1
|
Albadawi EA. Microstructural Changes in the Corpus Callosum in Neurodegenerative Diseases. Cureus 2024; 16:e67378. [PMID: 39310519 PMCID: PMC11413839 DOI: 10.7759/cureus.67378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The corpus callosum, the largest white matter structure in the brain, plays a crucial role in interhemispheric communication and cognitive function. This review examines the microstructural changes observed in the corpus callosum across various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (ALS). New neuroimaging studies, mainly those that use diffusion tensor imaging (DTI) and advanced tractography methods, were put together to show how changes have happened in the organization of white matter and the connections between them. Some of the most common ways the corpus callosum breaks down are discussed, including less fractional anisotropy, higher mean diffusivity, and atrophy in certain regions. The relationship between these microstructural changes and cognitive decline, motor dysfunction, and disease progression is explored. Additionally, we consider the potential of corpus callosum imaging as a biomarker for early disease detection and monitoring. Studies show that people with these disorders have lower fractional anisotropy and higher mean diffusivity in the corpus callosum, often in ways that are specific to the disease. These changes often happen before gray matter atrophy and are linked to symptoms, which suggests that the corpus callosum could be used as an early sign of neurodegeneration. The review also highlights the implications of these findings for understanding disease mechanisms and developing therapeutic strategies. Future directions, including the application of advanced imaging techniques and longitudinal studies, are discussed to elucidate the role of corpus callosum degeneration in neurodegenerative processes. This review underscores the importance of the corpus callosum in understanding the pathophysiology of neurodegenerative diseases and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah Univeristy, Madinah, SAU
| |
Collapse
|
2
|
Wu W, Francis H, Lucien A, Wheeler TA, Gandy M. The Prevalence of Cognitive Impairment in Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-analysis. Neuropsychol Rev 2024:10.1007/s11065-024-09640-8. [PMID: 38587704 DOI: 10.1007/s11065-024-09640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
It is increasingly recognized that cognitive symptoms are a common sequelae of relapsing-remitting multiple sclerosis and are associated with adverse functional consequences. However, estimates of cognitive impairment (CIm) prevalence vary widely. This study aimed to determine the pooled prevalence of CIm among adults with RRMS and investigate moderators of prevalence rates. Following prospective registration (PROSPERO; CRD42021281815), electronic databases (Embase, Scopus, Medline, and PsycINFO) were searched from inception until March 2023. Eligible studies reported the prevalence of CIm among adults with RRMS, as determined through standardized neuropsychological testing and defined as evidence of reduced performance across at least two cognitive domains (e.g., processing speed, attention) relative to normative samples, healthy controls, or premorbid estimates. The electronic database search yielded 8695 unique records, of which 50 met selection criteria. The pooled prevalence of cognitive impairment was 32.5% (95% confidence interval 29.3-36.0%) across 5859 participants. Mean disease duration and age were significant predictors of cognitive impairment prevalence, with samples with longer disease durations and older age reporting higher prevalence rates. Studies which administered more extensive test batteries also reported significantly higher cognitive impairment prevalence. Approximately one third of adults with RRMS experience clinical levels of CIm. This finding supports the use of routine cognitive testing to enable early detection of CIm, and to identify individuals who may benefit from additional cognitive and functional support during treatment planning.
