1
|
Pérez-Becerra JDJ, Rodríguez-Machuca VU, González-Rodríguez MTA, Brukman-Jiménez SA, Corona-Rivera A, Ramirez-Corona JA, Cuero-Quezada I, Corona-Rivera JR, Ramírez-Urenda XA, González-Pérez G, Bustos-Rodríguez FDJ, Bobadilla-Morales L. De Novo RB1 Germline Variant in Retinoblastoma with Two Subsequent Independent Neoplasms: Case Report and Literature Review. Int J Mol Sci 2024; 25:12338. [PMID: 39596402 PMCID: PMC11594721 DOI: 10.3390/ijms252212338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Variants in the RB1 gene are associated with retinoblastoma (RB) development, and their presence in germline cells considerably increases the risk of subsequent malignant neoplasms (SMNs) in RB survivors. We report a female patient with bilateral RB who developed two SMNs in less than ten years, with a de novo pathogenic nonsense variant in RB1 [NM_000321.3:c.306T>A, p.(Cys102*)] in heterozygosity. The updated literature review of similar cases of SMN in patients with a previous diagnosis of RB reveals a wide range in both the type of subsequent malignancy and the age at which these SMNs develop. In addition, we identified only three cases with two SMNs following RB diagnosis, with at least one of these being an EWS. This case broadens the clinical and genetic landscape of RB, demonstrates the importance of a multidisciplinary approach in these patients, and highlights genetic diagnosis as a mandatory feature for management.
Collapse
Affiliation(s)
- José de Jesús Pérez-Becerra
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
| | - Víctor Ulises Rodríguez-Machuca
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
| | - María Teresa Alejandra González-Rodríguez
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
| | | | - Alfredo Corona-Rivera
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico;
| | - Juan Antonio Ramirez-Corona
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
| | - Idalid Cuero-Quezada
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
| | - Jorge Román Corona-Rivera
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico;
| | - Xóchitl Aurora Ramírez-Urenda
- Pediatric Hematology and Oncology Department, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico;
| | - Graciela González-Pérez
- Ophthamology Department, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara 44280, Mexico
| | | | - Lucina Bobadilla-Morales
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.d.J.P.-B.); (V.U.R.-M.); (M.T.A.G.-R.); (J.A.R.-C.); (I.C.-Q.)
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (A.C.-R.); (J.R.C.-R.)
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico;
| |
Collapse
|
2
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
3
|
Domenici G, Eduardo R, Castillo-Ecija H, Orive G, Montero Carcaboso Á, Brito C. PDX-Derived Ewing's Sarcoma Cells Retain High Viability and Disease Phenotype in Alginate Encapsulated Spheroid Cultures. Cancers (Basel) 2021; 13:cancers13040879. [PMID: 33669730 PMCID: PMC7922076 DOI: 10.3390/cancers13040879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ewing’s Sarcoma (ES) is the second most frequent bone tumour in children and young adults, with very aggressive behaviour and significant disease recurrence. To better study the disease and find new therapies, experimental models are needed. Recently, patient-derived xenografts (PDX), obtained by implanting patient tumour samples in immunodeficient mice, have been developed. However, when ES cells are extracted from the patient’s tumour or from PDX and placed on plasticware surfaces, they lose their original 3D configuration, cell identity and function. To overcome these issues, we implemented cultures of PDX-derived ES cells, by making them aggregate to form ES cell spheroids and then encapsulating these 3D spheroids into a hydrogel, alginate, to stabilize the culture. We show that this methodology maintained ES cell viability and intrinsic characteristics of the original ES tumour cells for at least one month and that it is suitable for study the effect of anticancer drugs. Abstract Ewing’s Sarcoma (ES) is the second most frequent malignant bone tumour in children and young adults and currently only untargeted chemotherapeutic approaches and surgery are available as treatment, although clinical trials are on-going for recently developed ES-targeted therapies. To study ES pathobiology and develop novel drugs, established cell lines and patient-derived xenografts (PDX) are the most employed experimental models. Nevertheless, the establishment of ES cell lines is difficult and the extensive use of PDX raises economic/ethical concerns. There is a growing consensus regarding the use of 3D cell culture to recapitulate physiological and pathophysiological features of human tissues, including drug sensitivity. Herein, we implemented a 3D cell culture methodology based on encapsulation of PDX-derived ES cell spheroids in alginate and maintenance in agitation-based culture systems. Under these conditions, ES cells displayed high proliferative and metabolic activity, while retaining the typical EWSR1-FLI1 chromosomal translocation. Importantly, 3D cultures presented reduced mouse PDX cell contamination compared to 2D cultures. Finally, we show that these 3D cultures can be employed in drug sensitivity assays, with results similar to those reported for the PDX of origin. In conclusion, this novel 3D cell culture method involving ES-PDX-derived cells is a suitable model to study ES pathobiology and can assist in the development of novel drugs against this disease, complementing PDX studies.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Helena Castillo-Ecija
