1
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
2
|
Li F, Yu S, Huang X, Dong C, Ren J. Studying Homo-oligomerization and Hetero-oligomerization of MDMX and MDM2 Proteins in Single Living Cells by Using In Situ Fluorescence Correlation Spectroscopy. Biochemistry 2021; 60:1498-1505. [PMID: 33870698 DOI: 10.1021/acs.biochem.1c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein oligomerization plays a very important role in many physiological processes. p53 acts as a key tumor suppressor by regulating cell cycle arrest, DNA repair, and apoptosis, and its antitumor activity is regulated by the hetero- and homo-oligomerization of MDMX and MDM2 proteins. So far, some traditional methods have been utilized to study the oligomerization of MDMX and MDM2 in vitro, but they have not clarified some controversial issues or whether the extracellular results can represent the intracellular results. Here, we put forward an in situ method for studying protein homo- and hetero-oligomerization in single living cells by using fluorescence correlation spectroscopy. In this study, MDMX and MDM2 were labeled with fluorescent proteins using lentiviral transfection. Autocorrelation spectroscopy and cross-correlation spectroscopy methods were used to study the oligomerization of MDMX and MDM2 in situ and the effect of regulation of MDMX oligomerization on p53-MDMX interactions in single living cells. We observed the homo- and hetero-oligomerization of MDMX and MDM2 in living cells. Meanwhile, the levels of the homo-oligomers of MDMX and MDM2 were increased due to the lack of hetero-oligomerization. Finally, the binding affinity of MDMX for p53 was improved with an increase in the level of MDMX hetero-oligomerization.
Collapse
Affiliation(s)
- Fucai Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shengrong Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Cytotoxic Fractions from Hechtia glomerata Extracts and p-Coumaric Acid as MAPK Inhibitors. Molecules 2021; 26:molecules26041096. [PMID: 33669666 PMCID: PMC7922350 DOI: 10.3390/molecules26041096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/24/2022] Open
Abstract
Preliminary bioassay-guided fractionation was performed to identify cytotoxic compounds from Hechtia glomerata, a plant that is used in Mexican ethnomedicine. Organic and aqueous extracts were prepared from H. glomerata’s leaves and evaluated against two cancer cell lines. The CHCl3/MeOH (1:1) active extract was fractionated, and the resulting fractions were assayed against prostate adenocarcinoma PC3 and breast adenocarcinoma MCF7 cell lines. Active fraction 4 was further analyzed by high-performance liquid chromatography–quadrupole time-of-flight–mass spectrometry analysis to identify its active constituents. Among the compounds that were responsible for the cytotoxic effects of this fraction were flavonoids, phenolic acids, and aromatic compounds, of which p-coumaric acid (p-CA) and its derivatives were abundant. To understand the mechanisms that underlie p-CA cytotoxicity, a microarray assay was performed on PC3 cells that were treated or not with this compound. The results showed that mitogen-activated protein kinases (MAPKs) that regulate many cancer-related pathways were targeted by p-CA, which could be related to the reported effects of reactive oxygen species (ROS). A molecular docking study of p-CA showed that this phenolic acid targeted these protein active sites (MAPK8 and Serine/Threonine protein kinase 3) at the same binding site as their inhibitors. Thus, we hypothesize that p-CA produces ROS, directly affects the MAPK signaling pathway, and consequently causes apoptosis, among other effects. Additionally, p-CA could be used as a platform for the design of new MAPK inhibitors and re-sensitizing agents for resistant cancers.
Collapse
|
4
|
Abdildinova A, Gong YD. Traceless solid-phase synthesis and β-turn propensity of 1,3-thiazole-based peptidomimetics. RSC Adv 2020; 11:1050-1056. [PMID: 35423674 PMCID: PMC8693395 DOI: 10.1039/d0ra10127c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
The design and solid-phase synthesis of 1,3-thiazole-based peptidomimetic molecules is described. The solid-phase synthesis was based on the utilization of a traceless linker strategy. The synthesis starts from the conversion of chloromethyl polystyrene resin to the resin with a sulfur linker unit. The key intermediate 4-amino-thiazole-5-carboxylic acid resin is prepared in three steps from Merrifield resin. The amide coupling proceeded at the C4 and C5 positions via an Fmoc solid-phase peptide synthesis strategy. After cleavage, the final compounds were obtained in moderate yields (average 9%, 11-step overall yields) with high purities (≥87%). Geometric measurements of Cα distances and dihedral angles along with an rmsd of 0.5434 for attachment with Cα of the β-turn template suggest type IV β-turn structural motifs. Additionally, the physicochemical properties of the molecules have been evaluated.
