and lytic forms of cell death can incite inflammation. Loss of cell membrane integrity leads to the uncontrolled release of damage-associated molecular patterns (DAMPs), which are normally sequestered inside cells. Such DAMPs increase local inflammation and promote the production of cytokines and chemokines that modulate the innate immune response. Cell death can be both a consequence and a cause of inflammation, which can be difficult to distinguish in chronic diseases. Despite this caveat, excessive or poorly regulated cell death is increasingly recognized as a contributor to chronic inflammation in rheumatic disease and other inflammatory conditions. Drugs that inhibit cell death could, therefore, be used therapeutically for the treatment of these diseases, and programmes to develop such inhibitors are already underway. In this Review, we outline pathways for the major cell death programmes (apoptosis, necroptosis, pyroptosis and NETosis) and their potential roles in chronic inflammation. We also discuss current and developing therapies that target the cell death machinery.
Collapse
|
12
|
Swarup V, Chang TS, Duong DM, Dammer EB, Dai J, Lah JJ, Johnson ECB, Seyfried NT, Levey AI, Geschwind DH. Identification of Conserved Proteomic Networks in Neurodegenerative Dementia. Cell Rep 2020; 31:107807. [PMID: 32579933 PMCID: PMC8221021 DOI: 10.1016/j.celrep.2020.107807] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Data-driven analyses are increasingly valued in modern medicine. We integrate quantitative proteomics and transcriptomics from over 1,000 post-mortem brains from six cohorts representing Alzheimer's disease (AD), asymptomatic AD, progressive supranuclear palsy (PSP), and control patients from the Accelerating Medicines Partnership - Alzheimer's Disease consortium. We define robust co-expression trajectories related to disease progression, including early neuronal, microglial, astrocyte, and immune response modules, and later mRNA splicing and mitochondrial modules. The majority of, but not all, modules are conserved at the transcriptomic level, including module C3, which is only observed in proteome networks and enriched in mitogen-activated protein kinase (MAPK) signaling. Genetic risk enriches in modules changing early in disease and indicates that AD and PSP have distinct causal biological drivers at the pathway level, despite aspects of similar pathology, including synaptic loss and glial inflammatory changes. The conserved, high-confidence proteomic changes enriched in genetic risk represent targets for drug discovery.
Collapse
Affiliation(s)
- Vivek Swarup
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy S Chang
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jingting Dai
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Wang LJ, Chiou JT, Lee YC, Huang CH, Shi YJ, Chang LS. SIRT3, PP2A and TTP protein stability in the presence of TNF-α on vincristine-induced apoptosis of leukaemia cells. J Cell Mol Med 2020; 24:2552-2565. [PMID: 31930676 PMCID: PMC7028858 DOI: 10.1111/jcmm.14949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/27/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
The contribution of vincristine (VCR)-induced microtubule destabilization to evoke apoptosis in cancer cells remains to be resolved. Thus, we investigated the cytotoxic mechanism of VCR on U937 and HL-60 human leukaemia cell lines. We discovered that VCR treatment resulted in the up-regulation of TNF-α expression and activation of the death receptor pathway, which evoked apoptosis of U937 cells. Moreover, VCR induced microtubule destabilization and mitotic arrest. VCR treatment down-regulated SIRT3, and such down-regulation caused mitochondrial ROS to initiate phosphorylation of p38 MAPK. p38 MAPK suppressed MID1-modulated degradation of the protein phosphatase 2A (PP2A) catalytic subunit. The SIRT3-ROS-p38 MAPK-PP2A axis inhibited tristetraprolin (TTP)-controlled TNF-α mRNA degradation, consequently, up-regulating TNF-α expression. Restoration of SIRT3 and TTP expression, or inhibition of the ROS-p38 MAPK axis increased the survival of VCR-treated cells and repressed TNF-α up-regulation. In contrast to suppression of the ROS-p38 MAPK axis, overexpression of SIRT3 modestly inhibited the effect of VCR on microtubule destabilization and mitotic arrest in U937 cells. Apoptosis of HL-60 cells, similarly, went through the same pathway. Collectively, our data indicate that the SIRT3-ROS-p38 MAPK-PP2A-TTP axis modulates TNF-α expression, which triggers apoptosis of VCR-treated U937 and HL-60 cells. We also demonstrate that the apoptotic signalling is not affected by VCR-elicited microtubule destabilization.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Aizu T, Suzuki T, Kido A, Nagai K, Kobayashi A, Sugiura R, Ito Y, Mishima M. Domain selective labeling for NMR studies of multidomain proteins by domain ligation using highly active sortase A. Biochim Biophys Acta Gen Subj 2019; 1864:129419. [PMID: 31449838 DOI: 10.1016/j.bbagen.2019.129419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 11/19/2022]
Abstract
Structural study of multidomain proteins using NMR is an emerging issue for understanding biological functions. To this end, domain-specific labeling is expected to be a key technology for facilitating the NMR-assignment process and for collecting distance information via spin labeling. To obtain domain-specific labeled samples, use of sortase A as a protein ligation tool is a viable approach. Sortase A enables ligation of separately expressed proteins (domains) through the Leu-Pro-X-Thr-Gly linker. However, the ligation reaction mediated by sortase A is not efficient. Poor yield and long reaction times hamper large-scale preparation using sortase A. Here we report the application of highly active sortases to NMR analyses. Optimal yields can be achieved within several hours when the ligation reaction are mediated by highly active sortases at 4 °C. We propose that this protocol can contribute to structural analyses of multidomain proteins by NMR.