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Ángel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
4
|
Luo W, Xu C, Phillips S, Gardenswartz A, Rosenblum JM, Ayello J, Lessnick SL, Hao HX, Cairo MS. Protein phosphatase 1 regulatory subunit 1A regulates cell cycle progression in Ewing sarcoma. Oncotarget 2020; 11:1691-1704. [PMID: 32477459 PMCID: PMC7233808 DOI: 10.18632/oncotarget.27571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022] Open
Abstract
Ewing sarcoma (ES) is a malignant pediatric bone and soft tissue tumor. Patients with metastatic ES have a dismal outcome which has not been improved in decades. The major challenge in the treatment of metastatic ES is the lack of specific targets and rational combinatorial therapy. We recently found that protein phosphatase 1 regulatory subunit 1A (PPP1R1A) is specifically highly expressed in ES and promotes tumor growth and metastasis in ES. In the current investigation, we show that PPP1R1A regulates ES cell cycle progression in G1/S phase by down-regulating cell cycle inhibitors p21Cip1 and p27Kip1, which leads to retinoblastoma (Rb) protein hyperphosphorylation. In addition, we show that PPP1R1A promotes normal transcription of histone genes during cell cycle progression. Importantly, we demonstrate a synergistic/additive effect of the combinatorial therapy of PPP1R1A and insulin-like growth factor 1 receptor (IGF-1R) inhibition on decreasing ES cell proliferation and migration in vitro and limiting xenograft tumor growth and metastasis in vivo. Taken together, our findings suggest a role of PPP1R1A as an ES specific cell cycle modulator and that simultaneous targeting of PPP1R1A and IGF-1R pathways is a promising specific and effective strategy to treat both primary and metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Changxin Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Sarah Phillips
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | | | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Huai-Xiang Hao
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Immunology and Microbiology, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
5
|
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, Pasello M, Parra A, Carrabotta M, Ferracin M, Palladini A, Ianzano ML, Giusti V, Ruzzi F, Magnani M, Donati DM, Picci P, Lollini PL, Scotlandi K. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019; 9:12174. [PMID: 31434953 PMCID: PMC6704066 DOI: 10.1038/s41598-019-48634-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient’s tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Service of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Davide Maria Donati
- Third Orthopedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
6
|
Dowless M, Lowery CD, Shackleford T, Renschler M, Stephens J, Flack R, Blosser W, Gupta S, Stewart J, Webster Y, Dempsey J, VanWye AB, Ebert P, Iversen P, Olsen JB, Gong X, Buchanan S, Houghton P, Stancato L. Abemaciclib Is Active in Preclinical Models of Ewing Sarcoma via Multipronged Regulation of Cell Cycle, DNA Methylation, and Interferon Pathway Signaling. Clin Cancer Res 2018; 24:6028-6039. [PMID: 30131386 DOI: 10.1158/1078-0432.ccr-18-1256] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Ewing sarcoma (ES) is a rare and highly malignant cancer that occurs in the bone and surrounding tissue of children and adolescents. The EWS/ETS fusion transcription factor that drives ES pathobiology was previously demonstrated to modulate cyclin D1 expression. In this study, we evaluated abemaciclib, a small-molecule CDK4 and CDK6 (CDK4 and 6) inhibitor currently under clinical investigation in pediatric solid tumors, in preclinical models of ES. EXPERIMENTAL DESIGN Using Western blot, high-content imaging, flow cytometry, ELISA, RNA sequencing, and CpG methylation assays, we characterized the in vitro response of ES cell lines to abemaciclib. We then evaluated abemaciclib in vivo in cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models of ES as either a monotherapy or in combination with chemotherapy. RESULTS Abemaciclib induced quiescence in ES cell lines via a G1 cell-cycle block, characterized by decreased proliferation and reduction of Ki-67 and FOXM1 expression and retinoblastoma protein (RB) phosphorylation. In addition, abemaciclib reduced DNMT1 expression and promoted an inflammatory immune response as measured by cytokine secretion, antigen presentation, and interferon pathway upregulation. Single-agent abemaciclib reduced ES tumor volume in preclinical mouse models and, when given in combination with doxorubicin or temozolomide plus irinotecan, durable disease control was observed. CONCLUSIONS Collectively, our data demonstrate that the antitumor effects of abemaciclib in preclinical ES models are multifaceted and include cell-cycle inhibition, DNA demethylation, and immunogenic changes.