Collapse
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University 30, Pildong-ro 1-gil, Jung-gu Seoul 04620 Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Department of Chemistry, College of Science, Dongguk University 30, Pildong-ro 1-gil, Jung-gu Seoul 04620 Korea
| |
Collapse
|
5
|
Eskandari M, Shi Y, Liu J, Albanese J, Goel S, Verma A, Wang Y. The expression of MDM2, MDM4, p53 and p21 in myeloid neoplasms and the effect of MDM2/MDM4 dual inhibitor. Leuk Lymphoma 2020; 62:167-175. [PMID: 32924682 DOI: 10.1080/10428194.2020.1817441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
p53 together with its downstream product p21 plays an important role in tumorigenesis development. MDM2 and MDM4 are two p53 regulators. We studied the expression of p53, p21, MDM2, and MDM4 in a total of 120 cases of myeloid neoplasms including MDS, AML or MDS/MPN, and control, using single and double immunohistochemical stains. We found TP53 mutations had a worse outcome in patients with AML/MDS, and p53 expression detected by immunohistochemistry had a similar prognostic value. p21 expression was strongly related to TP53 mutation status, with loss of expression in almost all TP53 mutated cases. MDM2 and MDM4 were highly expressed in hematopoietic cells in both benign and neoplastic cells. MDM2/p53 double positive cells exceeded MDM4/p53 double positive cells in neoplastic cases. Finally, we observed that p21 protein expression was up regulated upon the use of ALRN-6924 (Aileron) while no significant changes were seen in p53, MDM2 and MDM4 expression.
Collapse
Affiliation(s)
| | - Yang Shi
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| | - John Liu
- Rensselaer Polytechnic Institute, Troy, MI, USA
| | - Joseph Albanese
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| | - Swati Goel
- Department of Oncology, Montefiore Einstein Center for Cancer Care, New York, NY, USA
| | - Amit Verma
- Department of Oncology, Montefiore Einstein Center for Cancer Care, New York, NY, USA
| | - Yanhua Wang
- Department of Pathology, Montefiore Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Hattinger CM, Patrizio MP, Luppi S, Serra M. Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. Int J Mol Sci 2020; 21:E4659. [PMID: 32629971 PMCID: PMC7369799 DOI: 10.3390/ijms21134659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.
Collapse
Affiliation(s)
| | | | | | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, 40136 Bologna, Italy; (C.M.H.); (M.P.P.); (S.L.)
| |
Collapse
|
7
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
8
|
Pant V, Larsson CA, Aryal N, Xiong S, You MJ, Quintas-Cardama A, Lozano G. Tumorigenesis promotes Mdm4-S overexpression. Oncotarget 2018; 8:25837-25847. [PMID: 28460439 PMCID: PMC5432220 DOI: 10.18632/oncotarget.15552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
Disruption of the p53 tumor suppressor pathway is a primary cause of tumorigenesis. In addition to mutation of the p53 gene itself, overexpression of major negative regulators of p53, MDM2 and MDM4, also act as drivers for tumor development. Recent studies suggest that expression of splice variants of Mdm2 and Mdm4 may be similarly involved in tumor development. In particular, multiple studies show that expression of a splice variant of MDM4, MDM4-S correlates with tumor aggressiveness and can be used as a prognostic marker in different tumor types. However, in the absence of prospective studies, it is not clear whether expression of MDM4-S in itself is oncogenic or is simply an outcome of tumorigenesis. Here we have examined the role of Mdm4-S in tumor development in a transgenic mouse model. Our results suggest that splicing of Mdm4 does not promote tumor development and does not cooperate with other oncogenic insults to alter tumor latency or aggressiveness. We conclude that Mdm4-S overexpression is a consequence of splicing defects in tumor cells rather than a cause of tumor evolution.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Connie A Larsson
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Neeraj Aryal
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Shunbin Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - M James You
- Department of Hematopathology, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | - Guillermina Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
9
|
Mancini F, Teveroni E, Di Conza G, Monteleone V, Arisi I, Pellegrino M, Buttarelli M, Pieroni L, D'Onofrio M, Urbani A, Pontecorvi A, Mazzone M, Moretti F. MDM4 actively restrains cytoplasmic mTORC1 by sensing nutrient availability. Mol Cancer 2017; 16:55. [PMID: 28270148 PMCID: PMC5341177 DOI: 10.1186/s12943-017-0626-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/27/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions. METHOD MDM4-mTOR relationship was analysed through experiments of overexpression or silencing of endogenous proteins in cell culture and using purified proteins in vitro. Data were further confirmed in vivo using a transgenic mouse model overexpressing MDM4. Additionally, the Cancer Genome Atlas (TCGA) database (N = 356) was adopted to analyze the correlation between MDM4 and mTOR levels and 3D cultures were used to analyse the p53-independent activity of