1
|
Nazarova A, Drobinin V, Helmick CA, Schmidt MH, Cookey J, Uher R. Intracortical Myelin in Youths at Risk for Depression. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100285. [PMID: 38323155 PMCID: PMC10844807 DOI: 10.1016/j.bpsgos.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024] Open
Abstract
Background Major depressive disorder (MDD) is a leading cause of disability. To understand why depression develops, it is important to distinguish between early neural markers of vulnerability that precede the onset of MDD and features that develop during depression. Recent neuroimaging findings suggest that reduced global and regional intracortical myelination (ICM), especially in the lateral prefrontal cortex, may be associated with depression, but it is unknown whether it is a precursor or a consequence of MDD. The study of offspring of affected parents offers the opportunity to distinguish between precursors and consequences by examining individuals who carry high risk at a time when they have not experienced depression. Methods We acquired 129 T1-weighted and T2-weighted scans from 56 (25 female) unaffected offspring of parents with depression and 114 scans from 63 (34 female) unaffected offspring of parents without a history of depression (ages 9 to 16 years). To assess scan quality, we calculated test-retest reliability. We used the scan ratios to calculate myelin maps for 68 cortical regions. We analyzed data using mixed-effects modeling. Results ICM did not differ between high and low familial risk youths in global (B = 0.06, SE = 0.03, p = .06) or regional (B = 0.05, SE = 0.03, p = .08) analyses. Our pediatric sample had high ICM reliability (intraclass correlation coefficient = 0.79; 95% CI, 0.55-0.88). Conclusions Based on our results, reduced ICM does not appear to be a precursor of MDD. Future studies should examine ICM in familial high-risk youths across a broad developmental period.
Collapse
Affiliation(s)
- Anna Nazarova
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Vladislav Drobinin
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Carl A. Helmick
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Matthias H. Schmidt
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob Cookey
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Abbie J. Lane Memorial Building Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Zlomuzica A, Plank L, Kodzaga I, Dere E. A fatal alliance: Glial connexins, myelin pathology and mental disorders. J Psychiatr Res 2023; 159:97-115. [PMID: 36701970 DOI: 10.1016/j.jpsychires.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Mature oligodendrocytes are myelin forming glial cells which are responsible for myelination of neuronal axons in the white matter of the central nervous system. Myelin pathology is a major feature of severe neurological disorders. Oligodendrocyte-specific gene mutations and/or white matter alterations have also been addressed in a variety of mental disorders. Breakdown of myelin integrity and demyelination is associated with severe symptoms, including impairments in motor coordination, breathing, dysarthria, perception (vision and hearing), and cognition. Furthermore, there is evidence indicating that myelin sheath defects and white matter pathology contributes to the affective and cognitive symptoms of patients with mental disorders. Oligodendrocytes express the connexins GJC2; mCx47 [human (GJC2) and mouse (mCx47) connexin gene nomenclature according to Söhl and Willecke (2003)], GJB1; mCx32, and GJD1; mCx29 in both white and gray matter. Preclinical findings indicate that alterations in connexin expression in oligodendrocytes and astrocytes can induce myelin defects. GJC2; mCx47 is expressed at early embryonic stages in oligodendrocyte precursors cells which precedes central nervous system myelination. In adult humans and animals GJC2, respectively mCx47 expression is essential for oligodendrocyte function and ensures adequate myelination as well as myelin maintenance in the central nervous system. In the past decade, evidence has accumulated suggesting that mental disorders can be accompanied by changes in connexin expression, myelin sheath defects and corresponding white matter alterations. This dual pathology could compromise inter-neuronal information transfer, processing and communication and eventually contribute to behavioral, sensory-motor, affective and cognitive symptoms in patients with mental disorders. The induction of myelin repair and remyelination in the central nervous system of patients with mental disorders could help to restore normal neuronal information propagation and ameliorate behavioral and cognitive symptoms in individuals with mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Iris Kodzaga
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany; Sorbonne Université, UFR des Sciences de la Vie, 9 quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
3
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
4
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Uranova NA, Vikhreva OV, Rakhmanova VI. Abnormal microglial reactivity in gray matter of the prefrontal cortex in schizophrenia. Asian J Psychiatr 2021; 63:102752. [PMID: 34274629 DOI: 10.1016/j.ajp.2021.102752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation has been proposed to contribute to the pathogenesis of schizophrenia. The present study addressed the questions of whether microglial reactivity is involved in the course of schizophrenia and is associated with aging. Transmission electron microscopy and morphometry were applied to estimate microglial density and ultrastructural parameters in layer 5 of the prefrontal cortex (BA10) in postmortem 21 chronic schizophrenia and 20 healthy control cases. A significant increase in microglial density was found in the schizophrenia group (+20 %), in young group (≤50 y.o.), in shorter duration of disease (≤26 yrs.) group, in early age at onset of disease (≤ 21 y.o.) group as compared to controls (p < 0.05) and in young schizophrenia group as compared to both young and elderly (>50 y.o.) controls (p < 0.05). Volume fraction (Vv) of mitochondria was significantly lower and area of lipofuscin granules was significantly higher in young and elderly schizophrenia groups as compared to young and elderly controls. Vv of lipofuscin granules strongly positively correlated with age and duration of disease in the schizophrenia group. Vv and the number (N) of lipofuscin granules were higher in longer duration (>26 yrs.) group as compared to shorter duration group (p < 0.01). Vv and N of vacuoles were increased in longer duration group as compared to controls (p < 0.01). The study provides evidence for microgliosis associated with age, duration of disease and age at onset of disease, progressive dystrophy and accelerated aging of microglia in gray matter of the prefrontal cortex in schizophrenia.
