1
|
Ding Y, Peng Y, Wu H, Huang Y, Sheng K, Li C, Chu M, Ji W, Guo X. The protective roles of liraglutide on Kawasaki disease via AMPK/mTOR/NF-κB pathway. Int Immunopharmacol 2023; 117:110028. [PMID: 36934674 DOI: 10.1016/j.intimp.2023.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Kawasaki disease (KD) is an acute febrile rash illness among children of unknown etiology, with coronary artery injury. The main purpose of this study was to investigate the protective effects of liraglutide on KD, and elucidate the underlying mechanisms. The candida albicans water-soluble fraction (CAWS)-induced coronary arteritis of mouse KD model in vivo and tumor necrosis factor α (TNF-α) induced endothelial cell injury of human umbilical vein endothelial cell (HUVEC) model in vitro were used to explore the anti-inflammation and anti-apoptosis effects of liraglutide on KD. In vivo results showed that liraglutide could significantly alleviate the coronary artery injury of KD mice, as evidenced by the reduction of inflammatory infiltration around the coronary arteries, downregulation of inflammatory cytokines and chemokines expressions, and decrease of TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) positive cell rates. The results in vitro also displayed that liraglutide could markedly relieve the inflammatory of TNF-α induced HUVECs through downregulating the expressions of inflammatory and chemokine indicators as well as inhibit TNF-α induced HUVEC apoptosis by the less ratio of apoptotic cells, the more loss of mitochondrial membrane potential (△Ψm), the lower level of intracellular reactive oxygen species (ROS), and the more ratio of BCL-2/BAX. Further in vivo and in vitro studies demonstrated that liraglutide could rescue endothelial cell injury through AMPK/mTOR/NF-κB pathway. In conclusion, liraglutide could play protective roles on KD through inhibiting endothelial cell inflammation and apoptosis via the activation of AMPK/mTOR/NF-κB pathway.
Collapse
Affiliation(s)
- Yinjuan Ding
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongmiao Peng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilan Wu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Huang
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Sheng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Li
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maoping Chu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Weiping Ji
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of General Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Srivastava S, Singh PR. Oral Administration of Lactobacillus casei and Bifidobacterium bifidum Improves Glucagon like Peptide-1(GLP-1) and Glucose-Dependent Insulinotropic Polypeptide (GIP) Level in Streptozotocin Induced Diabetic Rats. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2021. [DOI: 10.12944/crnfsj.9.2.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gut microbiome plays significant role in the function and integrity of the gastrointestinal tract. They also maintain immune homeostasis and host energy metabolism. The metabolic products of these intestinal microbes can alter carbohydrate metabolism, nutrient absorption and reduce appetite to promote healthy lifestyle. Intestinal disbiosis observed in metabolic disorders like obesity and diabetes. Restoration of dysbiosed gut microbiome through oral administration of probiotics that may have profound health effect in diabetes. In case of diabetes, reports postulated impaired level of incretin, therefore we explored the effect of oral administration of probiotic bacteria Lactobacillus casei NCDC 017 (LC017) and Bifidobacterium bifidum NCDC 231 (BB231) alone and in combination on secretion of incretin hormones such as glucagon like peptide-1 and glucose dependent insulinotropic polypeptide. Thirty six male Wistar rats were randomly divided into six groups and diabetes was induced by single dose of streptozotocin (50 mg/kg body weight) in experimental rats intraperitonially except a group of healthy rats. The diabetic rats were daily administered orally with single dose (~107cfu/ml) of LC017 and BB231 alone and in combination for 28 days. Also, one group of diabetic rats was treated with an anti-diabetic drug, acarbose (10mg/kg body weight) and used a standard control. The change in body weight, sucrose tolerance test, GLP-1, GIP level in serum and GLP-1 level in different part of intestine were observed. The results have shown reduction in body weight in diabetic rats as compared to non-diabetic rats but improved after treatment of probiotic bacteria. Administration of LC017 and BB231 significantly improved GLP-1 and GIP level which were initially impaired in diabetic rats and their combination significantly decreased glucose level in sucrose tolerance test. This study indicated that LC017 and BB231 have significant hypoglycaemic potential in diabetic rats by increasing GLP-1 and GIP level. These findings offered a base for the use of LC017 and BB231 for improvement and treatment of diabetes.