MDM4. RESULTS Following nutrient deprivation, MDM4 impairs mTORC1 activity by binding and inhibiting the kinase mTOR, and contributing to maintain the cytosolic inactive pool of mTORC1. This function is independent of p53. Inhibition of mTORC1 by MDM4 results in reduced phosphorylation of the mTOR downstream target p70S6K1 both in vitro and in vivo in a MDM4-transgenic mouse. Consistently, MDM4 reduces cell size and proliferation, two features controlled by p70S6K1, and, importantly, inhibits mTORC1-mediated mammosphere formation. Noteworthy, MDM4 transcript levels are significantly reduced in breast tumors characterized by high mTOR levels. CONCLUSION Overall, these data identify MDM4 as a nutrient-sensor able to inhibit mTORC1 and highlight its metabolism-related tumor-suppressing function.
Collapse
Affiliation(s)
- Francesca Mancini
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy. .,PostGraduate School of Endocrinology and Metabolic Diseases, Institute of Pathology, Catholic University of Rome, 00168, Rome, Italy.
| | - Emanuela Teveroni
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Giusy Di Conza
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium.,Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000, Leuven, Belgium
| | - Valentina Monteleone
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00143, Rome, Italy
| | - Marsha Pellegrino
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Marianna Buttarelli
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy
| | - Luisa Pieroni
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143, Rome, Italy
| | - Mara D'Onofrio
- European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00143, Rome, Italy
| | - Andrea Urbani
- Proteomic and Metabonomic Laboratory, Fondazione Santa Lucia, 00143, Rome, Italy.,Institute of Biochemistry and Biochemical Clinic, Catholic University of Rome, 00168, Rome, Italy
| | - Alfredo Pontecorvi
- PostGraduate School of Endocrinology and Metabolic Diseases, Institute of Pathology, Catholic University of Rome, 00168, Rome, Italy
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, 3000, Leuven, Belgium.,Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, 3000, Leuven, Belgium
| | - Fabiola Moretti
- Institute of Cell Biology and Neurobiology, National Research Council of Italy (CNR), 00143, Rome, Italy.
| |
Collapse
|
10
|
Miranda PJ, Buckley D, Raghu D, Pang JMB, Takano EA, Vijayakumaran R, Teunisse AF, Posner A, Procter T, Herold MJ, Gamell C, Marine JC, Fox SB, Jochemsen A, Haupt S, Haupt Y. MDM4 is a rational target for treating breast cancers with mutant p53. J Pathol 2017; 241:661-670. [PMID: 28097652 DOI: 10.1002/path.4877] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/20/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022]
Abstract
Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets. We report here that the MDM4 protein is frequently abundant in the context of mutant p53 in basal-like BC samples. Importantly, we show that MDM4 plays a critical role in the proliferation of these BC cells. We demonstrate that conditional knockdown (KD) of MDM4 provokes growth inhibition across a range of BC subtypes with mutant p53, including luminal, Her2+ and triple-negative BCs. In vivo, MDM4 was shown to be crucial for the establishment and progression of tumours. This growth inhibition was mediated, at least in part, by the cell cycle inhibitor p27. Depletion of p27 together with MDM4 KD led to recovery of the proliferative capacity of cells that were growth-inhibited by MDM4 KD alone. Consistently, we identified low levels of p27 expression in basal-like tumours corresponding to high levels of MDM4 and p53. This predicts a signature for a subset of tumours that may be amenable to therapies targeted towards MDM4 and mutant p53. The therapeutic potential of MDM4 as a target in BC with mutant p53 was shown in vitro by use of a small-molecule inhibitor. Overall, our study supports MDM4 as a novel therapeutic target for BC expressing mutant p53. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Panimaya Jeffreena Miranda
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Daniel Buckley
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Dinesh Raghu
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Jia-Min B Pang
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Elena A Takano
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Reshma Vijayakumaran
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Amina Fas Teunisse
- Department of Molecular Cell Biology, University Medical Centre, Leiden, The Netherlands
| | - Atara Posner
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Tahlia Procter
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Marco J Herold
- Molecular Genetics of Cancer, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Cristina Gamell
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KULeuven, Leuven, Belgium
| | - Stephen B Fox
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Aart Jochemsen
- Department of Molecular Cell Biology, University Medical Centre, Leiden, The Netherlands
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| |
Collapse
|
11
|
Abstract
MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed.