Collapse
Affiliation(s)
- N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Centre, Moscow, Russia.
| | - O V Vikhreva
- Laboratory of Clinical Neuropathology, Mental Health Research Centre, Moscow, Russia
| | - V I Rakhmanova
- Laboratory of Clinical Neuropathology, Mental Health Research Centre, Moscow, Russia
| |
Collapse
|
6
|
Chwa WJ, Tishler TA, Raymond C, Tran C, Anwar F, Villablanca JP, Ventura J, Subotnik KL, Nuechterlein KH, Ellingson BM. Association between cortical volume and gray-white matter contrast with second generation antipsychotic medication exposure in first episode male schizophrenia patients. Schizophr Res 2020; 222:397-410. [PMID: 32487466 PMCID: PMC7572538 DOI: 10.1016/j.schres.2020.03.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
This cross-sectional study examines the differences in cortical volume and gray-to-white matter contrast (GWC) in first episode schizophrenia patients (SCZ) compared to healthy control participants (HC) and in SCZ patients as a function of exposure to second generation antipsychotic medication. We hypothesize 1) SCZ exhibit regionally lower cortical volumes relative to HCs, 2) cortical volume will be greater with longer exposure to second generation antipsychotics prior to the MRI scan, and 3) lower GWC with longer exposure to second generation antipsychotics prior to the MRI scan, suggesting more blurring from greater intracortical myelin. To accomplish this, MRI scans from 71 male SCZ patients treated with second generation oral risperidone and 42 male HCs were examined. 3D T1-weighted MPRAGE images collected at 1.5T were used to estimate cortical volume and GWC by sampling signal intensity at 30% within the cortical ribbon. Average cortical volume and GWC were calculated and compared between SCZ and HC. Cortical volume and GWC in SCZ patients were correlated with duration of medication exposure for the time period prior to the scan. First-episode SCZ patients had significantly lower cortical volume compared to HCs in bilateral temporal, superior and rostral frontal, postcentral gyral, and parahippocampal regions. In SCZ patients, greater cortical volume was associated with (log-transformed) duration of second-generation antipsychotic medication exposure in bilateral precuneus, right lingual, and right superior parietal regions. Lower GWC was correlated with longer duration of medication exposure bilaterally in the superior frontal lobes. In summary, second generation antipsychotics may increase cortical volume and decrease GWC in first episode SCZ patients.