Collapse
Affiliation(s)
- Takahiro Aizu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Takumi Suzuki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Akihiro Kido
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Kan Nagai
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Ayaho Kobayashi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowake, Higashi-Osaka 577-8502, Japan
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Masaki Mishima
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan.
| |
Collapse
|
15
|
González-Rubio G, Fernández-Acero T, Martín H, Molina M. Mitogen-Activated Protein Kinase Phosphatases (MKPs) in Fungal Signaling: Conservation, Function, and Regulation. Int J Mol Sci 2019; 20:ijms20071709. [PMID: 30959830 PMCID: PMC6479966 DOI: 10.3390/ijms20071709] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are key mediators of signaling in fungi, participating in the response to diverse stresses and in developmental processes. Since the precise regulation of MAPKs is fundamental for cell physiology, fungi bear dual specificity phosphatases (DUSPs) that act as MAP kinase phosphatases (MKPs). Whereas fungal MKPs share characteristic domains of this phosphatase subfamily, they also have specific interaction motifs and particular activation mechanisms, which, for example, allow some yeast MKPs, such as Saccharomyces cerevisiae Sdp1, to couple oxidative stress with substrate recognition. Model yeasts show that MKPs play a key role in the modulation of MAPK signaling flow. Mutants affected in S. cerevisiae Msg5 or in Schizosaccharomyces pombe Pmp1 display MAPK hyperactivation and specific phenotypes. MKPs from virulent fungi, such as Candida albicans Cpp1, Fusarium graminearum Msg5, and Pyricularia oryzae Pmp1, are relevant for pathogenicity. Apart from transcriptional regulation, MKPs can be post-transcriptionally regulated by RNA-binding proteins such as Rnc1, which stabilizes the S. pombePMP1 mRNA. P. oryzae Pmp1 activity and S. cerevisiae Msg5 stability are regulated by phosphorylation and ubiquitination, respectively. Therefore, fungi offer a platform to gain insight into the regulatory mechanisms that control MKPs.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Humberto Martín
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - María Molina
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Non-mitotic effect of albendazole triggers apoptosis of human leukemia cells via SIRT3/ROS/p38 MAPK/TTP axis-mediated TNF-α upregulation. Biochem Pharmacol 2019; 162:154-168. [DOI: 10.1016/j.bcp.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
|
17
|
Li Q, Li C, Chen J, Liu P, Cui Y, Zhou X, Li H, Zu X. High expression of long noncoding RNA NORAD indicates a poor prognosis and promotes clinical progression and metastasis in bladder cancer. Urol Oncol 2018; 36:310.e15-310.e22. [PMID: 29605462 DOI: 10.1016/j.urolonc.2018.02.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE To explore the function of NORAD in bladder cancer (BC), and to verify whether NORAD could be used as a biomarker to determine preoperative presence of progression and lymph node metastasis. To our knowledge, it is the first study investigating NORAD and its implications in BC. METHODS BC specimens of 90 patients underwent bladder cystectomy or transurethral resection between January 2012 to December 2016 were tested by fluorescence in situ hybridization. The association between NORAD expression and clinicopathological features and prognosis of the patients was analyzed using Kaplan-Meier survival analysis and Cox regression analysis. Quantitative real-time polymerase chain reaction was performed in 4 BC cell lines and 10 fresh tumor sample together with adjacent tissues. MTT, colony formation assay, and Annexin-V apoptosis detection were performed after knockdown of NORAD using shRNA in TSSCUP cells. Western blot was performed to related proteins extracted from these cells. RESULTS Fluorescence in situ hybridization indicated that high NORAD expression was associated with more advanced histological grade and clinical stage for patients with BC. Higher NORAD expression resulted in lower overall survival, and was an independent prognostic indicator. Real-time polymerase chain reaction showed that the expression of NORAD in BC tissues was higher than those measured in adjacent normal tissues. MTT and colony formation assay demonstrated that knockdown of NORAD results in lower proliferation in TSSCUP cells, whereas PUM2 expression was upregulated and E2F3 downregulated. CONCLUSIONS High NORAD expression could serve as an independent prognostic factor for overall survival of patients with transitional BC. NORAD could be considered as a promising candidate for novel biomarker and therapeutic target for human BC.