Collapse
|
12
|
Matijasevic Z, Krzywicka-Racka A, Sluder G, Gallant J, Jones SN. The Zn-finger domain of MdmX suppresses cancer progression by promoting genome stability in p53-mutant cells. Oncogenesis 2016; 5:e262. [PMID: 27694836 PMCID: PMC5117848 DOI: 10.1038/oncsis.2016.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
The MDMX (MDM4) oncogene is amplified or overexpressed in a significant percentage of human tumors. MDMX is thought to function as an oncoprotein by binding p53 tumor suppressor protein to inhibit p53-mediated transcription, and by complexing with MDM2 oncoprotein to promote MDM2-mediated degradation of p53. However, down-regulation or loss of functional MDMX has also been observed in a variety of human tumors that are mutated for p53, often correlating with more aggressive cancers and a worse patient prognosis. We have previously reported that endogenous levels of MdmX can suppress proliferation and promote pseudo-bipolar mitosis in primary and tumor cells derived from p53-deficient mice, and that MdmX-p53 double deficient mice succumb to spontaneously formed tumors more rapidly than p53-deficient mice. These results suggest that the MdmX oncoprotein may act as a tumor-suppressor in cancers with compromised p53 function. By using orthotopic transplantation and lung colonization assays in mice we now establish a p53-independent anti-oncogenic role for MdmX in tumor progression. We also demonstrate that the roles of MdmX in genome stability and in proliferation are two distinct functions encoded by the separate MdmX protein domains. The central Zn-finger domain suppresses multipolar mitosis and chromosome loss, whereas the carboxy-terminal RING domain suppresses proliferation of p53-deficient cells. Furthermore, we determine that it is the maintenance of genome stability that underlies MdmX role in suppression of tumorigenesis in hyperploid p53 mutant tumors. Our results offer a rationale for the increased metastatic potential of p53 mutant human cancers with aberrant MdmX function and provide a caveat for the application of anti-MdmX treatment of tumors with compromised p53 activity.
Collapse
Affiliation(s)
- Z Matijasevic
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Krzywicka-Racka
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - G Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Gallant
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - S N Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Marine JC, Jochemsen AG. MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harb Perspect Med 2016; 6:6/7/a026237. [PMID: 27371671 DOI: 10.1101/cshperspect.a026237] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The MDMX protein was identified as a p53-interacting protein with a strong similarity to MDM2. Like Mdm2, Mdmx expression is essential for curbing p53 activity during embryonic development, indicating nonredundant functions of Mdmx and Mdm2. There is now a large body of evidence indicating that cancers frequently up-regulate MDMX expression as a means to dampen p53 tumor-suppressor function. Importantly, MDMX also shows p53-independent oncogenic functions. These data make MDMX an attractive therapeutic target for cancer therapy. Here, we summarize the mechanisms used by cancer cells to increase MDMX expression and promising pharmacological strategies to target MDMX in cancer-in particular, the recent findings that antisense oligonucleotides (ASOs) can be used to efficiently modulate MDMX messenger RNA (mRNA) splicing.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium Laboratory for Molecular Cancer Biology, Center of Human Genetics, KULeuven, 3000 Leuven, Belgium
| | - Aart G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53. Oncogene 2016; 35:4798-806. [PMID: 26876197 PMCID: PMC5289310 DOI: 10.1038/onc.2016.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 01/10/2023]
Abstract
Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism that is affected by either mutation in the DNA-binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4, which destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53(V172F) mutation, which reduced p53 half-life by two- to threefold compared with homozygous wild-type (wt) p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (five- to eightfold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53(V172F) mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a heteromeric p53(wt)/p53(V172F) complex was confirmed in 2780CP/Cl-24 cells transfected with wt p53 or multimer-inhibiting p53(L344P) mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5 °C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37 °C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by small interfering RNA in either resistant cell line induced p53 and restored p21 transactivation at 37 °C, as did cisplatin-induced DNA damage at 32.5 °C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53(V172F) mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4 by the homomeric or heteromeric mutant p53(V172F) complex that inhibits p53-dependent transactivation. This represents a novel cellular mechanism of p53 inhibition, and, thereby, induction of cisplatin resistance.