Collapse
Affiliation(s)
- Won Jong Chwa
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Todd A. Tishler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Catalina Raymond
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Cathy Tran
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Faizan Anwar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - J. Pablo Villablanca
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Psychology, University of California Los Angeles, Los Angeles, CA
| | - Benjamin M. Ellingson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
7
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
8
|
Guo X, Keenan BT, Sarantopoulou D, Lim DC, Lian J, Grant GR, Pack AI. Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell 2019; 18:e13021. [PMID: 31549781 PMCID: PMC6826131 DOI: 10.1111/acel.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022] Open
Abstract
Sleep abnormalities are common with aging. Studies show that sleep plays important roles in brain functions, and loss of sleep is associated with increased risks for neurological diseases. Here, we used RNA sequencing to explore effects of age on transcriptome changes between sleep and sleep deprivation (SD) in medial prefrontal cortex and found that transcriptional changes with sleep are attenuated in old. In particular, old mice showed a 30% reduction in the number of genes significantly altered between sleep/wake and, in general, had smaller magnitudes of changes in differentially expressed genes compared to young mice. Gene ontology analysis revealed differential age effects on certain pathways. Compared to young mice, many of the wake‐active functions were similarly induced by SD in old mice, whereas many of the sleep‐active pathways were attenuated in old mice. We found similar magnitude of changes in synaptic homeostasis genes (Fos, Arc, and Bdnf) induced by SD, suggesting intact synaptic upscaling on the transcript level during extended wakefulness with aging. However, sleep‐activated processes, such as DNA repair, synaptogenesis, and axon guidance, were sensitive to the effect of aging. Old mice expressed elevated levels of immune response genes when compared to young mice, and enrichment analysis using cell‐type‐specific markers indicated upregulation of microglia and oligodendrocyte genes in old mice. Moreover, gene sets of the two cell types showed age‐specific sleep/wake regulation. Ultimately, this study enhances understanding of the transcriptional changes with sleep and aging, providing potential molecular targets for future studies of age‐related sleep abnormalities and neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Brendan T. Keenan
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
| | - Diane C. Lim
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Jie Lian
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
- Department of Genetics University of Pennsylvania Philadelphia Pennsylvania
| | - Allan I. Pack
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
9
|
Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:379-386. [PMID: 29572659 DOI: 10.1007/s00406-018-0888-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
Abstract
Neuroimaging and post-mortem studies have implicated altered myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal network in schizophrenia, including the prefrontal cortex, Brodmann area (BA) 10. Pyramidal neurons in layer 5 of BA10 are the important link of reciprocal frontal cortical-basal ganglia-thalamic circuits altered in schizophrenia. Previously, we found ultrastructural dystrophic and degenerative alterations of oligodendrocytes in layer 5 of BA10 in schizophrenia. The aim of the study was to estimate the numerical density (Nv) of oligodendrocytes in layer 5 of BA10 in schizophrenia as compared to normal controls. 17 chronic schizophrenia subjects and 22 healthy matched controls were studied in Nissl-stained sections using optical disector method. Group differences were analyzed using ANCOVA followed by post hoc Duncan's test. The Nv of oligodendrocytes was significantly lower (- 32%, p < 0.001) in the schizophrenia group as compared to the control group. Young controls (age < 50 years old) showed significantly higher Nv of oligodendrocytes as compared to elderly controls (age > 50 years old). Young and elderly schizophrenia subgroups did not differ significantly. Both control subgroups have significantly higher Nv of oligodendrocytes as compared to the schizophrenia subgroups. Decreased Nv of oligodendrocytes found in layer 5 of BA10 may be the result of dystrophic and destructive alterations and/or disrupted development of oligodendrocytes in schizophrenia.
Collapse
|
10
|
Myelination of Axons Corresponds with Faster Transmission Speed in the Prefrontal Cortex of Developing Male Rats. eNeuro 2018; 5:eN-NWR-0203-18. [PMID: 30225359 PMCID: PMC6140121 DOI: 10.1523/eneuro.0203-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Myelination of prefrontal circuits during adolescence is thought to lead to enhanced cognitive processing and improved behavioral control. However, while standard neuroimaging techniques commonly used in human and animal studies can measure large white matter bundles and residual conduction speed, they cannot directly measure myelination of individual axons or how fast electrical signals travel along these axons. Here we focused on a specific population of prefrontal axons to directly measure conduction velocity and myelin microstructure in developing male rats. An in vitro electrophysiological approach enabled us to isolate monosynaptic projections from the anterior branches of the corpus callosum (corpus callosum-forceps minor, CCFM) to the anterior cingulate subregion of the medial prefrontal cortex (Cg1) and to measure the speed and direction of action potentials propagating along these axons. We found that a large number of axons projecting from the CCFM to neurons in Layer V of Cg1 are ensheathed with myelin between pre-adolescence [postnatal day (PD)15] and mid-adolescence (PD43). This robust increase in axonal myelination is accompanied by a near doubling of transmission speed. As there was no age difference in the diameter of these axons, myelin is likely the driving force behind faster transmission of electrical signals in older animals. These developmental changes in axonal microstructure and physiology may extend to other axonal populations as well, and could underlie some of the improvements in cognitive processing between childhood and adolescence.