Collapse
Affiliation(s)
- Qiaqia Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Chao Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xinyi Zhou
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
18
|
Xu L, Zhai L, Ge Q, Liu Z, Tao R. Vacuolar Protein Sorting 4B (VPS4B) Regulates Apoptosis of Chondrocytes via p38 Mitogen-Activated Protein Kinases (MAPK) in Osteoarthritis. Inflammation 2017; 40:1924-1932. [DOI: 10.1007/s10753-017-0633-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, Mauri F, Jameson C, Sturge J, Gabra H, Bushell M, Willis AE, Curry E, Blagden SP. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene 2015; 34:5025-36. [PMID: 25531318 PMCID: PMC4430325 DOI: 10.1038/onc.2014.428] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/20/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
RNA-binding proteins (RBPs) bind to and post-transcriptionally regulate the stability of mRNAs. La-related protein 1 (LARP1) is a conserved RBP that interacts with poly-A-binding protein and is known to regulate 5'-terminal oligopyrimidine tract (TOP) mRNA translation. Here, we show that LARP1 is complexed to 3000 mRNAs enriched for cancer pathways. A prominent member of the LARP1 interactome is mTOR whose mRNA transcript is stabilized by LARP1. At a functional level, we show that LARP1 promotes cell migration, invasion, anchorage-independent growth and in vivo tumorigenesis. Furthermore, we show that LARP1 expression is elevated in epithelial cancers such as cervical and non-small cell lung cancers, where its expression correlates with disease progression and adverse prognosis, respectively. We therefore conclude that, through the post-transcriptional regulation of genes such as mTOR within cancer pathways, LARP1 contributes to cancer progression.
Collapse
Affiliation(s)
- M Mura
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| | - T G Hopkins
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| | - T Michael
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| | - N Abd-Latip
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| | - J Weir
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - E Aboagye
- Division of Cancer, Department of Surgery and Cancer, Cancer Research UK Laboratories, Imperial College London, Hammersmith Campus, London, UK
| | - F Mauri
- Department of Histopathology, Centre for Pathology, Imperial College London, Hammersmith Campus, London, UK
| | - C Jameson
- Department of Histopathology, University College Hospital, London, UK
| | - J Sturge
- Division of Cancer, Department of Surgery and Cancer, Cancer Research UK Laboratories, Imperial College London, Hammersmith Campus, London, UK
- School of Biological, Biomedical & Environmental Sciences, The Allam Building, University of Hull, Hull, UK
| | - H Gabra
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| | - M Bushell
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - A E Willis
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - E Curry
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| | - S P Blagden
- Division of Cancer, Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London, UK
| |
Collapse
|
20
|
Newman R, McHugh J, Turner M. RNA binding proteins as regulators of immune cell biology. Clin Exp Immunol 2015. [PMID: 26201441 DOI: 10.1111/cei.12684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific RNA binding proteins (RBP) are important regulators of the immune response. RBP modulate gene expression by regulating splicing, polyadenylation, localization, translation and decay of target mRNAs. Increasing evidence suggests that RBP play critical roles in the development, activation and function of lymphocyte populations in the immune system. This review will discuss the post-transcriptional regulation of gene expression by RBP during lymphocyte development, with particular focus on the Tristetraprolin family of RBP.