Collapse
Affiliation(s)
- Wendy Wu
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Heather Francis
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Neurology Department, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Abbie Lucien
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Tyler-Ann Wheeler
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Milena Gandy
- The School of Psychological Sciences, Australian Hearing Hub, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM, Kandil EA. Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: an insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology 2024; 32:1499-1518. [PMID: 38112964 PMCID: PMC11006778 DOI: 10.1007/s10787-023-01399-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
Multiple sclerosis (MS) is an incurable chronic neurodegenerative disease where autoimmunity, oxidative stress, and neuroinflammation collaboration predispose myelin sheath destruction. Interestingly, curcumin, a natural polyphenol, showed a neuroprotective effect in numerous neurodegenerative diseases, including MS. Nevertheless, the influence of curcumin against MS-induced cognitive impairment is still vague. Hence, we induced experimental autoimmune encephalomyelitis (EAE) in mice using spinal cord homogenate (SCH) and complete Freund's adjuvant, which eventually mimic MS. This study aimed not only to evaluate curcumin efficacy against EAE-induced cognitive and motor dysfunction, but also to explore a novel mechanism of action, by which curcumin exerts its beneficial effects in MS. Curcumin (200 mg/kg/day) efficacy was evaluated by behavioral tests, histopathological examination, and biochemical tests. Concisely, curcumin amended EAE-induced cognitive and motor impairments, as demonstrated by the behavioral tests and histopathological examination of the hippocampus. Interestingly, curcumin activated the adenosine monophosphate (AMP)-activated protein kinase/silent mating type information regulation 2 homolog 1 (AMPK/SIRT1) axis, which triggered cyclic AMP response element-binding protein/brain-derived neurotrophic factor/myelin basic protein (CREB/BDNF/MBP) pathway, hindering demyelination of the corpus callosum. Furthermore, AMPK/SIRT1 activation augmented nuclear factor erythroid 2-related factor 2 (Nrf2), a powerful antioxidant, amending EAE-induced oxidative stress. Additionally, curcumin abolished EAE-induced neuroinflammation by inhibiting Janus kinase 2 /signal transducers and activators of transcription 3 (JAK2/STAT3) axis, by various pathways, including AMPK/SIRT1 activation. JAK2/STAT3 inhibition halts inflammatory cytokines synthesis. In conclusion, curcumin's neuroprotective effect in EAE is controlled, at least in part, by AMPK/SIRT1 activation, which ultimately minimizes EAE-induced neuronal demyelination, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Mohamed A Sadek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Govindarajan ST, Liu Y, Parra Corral MA, Bangiyev L, Krupp L, Charvet L, Duong TQ. White matter correlates of slowed information processing speed in unimpaired multiple sclerosis patients with young age onset. Brain Imaging Behav 2021; 15:1460-1468. [PMID: 32748319 DOI: 10.1007/s11682-020-00345-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Slowed information processing speed is among the earliest markers of cognitive impairment in multiple sclerosis (MS) and has been associated with white matter (WM) structural integrity. Localization of WM tracts associated with slowing, but not significant impairment, on specific cognitive tasks in pediatric and young age onset MS can facilitate early and effective therapeutic intervention. Diffusion tensor imaging data were collected on 25 MS patients and 24 controls who also underwent the Symbol Digit Modalities Test (SDMT) and the computer-based Cogstate simple and choice reaction time tests. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivities were correlated voxel-wise with processing speed measures. All DTI metrics of several white matter tracts were significantly different between groups (p < 0.05). Notably, higher MD, RD, and AD, but not FA, in the corpus callosum correlated with lower scores on both SDMT and simple reaction time. Additionally, all diffusivity metrics in the left corticospinal tract correlated negatively with SDMT scores, whereas only MD in the right superior fronto-occipital fasciculus correlated with simple reaction time. In conclusion, subtle slowing of processing speed is correlated with WM damage in the visual-motor processing pathways in patients with young age of MS onset.
Collapse
Affiliation(s)
| | - Yilin Liu
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | | | - Lev Bangiyev
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lauren Krupp
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Leigh Charvet
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tim Q Duong
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Gromisch ES, Dhari Z. Identifying Early Neuropsychological Indicators of Cognitive Involvement in Multiple Sclerosis. Neuropsychiatr Dis Treat 2021; 17:323-337. [PMID: 33574669 PMCID: PMC7872925 DOI: 10.2147/ndt.s256689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating disease of the central nervous system that is most commonly seen in early to middle adulthood, although it can be diagnosed during childhood or later in life. While cognitive impairment can become more prevalent and severe as the disease progresses, signs of cognitive involvement can be apparent in the early stages of the disease. In this review, we discuss the prevalence and types of cognitive impairment seen in early MS, including the specific measures used to identify them, as well as the challenges in characterizing their frequency and progression. In addition to examining the progression of early cognitive involvement over time, we explore the clinical factors associated with early cognitive involvement, including demographics, level of physical disability, disease modifying therapy use, vocational status, and psychological and physical symptoms. Given the prevalence and functional impact these impairments can have for persons with MS, considerations for clinicians are provided, such as the role of early cognitive screenings and the importance of comprehensive neuropsychological assessments.