Collapse
|
11
|
Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S. Adult neurogenesis and its role in brain injury and psychiatric diseases. J Neurochem 2018; 147:584-594. [PMID: 30028510 DOI: 10.1111/jnc.14557] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
In the adult mammalian brain, neural stem cells (NSCs) reside in two neurogenic regions, the walls of the lateral ventricles, and the subgranular zone of the hippocampus, which generate new neurons for the olfactory bulb and dentate gyrus, respectively. These adult NSCs retain their self-renewal ability and capacity to differentiate into neurons and glia as demonstrated by in vitro studies. However, their contribution to tissue repair in disease and injury is limited, lending credence to the claim by prominent neuropathologist Ramón y Cajal that 'once development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably'. However, recent progress toward understanding the fundamental biology of adult NSCs and their role in pathological conditions has provided new insight into the potential therapeutic utility of endogenous NSCs. In this short review, we highlight two topics: the altered behavior of NSCs after brain damage and the dysfunction of NSCs and oligodendrocyte precursor cells, another type of undifferentiated cell in the adult brain, in mood affective disorders.
Collapse
Affiliation(s)
- Yoshitaka Hayashi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Hideo Jinnou
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
12
|
Devaraju P, Zakharenko SS. Mitochondria in complex psychiatric disorders: Lessons from mouse models of 22q11.2 deletion syndrome: Hemizygous deletion of several mitochondrial genes in the 22q11.2 genomic region can lead to symptoms associated with neuropsychiatric disease. Bioessays 2017; 39. [PMID: 28044359 DOI: 10.1002/bies.201600177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mitochondrial ATP synthesis, calcium buffering, and trafficking affect neuronal function and survival. Several genes implicated in mitochondrial functions map within the genomic region associated with 22q11.2 deletion syndrome (22q11DS), which is a key genetic cause of neuropsychiatric diseases. Although neuropsychiatric diseases impose a serious health and economic burden, their etiology and pathogenesis remain largely unknown because of the dearth of valid animal models and the challenges in investigating the pathophysiology in neuronal circuits. Mouse models of 22q11DS are becoming valid tools for studying human psychiatric diseases, because they have hemizygous deletions of the genes that are deleted in patients and exhibit neuronal and behavioral abnormalities consistent with neuropsychiatric disease. The deletion of some 22q11DS genes implicated in mitochondrial function leads to abnormal neuronal and synaptic function. Herein, we summarize recent findings on mitochondrial dysfunction in 22q11DS and extend those findings to the larger context of schizophrenia and other neuropsychiatric diseases.
Collapse
Affiliation(s)
- Prakash Devaraju
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
13
|
Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016; 266:495-504. [PMID: 26315603 DOI: 10.1007/s00406-015-0640-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
Abstract
Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.
Collapse
|
14
|
Yamaguchi M, Seki T, Imayoshi I, Tamamaki N, Hayashi Y, Tatebayashi Y, Hitoshi S. Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J Physiol Sci 2016; 66:197-206. [PMID: 26578509 PMCID: PMC4823343 DOI: 10.1007/s12576-015-0421-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/18/2015] [Indexed: 11/29/2022]
Abstract
Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan.
| | | | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Hayashi
- Department of Integrative Physiology, Shiga University of Medical Science, Shiga, Japan
| | - Yoshitaka Tatebayashi
- Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
15
|
Monin A, Fournier M, Baumann PS, Cuénod M, Do KQ. Role of Redox Dysregulation in White Matter Anomalies Associated with Schizophrenia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-800981-9.00028-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Bellani M, Boschello F, Delvecchio G, Dusi N, Altamura CA, Ruggeri M, Brambilla P. DTI and Myelin Plasticity in Bipolar Disorder: Integrating Neuroimaging and Neuropathological Findings. Front Psychiatry 2016; 7:21. [PMID: 26973545 PMCID: PMC4771723 DOI: 10.3389/fpsyt.2016.00021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Bipolar disorder (BD) is a major psychiatric illness with a chronic recurrent course, ranked among the worldwide leading disabling diseases. Its pathophysiology is still not completely understood and findings are still inconclusive, though a great interest on the topic has been constantly raised by magnetic resonance imaging, genetic and neuropathological studies. In recent years, diffusion tensor imaging (DTI) investigations have prompted interest in the key role of white matter (WM) abnormalities in BD. In this report, we summarize and comment recent findings from DTI studies in BD, reporting fractional anisotropy as putative measure of WM integrity, as well as recent data from neuropathological studies focusing on oligodendrocyte involvement in WM alterations in BD. DTI research indicates that BD is most commonly associated with a WM disruption within the fronto-limbic network, which may be accompanied by other WM changes spread throughout temporal and parietal regions. Neuropathological studies, mainly focused on the fronto-limbic network, have repeatedly shown a loss in cortical and subcortical oligodendrocyte cell count, although an increased subcortical oligodendrocyte density has been also documented suggesting a putative role in remyelination processes for oligodendrocytes in BD. According to our review, a greater integration between DTI and morphological findings is needed in order to elucidate processes affecting WM, either glial loss or myelin plasticity, on the basis of a more targeted research in BD.