Collapse
Affiliation(s)
- Michele Dowless
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Caitlin D Lowery
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Terry Shackleford
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Matthew Renschler
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jennifer Stephens
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Robert Flack
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Wayne Blosser
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Simone Gupta
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Julie Stewart
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Yue Webster
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jack Dempsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Alle B VanWye
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Philip Ebert
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Philip Iversen
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jonathan B Olsen
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Xueqian Gong
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Sean Buchanan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Peter Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Louis Stancato
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana.
| |
Collapse
|
7
|
Goss KL, Gordon DJ. Gene expression signature based screening identifies ribonucleotide reductase as a candidate therapeutic target in Ewing sarcoma. Oncotarget 2018; 7:63003-63019. [PMID: 27557498 PMCID: PMC5325343 DOI: 10.18632/oncotarget.11416] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022] Open
Abstract
There is a critical need in cancer therapeutics to identify targeted therapies that will improve outcomes and decrease toxicities compared to conventional, cytotoxic chemotherapy. Ewing sarcoma is a highly aggressive bone and soft tissue cancer that is caused by the EWS-FLI1 fusion protein. Although EWS-FLI1 is specific for cancer cells, and required for tumorigenesis, directly targeting this transcription factor has proven challenging. Consequently, targeting unique dependencies or key downstream mediators of EWS-FLI1 represent important alternative strategies. We used gene expression data derived from a genetically defined model of Ewing sarcoma to interrogate the Connectivity Map and identify a class of drugs, iron chelators, that downregulate a significant number of EWS-FLI1 target genes. We then identified ribonucleotide reductase M2 (RRM2), the iron-dependent subunit of ribonucleotide reductase (RNR), as one mediator of iron chelator toxicity in Ewing sarcoma cells. Inhibition of RNR in Ewing sarcoma cells caused apoptosis in vitro and attenuated tumor growth in an in vivo, xenograft model. Additionally, we discovered that the sensitivity of Ewing sarcoma cells to inhibition or suppression of RNR is mediated, in part, by high levels of SLFN11, a protein that sensitizes cells to DNA damage. This work demonstrates a unique dependency of Ewing sarcoma cells on RNR and supports further investigation of RNR inhibitors, which are currently used in clinical practice, as a novel approach for treating Ewing sarcoma.