Collapse
Affiliation(s)
- Elizabeth S Gromisch
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Zaenab Dhari
- Mandell Center for Multiple Sclerosis, Mount Sinai Rehabilitation Hospital, Trinity Health Of New England, Hartford, CT, USA
- Department of Rehabilitative Medicine, Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| |
Collapse
|
6
|
ElSayed MEKA, El-Toukhy MMB, Asaad RE, El-Serafy OA. Diffusion tensor imaging for assessment of normally appearing white matter of the brain and spinal cord in cases of multiple sclerosis: a multi-parametric correlation in view of patient’s clinical status. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0031-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
8
|
Sedighi B, Ghaseminejad A, Abna Z, Hassani B. Optical Coherence Tomography and Corpus Callosum Index in Cognitive Assessment of Multiple Sclerosis Patients. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.14.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
9
|
Analysis of correlation between white matter changes and functional responses in thalamic stroke: a DTI & EEG study. Brain Imaging Behav 2017; 10:424-36. [PMID: 25957181 DOI: 10.1007/s11682-015-9397-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diffusion tensor imaging (DTI) allows in vivo structural brain mapping and detection of microstructural disruption of white matter (WM). One of the commonly used parameters for grading the anisotropic diffusivity in WM is fractional anisotropy (FA). FA value helps to quantify the directionality of the local tract bundle. Therefore, FA images are being used in voxelwise statistical analyses (VSA). The present study used Tract-Based Spatial Statistics (TBSS) of FA images across subjects, and computes the mean skeleton map to detect voxelwise knowledge of the tracts yielding to groupwise comparison. The skeleton image illustrates WM structure and shows any changes caused by brain damage. The microstructure of WM in thalamic stroke is investigated, and the VSA results of healthy control and thalamic stroke patients are reported. It has been shown that several skeleton regions were affected subject to the presence of thalamic stroke (FWE, p < 0.05). Furthermore the correlation of quantitative EEG (qEEG) scores and neurophysiological tests with the FA skeleton for the entire test group is also investigated. We compared measurements that are related to the same fibers across subjects, and discussed implications for VSA of WM in thalamic stroke cases, for the relationship between behavioral tests and FA skeletons, and for the correlation between the FA maps and qEEG scores.Results obtained through the regression analyses did not exceed the corrected statistical threshold values for multiple comparisons (uncorrected, p < 0.05). However, in the regression analysis of FA values and the theta band activity of EEG, cingulum bundle and corpus callosum were found to be related. These areas are parts of the Default Mode Network (DMN) where DMN is known to be involved in resting state EEG theta activity. The relation between the EEG alpha band power values and FA values of the skeleton was found to support the cortico-thalamocortical cycles for both subject groups. Further, the neurophysiological tests including Benton Face Recognition (BFR), Digit Span test (DST), Warrington Topographic Memory test (WTMT), California Verbal Learning test (CVLT) has been regressed with the FA skeleton maps for both subject groups. Our results corresponding to DST task were found to be similar with previously reported findings for working memory and episodic memory tasks. For the WTMT, FA values of the cingulum (right) that plays a role in memory process was found to be related with the behavioral responses. Splenium of corpus callosum was found to be correlated for both subject groups for the BFR.