Collapse
Affiliation(s)
- Marcella Bellani
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | | | | | - Nicola Dusi
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona , Verona , Italy
| | - Carlo Alfredo Altamura
- Department of Neurosciences and Mental Health, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, University of Milan , Milan , Italy
| | - Mirella Ruggeri
- Section of Psychiatry, University of Verona , Verona , Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA
| |
Collapse
|
17
|
Mauney SA, Pietersen CY, Sonntag KC, Woo TUW. Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophr Res 2015; 169:374-380. [PMID: 26585218 PMCID: PMC4681621 DOI: 10.1016/j.schres.2015.10.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
Abstract
The pathophysiology of schizophrenia involves disturbances of information processing across brain regions, possibly reflecting, at least in part, a disruption in the underlying axonal connectivity. This disruption is thought to be a consequence of the pathology of myelin ensheathment, the integrity of which is tightly regulated by oligodendrocytes. In order to gain insight into the possible neurobiological mechanisms of myelin deficit, we determined the messenger RNA (mRNA) expression profile of laser captured cells that were immunoreactive for 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a marker for oligodendrocyte progenitor cells (OPCs) in addition to differentiating and myelinating oligodendrocytes, in the white matter of the prefrontal cortex in schizophrenia subjects. Our findings pointed to the hypothesis that OPC differentiation might be impaired in schizophrenia. To address this hypothesis, we quantified cells that were immunoreactive for neural/glial antigen 2 (NG2), a selective marker for OPCs, and those that were immunoreactive for oligodendrocyte transcription factor 2 (OLIG2), an oligodendrocyte lineage marker that is expressed by OPCs and maturing oligodendrocytes. We found that the density of NG2-immunoreactive cells was unaltered, but the density of OLIG2-immunoreactive cells was significantly decreased in subjects with schizophrenia, consistent with the notion that OPC differentiation impairment may contribute to oligodendrocyte disturbances and thereby myelin deficits in schizophrenia.
Collapse
Affiliation(s)
- Sarah A Mauney
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478, United States; Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States
| | - Charmaine Y Pietersen
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478, United States; Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States
| | - Kai-C Sonntag
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States
| | - Tsung-Ung W Woo
- Laboratory for Cellular Neuropathology, McLean Hospital, Belmont, MA 02478, United States; Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, United States; Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
18
|
Bakhshi K, Chance S. The neuropathology of schizophrenia: A selective review of past studies and emerging themes in brain structure and cytoarchitecture. Neuroscience 2015; 303:82-102. [DOI: 10.1016/j.neuroscience.2015.06.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/12/2023]
|
19
|
Do KQ, Cuenod M, Hensch TK. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 2015; 41:835-46. [PMID: 26032508 PMCID: PMC4466197 DOI: 10.1093/schbul/sbv065] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry.