Collapse
Affiliation(s)
- R Newman
- Babraham Institute, Cambridge, UK
| | - J McHugh
- Babraham Institute, Cambridge, UK
| | - M Turner
- Babraham Institute, Cambridge, UK
| |
Collapse
|
21
|
Sales A, Duarte A, Rodrigues G, Lima L, Silva G, Carvalho A, Brito I, da Maranguape R, Lobo C, Aragão J, Moura A, Figueiredo J, Rodrigues A. Steady-state level of messenger RNA and immunolocalization of aquaporins 3, 7, and 9 during in vitro growth of ovine preantral follicles. Theriogenology 2015; 84:1-10. [DOI: 10.1016/j.theriogenology.2015.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/03/2014] [Accepted: 01/06/2015] [Indexed: 10/23/2022]
|
22
|
Cryoprotectants up-regulate expression of mouse oocyte AQP7, which facilitates water diffusion during cryopreservation. Fertil Steril 2013; 99:1428-35. [DOI: 10.1016/j.fertnstert.2012.11.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 01/15/2023]
|
23
|
Liu WH, Chou WM, Chang LS. p38 MAPK/PP2Acα/TTP pathway on the connection of TNF-α and caspases activation on hydroquinone-induced apoptosis. Carcinogenesis 2013; 34:818-27. [PMID: 23288922 DOI: 10.1093/carcin/bgs409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study investigated tumor necrosis factor-α (TNF-α)-mediated death pathway contribution to hydroquinone (HQ) cytotoxicity in human leukemia U937 cells. HQ-induced apoptosis of human leukemia U937 cells was characterized by the increase in mitochondrial membrane depolarization, procaspase-8 degradation and tBid production. Downregulation of Fas-associated death domain protein (FADD) blocked HQ-induced procaspase-8 degradation and rescued the viability of HQ-treated cells, suggesting the involvement of a death receptor-mediated pathway in HQ-induced cell death. HQ induced increased TNF-α mRNA stability led to TNF-α protein expression upregulation, whereas HQ suppressed TNF-α-mediated NFκB pathway activation. HQ elicited protein phosphatase 2A catalytic subunit α (PP2Acα) upregulation via p38 mitogen-activated protein kinase (MAPK)-mediated CREB/c-Jun/ATF-2 phosphorylation, and PP2Acα upregulation was found to promote tristetraprolin (TTP) degradation. Suppression of p38 MAPK activation and protein phosphatase 2A (PP2A) activity abrogated TNF-α upregulation and procaspase degradation in HQ-treated cells. Overexpression of TTP suppressed HQ-induced TNF-α upregulation and restored the viability of HQ-treated cells. Moreover, TTP overexpression increased TNF-α mRNA decay in HQ-treated cells. Taken together, our data indicate that HQ elicits TNF-α upregulation via p38 MAPK/PP2A-mediated TTP downregulation, and suggest that the TNF-α-mediated death pathway is involved in HQ-induced U937 cell death. The same pathway was also proven to be involved in the HQ-induced death of human leukemia HL-60 and Jurkat cells.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
24
|
The impact of mRNA turnover and translation on age-related muscle loss. Ageing Res Rev 2012; 11:432-41. [PMID: 22687959 DOI: 10.1016/j.arr.2012.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 12/21/2022]
Abstract
The deterioration of skeletal muscle that develops slowly with age, termed sarcopenia, often leads to disability and mortality in the elderly population. As the proportion of elderly citizens continues to increase due to the dramatic rise in life expectancy, there are rising concerns about the healthcare cost and social burden of caring for geriatric patients. Thus, there is a growing need to understand the underlying mechanisms of sarcopenic muscle loss so that more efficacious therapies may be developed. Building evidence suggests that the onset of age-related muscle loss is linked to the age-related changes in gene expression that occur during sarcopenia. In recent work, the posttranscriptional regulation of gene expression by RNA-binding proteins (RBPs) and microRNA (miRNA) involved in the turnover and translation of mRNA were shown as key players believed to be involved in the induction of muscle wasting. Furthermore, posttranscriptional regulation may also be linked to the reduced ability of muscle satellite cells to contribute to muscle mass during ageing, a key contributing factor to sarcopenic progression. Here we highlight how the activation of pathways such as the p38 MAPK and the phosphoinositide 3-kinase (PI3K) pathways alter the ability of RBPs to regulate the expression of their target mRNAs encoding proteins involved in cell cycle (p21 and p16), as well as myogenesis (Pax7, myogenin and MyoD). Further investigation into the role of RBPs and miRNA during sarcopenia may provide new insights into the development and progression of this disorder, which may lead to the development of new treatment options for elderly patients suffering from sarcopenia.
Collapse
|