Collapse
|
10
|
Rimkus CDM, Steenwijk MD, Barkhof F. Causes, effects and connectivity changes in MS-related cognitive decline. Dement Neuropsychol 2016; 10:2-11. [PMID: 29213424 PMCID: PMC5674907 DOI: 10.1590/s1980-57642016dn10100002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Martijn D Steenwijk
- Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands and Department of Physics and Medical technology, Neuroscience campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology, Laboratory of Medical Investigation (LIM-44), Faculty of Medicine of the University of São Paulo, São Paulo SP, Brazil and Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Roman CAF, Arnett PA. Structural brain indices and executive functioning in multiple sclerosis: A review. J Clin Exp Neuropsychol 2016; 38:261-74. [DOI: 10.1080/13803395.2015.1105199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Liu Y, Miao W, Wang J, Gao P, Yin G, Zhang L, Lv C, Ji Z, Yu T, Sabel BA, He H, Peng Y. Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study. PLoS One 2013; 8:e76105. [PMID: 24098769 PMCID: PMC3786886 DOI: 10.1371/journal.pone.0076105] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
Tourette Syndrome (TS) is characterized with chronic motor and vocal tics beginning in childhood. Abnormality of both gray (GM) and white matter (WM) has been observed in cortico-striato-thalamo-cortical circuits and sensory-motor cortex of adult TS patient. It is not clear if these morphological changes are also present in TS children and if there are any microstructural changes of WM. To understand the developmental cause of such changes, we investigated volumetric changes of GM and WM using VBM and microstructural changes of WM using DTI, and correlated these changes with tic severity and duration. T1 images and Diffusion Tensor Images (DTI) from 21 TS children were compared with 20 age and gender matched health control children using a 1.5T Philips scanner. All of the 21 TS children met the DSM-IV-TR criteria. T1 images were analyzed using DARTEL-VBM in conjunction with statistical parametric mapping (SPM). Diffusion tensor imaging (DTI) analysis was performed using Tract-Based Spatial Statistics (TBSS). Brain volume changes were found in left superior temporal gyrus, left and right paracentral gyrus, right precuneous cortex, right pre- and post- central gyrus, left temporal occipital fusiform cortex, right frontal pole, and left lingual gyrus. Significant axial diffusivity (AD) and mean diffusivity (MD) increases were found in anterior thalamic radiation, right cingulum bundle projecting to the cingulate gurus and forceps minor. Decreases in white matter volume (WMV) in the right frontal pole were inversely related with tic severity (YGTSS), and increases in AD and MD were positively correlated with tic severity and duration, respectively. These changes in TS children can be interpreted as signs of neural plasticity in response to the experiential demand. Our findings may suggest that the morphological and microstructural measurements from structural MRI and DTI can potentially be used as a biomarker of the pathophysiologic pattern of early TS children.
Collapse
Affiliation(s)
- Yue Liu
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Beijing key Lab of Magnetic Imaging Device and Technique, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Wen Miao
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jieqiong Wang
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peiyi Gao
- Department of Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guangheng Yin
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Beijing key Lab of Magnetic Imaging Device and Technique, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Liping Zhang
- Medical Department, Beijing Children’s Hospital, Capital Medical University, West District, Beijing, China
| | - Chuankai Lv
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Beijing key Lab of Magnetic Imaging Device and Technique, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zhiying Ji
- Medical Department, Beijing Children’s Hospital, Capital Medical University, West District, Beijing, China
| | - Tong Yu
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Beijing key Lab of Magnetic Imaging Device and Technique, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - B. A. Sabel
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Otto-von-Guericke University of Magdeburg, Medical Faculty, Institute of Medical Psychology, Magdeburg, Germany
| | - Huiguang He
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- * E-mail: (YP); (HH)
| | - Yun Peng
- Department of Radiology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- Beijing key Lab of Magnetic Imaging Device and Technique, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- * E-mail: (YP); (HH)
| |
Collapse
|
13
|
Mazerolle EL, Wojtowicz MA, Omisade A, Fisk JD. Intra-individual variability in information processing speed reflects white matter microstructure in multiple sclerosis. NEUROIMAGE-CLINICAL 2013; 2:894-902. [PMID: 24179840 PMCID: PMC3777766 DOI: 10.1016/j.nicl.2013.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/18/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
Abstract
Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing–remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing–remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain–behavior relationships in neurologic disorders with widespread white matter pathology. Intra-individual variability (IIV) predicts neurologic status in multiple sclerosis (MS). Diffusion tensor imaging (DTI) was used to study the neural correlates of IIV in MS. IIV was significantly related to DTI metrics in many white matter regions. Compared to mean response speed, IIV may be more sensitive to disease burden in MS. Evaluating IIV may be important for characterizing brain–behavior relationships.