Collapse
Affiliation(s)
- Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Takao K. Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA,*To whom correspondence should be addressed; Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, US; tel: +1-617-384-5882; fax: +1-617-495-4038; e-mail:
| |
Collapse
|
20
|
Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G. Myelination, oligodendrocytes, and serious mental illness. Glia 2014; 62:1856-77. [DOI: 10.1002/glia.22716] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 06/20/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023]
Affiliation(s)
- V. Haroutunian
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- Department of Neuroscience; The Icahn School of Medicine at Mount Sinai; New York New York
- MIRECC-JJ Peters VA Medical Center; Bronx New York
| | - P. Katsel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
| | - P. Roussos
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- MIRECC-JJ Peters VA Medical Center; Bronx New York
| | - K. L. Davis
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- Department of Neuroscience; The Icahn School of Medicine at Mount Sinai; New York New York
| | - L. L. Altshuler
- Department of Psychiatry; Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA; Los Angeles California
- The Brain Research Institute, The David Geffen School of Medicine at UCLA; Los Angeles California
- Greater Los Angeles VA Healthcare System; West Los Angeles California
| | - G. Bartzokis
- Department of Psychiatry; Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA; Los Angeles California
- The Brain Research Institute, The David Geffen School of Medicine at UCLA; Los Angeles California
- Greater Los Angeles VA Healthcare System; West Los Angeles California
| |
Collapse
|
21
|
Kochunov P, Hong LE. Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr Bull 2014; 40:721-8. [PMID: 24870447 PMCID: PMC4059450 DOI: 10.1093/schbul/sbu070] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a disorder of cerebral disconnectivity whose lifetime course is modeled as both neurodevelopmental and neurodegenerative. The neurodevelopmental models attribute schizophrenia to alterations in the prenatal-to-early adolescent development. The neurodegenerative models identify progressive neurodegeneration as its core attribute. Historically, the physiology, pharmacology, and treatment targets in schizophrenia were conceptualized in terms of neurons, neurotransmitter levels, and synaptic receptors. Much of the evidence for both models was derived from studies of cortical and subcortical gray matter. We argue that the dynamics of the lifetime trajectory of white matter, and the consistency of connectivity deficits in schizophrenia, support white matter integrity as a promising phenotype to evaluate the competing evidence for and against neurodevelopmental and neurodegenerative heuristics. We develop this perspective by reviewing normal lifetime trajectories of white and gray matter changes. We highlighted the overlap between the age of peak of white matter development and the age of onset of schizophrenia and reviewed findings of white matter abnormalities prior to, at the onset, and at chronic stages of schizophrenia. We emphasized the findings of reduced white matter integrity at the onset and findings of accelerated decline in chronic stages, but the developmental trajectory that precedes the onset is largely unknown. We propose 4 probable lifetime white matter trajectory models that can be used as the basis for separation between the neurodevelopmental and neurodegenerative etiologies. We argue that a combination of the cross-sectional and longitudinal studies of white matter integrity in patients may be used to bridge the neurodevelopment and degeneration heuristics to advance schizophrenia research.
Collapse
Affiliation(s)
- Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD.
| | | |
Collapse
|
22
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
23
|
Miguel-Hidalgo JJ, Whittom A, Villarreal A, Soni M, Meshram A, Pickett JC, Rajkowska G, Stockmeier CA. Apoptosis-related proteins and proliferation markers in the orbitofrontal cortex in major depressive disorder. J Affect Disord 2014; 158:62-70. [PMID: 24655767 PMCID: PMC3996705 DOI: 10.1016/j.jad.2014.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND In major depressive disorder (MDD), lowered neural activity and significant reductions of markers of cell resiliency to degeneration occur in the prefrontal cortex (PFC). It is still unclear whether changes in other relevant markers of cell vulnerability to degeneration and markers of cell proliferation are associated with MDD. METHODS Levels of caspase 8 (C8), X-linked inhibitor of apoptosis protein (XIAP), direct IAP binding protein with low pI (DIABLO), proliferating cell nuclear antigen (PCNA) and density of cells immunoreactive (-IR) for proliferation marker Ki-67 were measured in postmortem samples of the left orbitofrontal cortex (OFC) of subjects with MDD, and psychiatrically-normal comparison subjects. RESULTS There was significant increase in C8, a higher ratio of DIABLO to XIAP, lower packing density of Ki-67-IR cells, and an unexpected age-dependent increase in PCNA in subjects with MDD vs. controls. PCNA levels were significantly higher in MDD subjects unresponsive to antidepressants or untreated with antidepressants. The DIABLO/XIAP ratio was higher in MDD subjects without antidepressants than in comparison subjects. LIMITATIONS Qualitative nature of responsiveness assessments; definition of resistance to antidepressant treatment is still controversial; and unclear role of PCNA. CONCLUSIONS Markers of cell vulnerability to degeneration are increased and density of Ki67-positive cells is low MDD, but accompanied by normal XIAP levels. The results suggest increased vulnerability to cell pathology in depression that is insufficient to cause morphologically conspicuous cell death. Persistent but low-grade vulnerability to cell degeneration coexisting with reduced proliferation readiness may explain age-dependent reductions in neuronal densities in the OFC of depressed subjects.