Collapse
Affiliation(s)
- Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Murakami T, Singh AS, Kiyuna T, Dry SM, Li Y, James AW, Igarashi K, Kawaguchi K, DeLong JC, Zhang Y, Hiroshima Y, Russell T, Eckardt MA, Yanagawa J, Federman N, Matsuyama R, Chishima T, Tanaka K, Bouvet M, Endo I, Eilber FC, Hoffman RM. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing's sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget 2018; 7:47556-47564. [PMID: 27286459 PMCID: PMC5216960 DOI: 10.18632/oncotarget.9879] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/22/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing's sarcoma is a rare and aggressive malignancy. In the present study, tumor from a patient with a Ewing's sarcoma with cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss and FUS-ERG fusion was implanted in the right chest wall of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. The aim of the present study was to determine efficacy of cyclin-dependent kinase 4/6 (CDK4/6) and insulin-like growth factor-1 receptor (IGF-1R) inhibitors on the Ewing's sarcoma PDOX. The PDOX models were randomized into the following groups when tumor volume reached 50 mm3: G1, untreated control; G2, doxorubicin (DOX) (intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, CDK4/6 inhibitor (palbociclib, PD0332991, per oral (p.o.), daily, for 14 days); G4, IGF-1R inhibitor (linsitinib, OSI-906, p.o., daily, for 14 days). Tumor growth was significantly suppressed both in G3 (palbociclib) and in G4 (linsitinib) compared to G1 (untreated control) at all measured time points. In contrast, DOX did not inhibit tumor growth at any time point, which is consistent with the failure of DOX to control tumor growth in the patient. The results of the present study demonstrate the power of the PDOX model to identify effective targeted molecular therapy of a recalcitrant DOX-resistant Ewing's sarcoma with specific genetic alterations. The results of this study suggest the potential of PDOX models for individually-tailored, effective targeted therapy for recalcitrant cancer.
Collapse
Affiliation(s)
- Takashi Murakami
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | | | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Aaron W James
- Department of Pathology, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Yukihiko Hiroshima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tara Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.,Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jane Yanagawa
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Noah Federman
- Department of Pediatrics and Department of Orthopaedics, University of California, Los Angeles, CA, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kuniya Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.,UCLA Sarcoma Program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,UCLA Sarcoma Program, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.,PDOX Inc., San Diego, CA, USA
| |
Collapse
|
9
|
Increased survival and cell cycle progression pathways are required for EWS/FLI1-induced malignant transformation. Cell Death Dis 2016; 7:e2419. [PMID: 27735950 PMCID: PMC5133963 DOI: 10.1038/cddis.2016.268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/01/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022]
Abstract
Ewing sarcoma (ES) is the second most frequent childhood bone cancer driven by the EWS/FLI1 (EF) fusion protein. Genetically defined ES models are needed to understand how EF expression changes bone precursor cell differentiation, how ES arises and through which mechanisms of inhibition it can be targeted. We used mesenchymal Prx1-directed conditional EF expression in mice to study bone development and to establish a reliable sarcoma model. EF expression arrested early chondrocyte and osteoblast differentiation due to changed signaling pathways such as hedgehog, WNT or growth factor signaling. Mesenchymal stem cells (MSCs) expressing EF showed high self-renewal capacity and maintained an undifferentiated state despite high apoptosis. Blocking apoptosis through enforced BCL2 family member expression in MSCs promoted efficient and rapid sarcoma formation when transplanted to immunocompromised mice. Mechanistically, high BCL2 family member and CDK4, but low P53 and INK4A protein expression synergized in Ewing-like sarcoma development. Functionally, knockdown of Mcl1 or Cdk4 or their combined pharmacologic inhibition resulted in growth arrest and apoptosis in both established human ES cell lines and EF-transformed mouse MSCs. Combinatorial targeting of survival and cell cycle progression pathways could counteract this aggressive childhood cancer.
Collapse
|
10
|
Osgood CL, Tantawy MN, Maloney N, Madaj ZB, Peck A, Boguslawski E, Jess J, Buck J, Winn ME, Manning HC, Grohar PJ. 18F-FLT Positron Emission Tomography (PET) is a Pharmacodynamic Marker for EWS-FLI1 Activity and Ewing Sarcoma. Sci Rep 2016; 6:33926. [PMID: 27671553 PMCID: PMC5037393 DOI: 10.1038/srep33926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022] Open
Abstract
Ewing sarcoma is a bone and soft-tissue tumor that depends on the activity of the EWS-FLI1 transcription factor for cell survival. Although a number of compounds have been shown to inhibit EWS-FLI1 in vitro, a clinical EWS-FLI1-directed therapy has not been achieved. One problem plaguing drug development efforts is the lack of a suitable, non-invasive, pharmacodynamic marker of EWS-FLI1 activity. Here we show that 18F-FLT PET (18F- 3′-deoxy-3′-fluorothymidine positron emission tomography) reflects EWS-FLI1 activity in Ewing sarcoma cells both in vitro and in vivo. 18F-FLT is transported into the cell by ENT1 and ENT2, where it is phosphorylated by TK1 and trapped intracellularly. In this report, we show that silencing of EWS-FLI1 with either siRNA or small-molecule EWS-FLI1 inhibitors suppressed the expression of ENT1, ENT2, and TK1 and thus decreased 18F-FLT PET activity. This effect was not through a generalized loss in viability or metabolic suppression, as there was no suppression of 18F-FDG PET activity and no suppression with chemotherapy. These results provide the basis for the clinical translation of 18F-FLT as a companion biomarker of EWS-FLI1 activity and a novel diagnostic imaging approach for Ewing sarcoma.