Collapse
Affiliation(s)
- Sumiran Srivastava
- 1Department of Biotechnology, Bundelkhand University, Jhansi, Uttar Pradesh, India
| | - Prof. Rambir Singh
- 2Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
3
|
Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB, Drucker DJ. GLP-1 Receptor Expression Within the Human Heart. Endocrinology 2018; 159:1570-1584. [PMID: 29444223 PMCID: PMC5939638 DOI: 10.1210/en.2018-00004] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
Glucagonlike peptide-1 receptor (GLP-1R) agonists, which are used to treat type 2 diabetes and obesity, reduce the rates of myocardial infarction and cardiovascular death. GLP-1R has been localized to the human sinoatrial node; however, its expression in ventricular tissue remains uncertain. Here we studied GLP-1R expression in the human heart using GLP-1R-directed antisera, quantitative polymerase chain reaction (PCR), reverse transcription PCR to detect full-length messenger RNA (mRNA) transcripts, and in situ hybridization (ISH). GLP1R mRNA transcripts, encompassing the entire open reading frame, were detected in all four cardiac chambers from 15 hearts at levels approximating those detected in human pancreas. In contrast, cardiac GLP2R expression was relatively lower, and cardiac GCGR expression was sporadic and not detected in the left ventricle. GLP1R mRNA transcripts were not detected in RNA from human cardiac fibroblasts, coronary artery endothelial, or vascular smooth muscle cells. Human Brunner glands and pancreatic islets exhibited GLP-1R immunopositivity and abundant expression of GLP1R mRNA transcripts by ISH. GLP1R transcripts were also detected by ISH in human cardiac sinoatrial node tissue. However, definitive cellular localization of GLP1R mRNA transcripts or immunoreactive GLP-1R protein within human cardiomyocytes or cardiac blood vessels remained elusive. Moreover, validated GLP-1R antisera lacked sufficient sensitivity to detect expression of the endogenous islet or cardiac GLP-1R by Western blotting. Hence, although human cardiac ventricles express the GLP1R, the identity of one or more ventricular cell type(s) that express a translated GLP1R protein requires further clarification with highly sensitive methods of detection.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Bernardo Yusta
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Xiemin Cao
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | - Jagdish Butany
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas P Cappola
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Correspondence: Daniel J. Drucker, MD, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde Street, TCP5-1004, Toronto, Ontario M5G 1X5, Canada. E-mail:
| |
Collapse
|
4
|
Li N, Zhao Y, Yue Y, Chen L, Yao Z, Niu W. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance. Biochem Biophys Res Commun 2016; 478:46-52. [PMID: 27457805 DOI: 10.1016/j.bbrc.2016.07.095] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023]
Abstract
PURPOSE Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, is an antidiabetic drug. It has been shown to improve endothelial dysfunction, but the mechanism remains somewhat unclear. Leptin can also improve endothelial function. Cardiovascular disease (CVD) is linked to hyperleptinemia, and leptin resistance, how liraglutide influences the effect of leptin on endothelial function, is never reported. We used palmitic acid (PA) to mimic hyperlipidemia in endothelial cells to explore the cardio-protective mechanism of liraglutide and its impact on the role of leptin. METHODS Human umbilical vein endothelial cells (HUVECs) were incubated with PA for 16 h and then were treated with liraglutide for 30 min. RESULTS PA elevated not only phosphorylation of JNK and IKKα/β, but also the expression of IL-6 in HUVECs. These effects of PA were reversed by liraglutide. In addition, liraglutide increased phosphorylation of eNOS, AMPK, and the release of NO but had no effect on PKC phosphorylation. In addition, leptin elevated eNOS phosphorylation but was abrogated by PA. However, in the presence of liraglutide, leptin regained its function of elevating eNOS phosphorylation. Last, we found that liraglutide inhibited PA-elevated SOCS3, which is a marker of leptin resistance. CONCLUSIONS GLP-1 impairs endothelial inflammatory signals, improves endothelial function, and reverses leptin resistance.