Collapse
Affiliation(s)
- Jose J Miguel-Hidalgo
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Angela Whittom
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashley Villarreal
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Madhav Soni
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ashish Meshram
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason C Pickett
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA; Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
24
|
Pamphlett R. Uptake of environmental toxicants by the locus ceruleus: a potential trigger for neurodegenerative, demyelinating and psychiatric disorders. Med Hypotheses 2013; 82:97-104. [PMID: 24315447 DOI: 10.1016/j.mehy.2013.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Damage to the locus ceruleus, with a subsequent decrease of CNS noradrenaline, occurs in a wide range of neurodegenerative, demyelinating and psychiatric disorders. The cause of the initial locus ceruleus damage remains unknown. Recently, inorganic mercury was found to enter human locus ceruleus neurons selectively. This has led to the formulation of a new hypothesis as to the cause of these disorders. HYPOTHESIS Toxicants enter locus ceruleus neurons selectively, aided by the extensive exposure these neurons have to CNS capillaries, as well as by stressors that upregulate locus ceruleus activity. The resulting noradrenaline dysfunction affects a wide range of CNS cells and can trigger a number of neurodegenerative (Alzheimer's, Parkinson's and motor neuron disease), demyelinating (multiple sclerosis), and psychiatric (major depression and bipolar disorder) conditions. CONCLUSIONS This hypothesis proposes that environmental toxicants entering the locus ceruleus can give rise to a variety of CNS disorders. Proposals are made for experiments to gain further evidence for this hypothesis. If it is shown that toxicants in the locus ceruleus are responsible for these conditions, attempts can be made to prevent the toxicant exposures or to remove the toxicants from the nervous system.
Collapse
Affiliation(s)
- Roger Pamphlett
- The Stacey Motor Neuron Disease Laboratory, Department of Pathology, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
25
|
Bartzokis G, Lu PH, Raven EP, Amar CP, Detore NR, Couvrette AJ, Mintz J, Ventura J, Casaus LR, Luo JS, Subotnik KL, Nuechterlein KH. Impact on intracortical myelination trajectory of long acting injection versus oral risperidone in first-episode schizophrenia. Schizophr Res 2012; 140:122-8. [PMID: 22809684 PMCID: PMC3567927 DOI: 10.1016/j.schres.2012.06.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022]
Abstract
CONTEXT Imaging and post-mortem studies suggest that frontal lobe intracortical myelination is dysregulated in schizophrenia (SZ). Prior MRI studies suggested that early in the treatment of SZ, antipsychotic medications initially increase frontal lobe intracortical myelin (ICM) volume, which subsequently declines prematurely in chronic stages of the disease. Insofar as the trajectory of ICM decline in chronic SZ is due to medication non-adherence or pharmacokinetics, it may be modifiable by long acting injection (LAI) formulations. OBJECTIVES Assess the effect of risperidone formulation on the ICM trajectory during a six-month randomized trial of LAI (RLAI) versus oral (RisO) in first-episode SZ subjects. DESIGN Two groups of SZ subjects (RLAI, N=9; and RisO, N=13) matched on pre-randomization oral medication exposure were prospectively examined at baseline and 6 months later, along with 12 healthy controls (HCs). Frontal lobe ICM volume was assessed using inversion recovery (IR) and proton density (PD) MRI images. Medication adherence was tracked. MAIN OUTCOME MEASURE ICM volume change scores were adjusted for the change in the HCs. RESULTS ICM volume increased significantly (p=.005) in RLAI and non-significantly (p=.39) in the RisO groups compared with that of the healthy controls. A differential between-group treatment effect was at a trend level (p=.093). SZ subjects receiving RLAI had better medication adherence and more ICM increases (chi-square p<.05). CONCLUSIONS The results suggest that RLAI may promote ICM development in first-episode SZ patients. Better adherence and/or pharmacokinetics provided by LAI may modify the ICM trajectory. In vivo MRI myelination measures can help clarify pharmacotherapeutic mechanisms of action.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Po H. Lu
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Erika P. Raven
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Chetan P. Amar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Nicole R. Detore
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Alexander J. Couvrette
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Greater Los Angeles VA Healthcare System, West Los Angeles, California
| | - Jim Mintz
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joseph Ventura
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Laurie R. Casaus