Collapse
Affiliation(s)
- Erin L Mazerolle
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Room WB325, 3801 University St, Montreal, Quebec H3A 2B4, Canada ; Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | |
Collapse
|
14
|
Bester M, Lazar M, Petracca M, Babb JS, Herbert J, Grossman RI, Inglese M. Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. J Neurol Sci 2013; 330:61-6. [PMID: 23643443 DOI: 10.1016/j.jns.2013.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/28/2013] [Accepted: 04/02/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although benign multiple sclerosis (BMS) is traditionally defined by the presence of mild motor involvement decades after disease onset, symptoms of fatigue and cognitive impairment are very common. OBJECTIVE To investigate the association between micro-structural damage in the anterior thalamic (AT) tracts and in the corpus callosum (CC), as measured by diffusion tensor imaging (DTI) tractography, and fatigue and cognitive deficits. METHODS DTI data were acquired from 26 BMS patients and 24 sex- and age-matched healthy controls. RESULTS General and mental fatigue scores were significantly impaired in patients compared with controls (p≤0.05 for both) and 38% of patients resulted cognitively impaired. Mean diffusivity (MD) of the AT and CC tracts was significantly higher and fractional anisotropy (FA) was lower in patients compared with controls (p<0.001 for all). Fatigue was associated with increased MD (p=0.01) of the AT tracts whereas deficit of executive functions and verbal learning were associated with decreased FA in the body (p=0.004) and genu (p=0.008) of the CC. Deficits in processing speed and attention were associated with the T2 lesion volume of the AT tracts (p<0.01 for all). DISCUSSION These findings suggest that fatigue and cognitive impairment are quite frequent in BMS patients and are, at least in part, related to micro-structural damage and T2LV of WM tracts connecting the brain cortical and sub-cortical regions of the two hemispheres.
Collapse
Affiliation(s)
- Maxim Bester
- Department of Radiology, New York University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies. J Neural Transm (Vienna) 2013; 120:1369-95. [PMID: 23328950 DOI: 10.1007/s00702-013-0971-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Delineating the normal development of brain white matter (WM) over the human lifespan is crucial to improved understanding of underlying WM pathology in neuropsychiatric and neurological conditions. We review the extant literature concerning diffusion tensor imaging studies of brain WM development in healthy individuals available until October 2012, summarise trends of normal development of human brain WM and suggest possible future research directions. Temporally, brain WM maturation follows a curvilinear pattern with an increase in fractional anisotropy (FA) from newborn to adolescence, decelerating in adulthood till a plateau around mid-adulthood, and a more rapid decrease of FA from old age onwards. Spatially, brain WM tracts develop from central to peripheral regions, with evidence of anterior-to-posterior maturation in commissural and projection fibres. The corpus callosum and fornix develop first and decline earlier, whilst fronto-temporal WM tracts like cingulum and uncinate fasciculus have protracted maturation and decline later. Prefrontal WM is most vulnerable with greater age-related FA reduction compared with posterior WM. Future large scale studies adopting longitudinal design will better clarify human brain WM changes over time.
Collapse
|
16
|
Rimkus CDM, Junqueira TDF, Callegaro D, Otaduy MCG, Leite CDC. Segmented corpus callosum diffusivity correlates with the Expanded Disability Status Scale score in the early stages of relapsing-remitting multiple sclerosis. Clinics (Sao Paulo) 2013; 68:1115-20. [PMID: 24037007 PMCID: PMC3752628 DOI: 10.6061/clinics/2013(08)09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/08/2013] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE The aim of this study was to characterize the microscopic damage to the corpus callosum in relapsing-remitting multiple sclerosis (RRMS) with diffusion tensor imaging and to investigate the correlation of this damage with disability. The diffusion tensor imaging parameters of fractional anisotropy and mean diffusivity provide information about the integrity of cell membranes, offering two more specific indices, namely the axial and radial diffusivities, which are useful for discriminating axon loss from demyelination. METHOD Brain magnetic resonance imaging exams of 30 relapsing-remitting multiple sclerosis patients and 30 age- and sex-matched healthy controls were acquired in a 3T scanner. The axial diffusivities, radial diffusivities, fractional anisotropy, and mean diffusivity of five segments of