Collapse
Affiliation(s)
- Christy L Osgood
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Nichole Maloney
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | - Jason Buck
- Vanderbilt University Institute of Imaging Science, USA
| | - Mary E Winn
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Patrick J Grohar
- Division of Pediatric Hematology/Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Van Andel Research Institute, Grand Rapids, MI, USA.,Helen De Vos Children's Hospital, Grand Rapids, MI, USA.,Michigan State University School of Medicine, Department of Pediatrics, MI, USA
| |
Collapse
|
11
|
Gordon DJ, Motwani M, Pellman D. Modeling the initiation of Ewing sarcoma tumorigenesis in differentiating human embryonic stem cells. Oncogene 2015; 35:3092-102. [PMID: 26455317 PMCID: PMC4829493 DOI: 10.1038/onc.2015.368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/12/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023]
Abstract
Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However, despite the well-established role of EWS-FLI1 in tumor initiation, the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here, we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies, or collections of differentiating stem cells, generates cells with properties of Ewing sarcoma tumors, including characteristics of transformation. These cell lines exhibit anchorage-independent growth, a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore, these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth, which is a hallmark Ewing sarcoma tumors.
Collapse
Affiliation(s)
- D J Gordon
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - M Motwani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - D Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
12
|
Sengupta A, Rahman M, Mateo-Lozano S, Tirado OM, Notario V. The dual inhibitory effect of thiostrepton on FoxM1 and EWS/FLI1 provides a novel therapeutic option for Ewing's sarcoma. Int J Oncol 2013; 43:803-12. [PMID: 23857410 PMCID: PMC3787886 DOI: 10.3892/ijo.2013.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023] Open
Abstract
The poor prognosis of Ewing’s sarcoma (EWS), together with its high lethal recurrence rate and the side-effects of current treatments, call for novel targeted therapies with greater curative effectiveness and substantially reduced side-effects. The oncogenic chimeric protein EWS/FLI1 is the key malignancy driver in most EWSs, regulating numerous target genes, many of which influence cell cycle progression. It has often been argued that targeting proteins regulated directly or indirectly by EWS/FLI1 may provide improved therapeutic options for EWS. In this context, our study examined FoxM1, a key cell cycle regulating transcription factor, reported to be expressed in EWS and influenced by EWS/FLI1. Thiostrepton, a naturally occurring small molecule, has been shown to selectively inhibit FoxM1 expression in cancer cells. We demonstrate that in EWS, in addition to inhibiting FoxM1 expression, thiostrepton downregulates the expression of EWS/FLI1, both at the mRNA and protein levels, leading to cell cycle arrest and, ultimately, to apoptotic cell death. We also show that thiostrepton treatment reduces the tumorigenicity of EWS cells, significantly delaying the growth of nude mouse xenograft tumors. Results from this study demonstrate a novel action of thiostrepton as inhibitor of the expression of the EWS/FLI1 oncoprotein in vitro and in vivo, and that it shows greater efficacy against EWS than against other tumor types, as it is active on EWS cells and tumors at concentrations lower than those reported to have effective inhibitory activity on tumor cells derived from other cancers. Owing to the dual action of this small molecule, our findings suggest that thiostrepton may be particularly effective as a novel agent for the treatment of EWS patients.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Department of Radiation Medicine, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|