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John S. Luo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kenneth L. Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Keith H. Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, Los Angeles, California,Department of Psychology, UCLA, Los Angeles, California
| |
Collapse
|
26
|
Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 2012; 62:2137-53. [PMID: 22306524 PMCID: PMC3586811 DOI: 10.1016/j.neuropharm.2012.01.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Current psychiatric diagnostic schema segregate symptom clusters into discrete entities, however, large proportions of patients suffer from comorbid conditions that fit neither diagnostic nor therapeutic schema. Similarly, psychotropic treatments ranging from lithium and antipsychotics to serotonin reuptake inhibitors (SSRIs) and acetylcholinesterase inhibitors have been shown to be efficacious in a wide spectrum of psychiatric disorders ranging from autism, schizophrenia (SZ), depression, and bipolar disorder (BD) to Alzheimer's disease (AD). This apparent lack of specificity suggests that psychiatric symptoms as well as treatments may share aspects of pathophysiology and mechanisms of action that defy current symptom-based diagnostic and neuron-based therapeutic schema. A myelin-centered model of human brain function can help integrate these incongruities and provide novel insights into disease etiologies and treatment mechanisms. Available data are integrated herein to suggest that widely used psychotropic treatments ranging from antipsychotics and antidepressants to lithium and electroconvulsive therapy share complex signaling pathways such as Akt and glycogen synthase kinase-3 (GSK3) that affect myelination, its plasticity, and repair. These signaling pathways respond to neurotransmitters, neurotrophins, hormones, and nutrition, underlie intricate neuroglial communications, and may substantially contribute to the mechanisms of action and wide spectra of efficacy of current therapeutics by promoting myelination. Imaging and genetic technologies make it possible to safely and non-invasively test these hypotheses directly in humans and can help guide clinical trial efforts designed to correct myelination abnormalities. Such efforts may provide insights into novel avenues for treatment and prevention of some of the most prevalent and devastating human diseases.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Lee GJ, Lu PH, Hua X, Lee S, Wu S, Nguyen K, Teng E, Leow AD, Jack CR, Toga AW, Weiner MW, Bartzokis G, Thompson PM. Depressive symptoms in mild cognitive impairment predict greater atrophy in Alzheimer's disease-related regions. Biol Psychiatry 2012; 71:814-21. [PMID: 22322105 PMCID: PMC3322258 DOI: 10.1016/j.biopsych.2011.12.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/18/2011] [Accepted: 12/06/2011] [Indexed: 01/20/2023]
Abstract
BACKGROUND Depression has been associated with higher conversion rates from mild cognitive impairment (MCI) to Alzheimer's disease (AD) and may be a marker of prodromal AD that can be used to identify individuals with MCI who are most likely to progress to AD. Thus, we examined the neuroanatomical changes associated with depressive symptoms in MCI. METHODS Two-hundred forty-three MCI subjects from the Alzheimer's Disease Neuroimaging Initiative who had brain magnetic resonance imaging scans at baseline and 2-year follow-up were classified into depressed (n = 44), nondepressed with other neuropsychiatric symptoms (n = 93), and no-symptom (NOSYMP; n = 106) groups based on the Neuropsychiatric Inventory Questionnaire. Tensor-based morphometry was used to create individual three-dimensional maps of 2-year brain changes that were compared between groups. RESULTS Depressed subjects had more frontal (p = .024), parietal (p = .030), and temporal (p = .038) white matter atrophy than NOSYMP subjects. Those whose depressive symptoms persisted over 2 years also had higher conversion to AD and more decline on measures of global cognition, language, and executive functioning compared with stable NOSYMP subjects. Nondepressed with other neuropsychiatric symptoms and NOSYMP groups exhibited no differences in rates of atrophy. CONCLUSIONS Depressive symptoms were associated with greater atrophy in AD-affected regions, increased cognitive decline, and higher rates of conversion to AD. Depression in individuals with MCI may be associated with underlying neuropathological changes, including prodromal AD, and may be a potentially useful clinical marker in identifying MCI patients who are most likely to progress to AD.
Collapse
Affiliation(s)
- Grace J Lee
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu H, Li XM. White matter abnormalities and animal models examining a putative role of altered white matter in schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2011; 2011:826976. [PMID: 22937274 PMCID: PMC3420616 DOI: 10.1155/2011/826976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- Department of Anatomy, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Xin-Min Li
- Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|