the corpus callosum, correlated to the Expanded Disability Status Scale score, were obtained. RESULTS All corpus callosum segments showed increased radial diffusivities and mean diffusivity, as well as decreased fractional anisotropy, in the relapsing-remitting multiple sclerosis group. The axial diffusivity was increased in the posterior midbody and splenium. The Expanded Disability Status Scale scores correlated more strongly with axial diffusivities and mean diffusivity, with an isolated correlation with radial diffusivities in the posterior midbody of the corpus callosum. There was no significant correlation with lesion loads. CONCLUSION Neurological dysfunction in relapsing-remitting multiple sclerosis can be influenced by commissural disconnection, and the diffusion indices of diffusion tensor imaging are potential biomarkers of disability that can be assessed during follow-up.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Department of Radiology, Laboratory of Medical Investigation (LIM-44), São Paulo/SPSP, Brazil
| | | | | | | | | |
Collapse
|
17
|
Relevance of brain lesion location to cognition in relapsing multiple sclerosis. PLoS One 2012; 7:e44826. [PMID: 23144775 PMCID: PMC3489883 DOI: 10.1371/journal.pone.0044826] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/07/2012] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To assess the relationship between cognition and brain white matter (WM) lesion distribution and frequency in patients with relapsing-remitting multiple sclerosis (RR MS). METHODS MRI-based T2 lesion probability map (LPM) was used to assess the relevance of brain lesion location for cognitive impairment in a group of 142 consecutive patients with RRMS. Significance of voxelwise analyses was p<0.05, cluster-corrected for multiple comparisons. The Rao Brief Repeatable Battery was administered at the time of brain MRI to categorize the MS population into cognitively preserved (CP) and cognitively impaired (CI). RESULTS Out of 142 RRMS, 106 were classified as CP and 36 as CI. Although the CI group had greater WM lesion volume than the CP group (p = 0.001), T2 lesions tended to be less widespread across the WM. The peak of lesion frequency was almost twice higher in CI (61% in the forceps major) than in CP patients (37% in the posterior corona radiata). The voxelwise analysis confirmed that lesion frequency was higher in CI than in CP patients with significant bilateral clusters in the forceps major and in the splenium of the corpus callosum (p<0.05, corrected). Low scores of the Symbol Digit Modalities Test correlated with higher lesion frequency in these WM regions. CONCLUSIONS Overall these results suggest that in MS patients, areas relevant for cognition lie mostly in the commissural fiber tracts. This supports the notion of a functional (multiple) disconnection between grey matter structures, secondary to damage located in specific WM areas, as one of the most important mechanisms leading to cognitive impairment in MS.
Collapse
|
18
|
Abstract
OBJECTIVE HIV preferentially affects white matter in the brain. Although combination antiretroviral therapy (cART) reduces HIV viral load within the brain, continued inflammation can persist. We investigated the effect of HIV and cART on white matter integrity. DESIGN We used diffusion tensor imaging (DTI) to examine the effects of HIV and cART on white matter integrity within the corpus callosum and centrum semiovale (CSO). METHODS Neuropsychological testing and DTI measures (fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity) were obtained from 21 HIV-uninfected controls, 21 HIV-infected patients naive to cART (HIV+/cART-), and 21 HIV+ patients receiving stable cART (HIV+/cART+). A subset of the HIV+/cART- individuals (n=10) was assessed before and 6 months after receiving medications. Differences among the cross-sectional groups were assessed using an analysis of variance, whereas paired t-tests evaluated longitudinal changes. RESULTS HIV+/cART- participants had significantly lower mean diffusivity, axial diffusivity, and radial diffusivity for the corpus callosum and CSO compared to HIV- controls and HIV+/cART+ individuals. No significant difference existed between HIV- controls and HIV+/cART+ patients. cART initiation significantly improved mean diffusivity, radial diffusivity, and axial diffusivity, but not fractional anisotropy, in the corpus callosum and CSO in some HIV-infected patients. CONCLUSION Observed decreases in DTI parameters between HIV+/cART+ and HIV+/cART- individuals could reflect the presence of inflammatory cells or cytotoxic edema in HIV+/cART- patients. Initiating cART could lead to a reduction in neuro-inflammation and improvement in DTI measures. Future DTI studies may be useful for evaluating the efficacy higher brain penetrating cART regimens.
Collapse
|