Collapse
Affiliation(s)
- Nana Li
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China; Tianjin Hospital, Tianjin, 300070, China
| | - Yihe Zhao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Yingying Yue
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China
| | - Wenyan Niu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Poudyal H. Mechanisms for the cardiovascular effects of glucagon-like peptide-1. Acta Physiol (Oxf) 2016; 216:277-313. [PMID: 26384481 DOI: 10.1111/apha.12604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/25/2015] [Accepted: 09/10/2015] [Indexed: 12/16/2022]
Abstract
Over the past three decades, at least 10 hormones secreted by the enteroendocrine cells have been discovered, which directly affect the cardiovascular system through their innate receptors expressed in the heart and blood vessels or through a neural mechanism. Glucagon-like peptide-1 (GLP-1), an important incretin, is perhaps best studied of these gut-derived hormones with important cardiovascular effects. In this review, I have discussed the mechanism of GLP-1 release from the enteroendocrine L-cells and its physiological effects on the cardiovascular system. Current evidence suggests that GLP-1 has positive inotropic and chronotropic effects on the heart and may be important in preserving left ventricular structure and function by direct and indirect mechanisms. The direct effects of GLP-1 in the heart may be mediated through GLP-1R expressed in atria as well as arteries and arterioles in the left ventricle and mainly involve in the activation of multiple pro-survival kinases and enhanced energy utilization. There is also good evidence to support the involvement of a second, yet to be identified, GLP-1 receptor. Further, GLP-1(9-36)amide, which was previously thought to be the inactive metabolite of the active GLP-1(7-36)amide, may also have direct cardioprotective effects. GLP-1's action on GLP-1R expressed in the central nervous system, kidney, vasculature and the pancreas may indirectly contribute to its cardioprotective effects.
Collapse
Affiliation(s)
- H. Poudyal
- Department of Diabetes, Endocrinology and Nutrition; Graduate School of Medicine and Hakubi Centre for Advanced Research; Kyoto University; Kyoto Japan
| |
Collapse
|
6
|
Abstract
We investigated the functional effects of glucagon-like peptide-1 [GLP-1(7-36)] and GLP-1(9-36) and the mechanism(s) playing a role in the effects of these agents in isolated small resistance arteries from control and diabetic rats. Cumulative concentrations of GLP-1(7-36) and GLP-1(9-36) produced concentration-dependent relaxations in endothelium-intact but not endothelium-denuded arteries that were significantly decreased in diabetic rats. GLP-1 receptor antagonist exendin(9-39) significantly inhibited responses to GLP-1 analogs. Nitric oxide/cyclic guanosine monophosphate pathway blockers, but not indomethacin, significantly decreased responses to GLP-1(7-36) or GLP-1(9-36) in control and diabetic rats. 4-Aminopyridine or glibenclamide incubation did not alter relaxations to GLP-1 analogs. GLP-1(7-36)- and GLP-1(9-36)-induced relaxations were blunted significantly and to similar extends by charybdotoxin and apamin combination in control and diabetic rats. Catalase did not affect, whereas superoxide dismutase (SOD) caused a significant increase in relaxations to GLP-1 analogs only in diabetic rats. We provided evidence about the relaxant effects of GLP-1(7-36) and GLP-1(9-36) in resistance arteries that were reduced in diabetic rats. Both calcium-activated potassium channels and endothelium played a major role in relaxations. Increment in certain reactive oxygen species and/or reduction in superoxide dismutase function might play a role in reduced relaxant responses of resistance arteries to GLP-1(7-36) and GLP-1(9-36) in diabetic rats.
Collapse
|
7
|
Al Lafi SM, Artinian SB, Boutary SS, Zwainy NS, Bitar KM, Bikhazi AB. Aliskiren, exendin-4, and insulin: their impact on endothelin receptor subtype(s) regulation/binding in type 1 diabetic rat hearts. Can J Physiol Pharmacol 2013; 91:830-8. [DOI: 10.1139/cjpp-2013-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study focuses on the impact of aliskiren and (or) glucagon-like peptide-1 analogue on the binding affinity/regulation of endothelin-1 (ET-1) to its receptor subtypes A (ETAR) and B (ETBR) at the level of the coronary endothelium and the cardiomyocytes in a type-1 diabetic rat model. Seven groups were used: (i) normal rats, (ii) rats with induced diabetes, (iii) rats with induced diabetes that were treated with insulin, (iv) rats with induced diabetes that were treated with exendin-4, (v) rats with induced diabetes that were treated with aliskiren, (vi) rats with induced diabetes that were co-treated with insulin plus aliskiren, and (vii) rats with induced diabetes that were co-treated with exendin-4 plus aliskiren. Heart perfusion with [125I]-ET-1 was employed to estimate ET-1 binding affinity (τ = 1/K–n) to ETAR and ETBR at the level of the coronary endothelium and the cardiomyocytes. Plasma ET-1 levels were measured using enzyme immunoassay, whereas densities of ETAR and ETBR were detected using Western blot. No significance differences were detected in the τ of ETAR and ETBR between normal and diabetic in cardiomyocytes and the coronary endothelium. Exendin-4 normalized the τ value for ETAR and ETBR on coronary endothelium, while aliskiren normalized it on cardiomyocytes. Furthermore, ETAR and ETBR densities were normalized with monotreatments of aliskiren and exendin-4, compared with up-regulated ETAR and down-regulated ETBR band densities in the diabetic animals. Our data indicate that aliskiren alleviates diabetes-associated hypertrophy in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Sawsan M. Al Lafi
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Shushan B. Artinian
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Suzan S. Boutary
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Nadine S. Zwainy
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Khalil M. Bitar
- Department of Physics, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Anwar B. Bikhazi
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
8
|
Watanabe T, Sato K, Itoh F, Wakabayashi K, Shichiri M, Hirano T. Endogenous bioactive peptides as potential biomarkers for atherosclerotic coronary heart disease. SENSORS 2012; 12:4974-85. [PMID: 22666071 PMCID: PMC3355454 DOI: 10.3390/s120404974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/22/2012] [Accepted: 04/16/2012] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, with high medical costs and rates of disability. It is therefore important to evaluate the use of cardiovascular biomarkers in the early diagnosis of coronary artery disease (CAD). We have screened a variety of recently identified bioactive peptides candidates in anticipation that they would allow detection of atherosclerotic CAD. Especially, we have focused on novel anti-atherogenic peptides as indicators and negative risk factors for CAD. In vitro, in vivo and clinical studies indicated that human adiponectin, heregulin-β1, glucagon-like peptide-1 (GLP-1), and salusin-α, peptides of 244, 71, 30, and 28 amino acids, respectively, attenuate the development and progression of atherosclerotic lesions by suppressing macrophage foam cell formation via down-regulation of acyl-coenzyme A: cholesterol acyltransferase-1. Circulating levels of these peptides in the blood are significantly decreased in patients with CAD compared to patients without CAD. Receiver operating characteristic analyses showed that salusin-α is a more useful biomarker, with better sensitivity and specificity, compared with the others for detecting CAD. Therefore, salusin-α, heregulin-β1, adiponectin, and/or GLP-1, alone or in various combinations, may be useful as biomarkers for atherosclerotic CAD.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan; E-Mails: (K.S.); (F.I.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-42-676-6983; Fax: +81-42-676-4323
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan; E-Mails: (K.S.); (F.I.)
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-City, Tokyo 192-0392, Japan; E-Mails: (K.S.); (F.I.)
| | - Kohei Wakabayashi
- Division of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Kanagawa 227-8501, Japan; E-Mail:
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan; E-Mail:
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8555, Japan; E-Mail:
| |
Collapse
|