Collapse
|
15
|
Smonskey M, Lasorsa E, Rosario S, Kirk JS, Hernandez-Ilizaliturri FJ, Ellis L. EZH2 inhibition re-sensitizes multidrug resistant B-cell lymphomas to etoposide mediated apoptosis. Oncoscience 2016; 3:21-30. [PMID: 26973857 PMCID: PMC4751913 DOI: 10.18632/oncoscience.288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/22/2016] [Indexed: 01/02/2023] Open
Abstract
Reactivation of apoptotic pathways is an attractive strategy for patients with treatment-resistant B-cell lymphoma. The tumor suppressor, p53 is central for apoptotic response to multiple DNA damaging agents used to treat aggressive B-cell lymphomas, including etoposide. It has been demonstrated that etoposide induced DNA damage and therapeutic efficacy is enhanced by combination with inhibitors of the histone methyltransferase, enhancer of zeste homolog 2 (EZH2). Further, EZH2 was identified to regulate cell fate decisions in response to DNA damage. Using B-cell lymphoma cell lines resistant to etoposide induced cell death; we show that p53 is dramatically down regulated and MDMX, a negative regulator of p53, is significantly up regulated. However, these cell lines remain responsive to etoposide mediated DNA damage and exhibit cell cycle inhibition and induction of senescence. Furthermore, chemical inhibition of EZH2 directs DNA damage to a predominant p53 dependent apoptotic response associated with loss of MDMX and BCL-XL. These data provide confirmation of EZH2 in determining cell fate following DNA damage and propose a novel therapeutic strategy for patients with aggressive treatment-resistant B-cell lymphoma.
Collapse
Affiliation(s)
- Matthew Smonskey
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Elena Lasorsa
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Spencer Rosario
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Molecular Pharmacology and Cancer Therapeutics, State University of New York at Buffalo, NY, USA
| | - Jason S Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Leigh Ellis
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Molecular Pharmacology and Cancer Therapeutics, State University of New York at Buffalo, NY, USA
| |
Collapse
|
16
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2016. [PMID: 26595814 DOI: 10.1172/jci82534.mdm4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
17
|
Golestanian S, Sharifi A, Popowicz GM, Azizian H, Foroumadi A, Szwagierczak A, Holak TA, Amanlou M. Discovery of novel dual inhibitors against Mdm2 and Mdmx proteins by in silico approaches and binding assay. Life Sci 2016; 145:240-6. [DOI: 10.1016/j.lfs.2015.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/26/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
|
18
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2015; 126:68-84. [PMID: 26595814 DOI: 10.1172/jci82534] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
19
|
Hoffman Y, Pilpel Y, Oren M. microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol 2015; 6:192-7. [PMID: 24868102 DOI: 10.1093/jmcb/mju020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
p53 is a transcription factor that governs numerous stress response pathways within the cell. Maintaining the right levels of p53 is crucial for cell survival and proper cellular homeostasis. The tight regulation of p53 involves many cellular components, most notably its major negative regulators Mdm2 and Mdm4, which maintain p53 protein amount and activity in tight check. microRNAs (miRNAs) are small non-coding RNAs that target specific mRNAs to translational arrest and degradation. miRNAs are also key components of the normal p53 pathway, joining forces with Mdm2 and Mdm4 to maintain proper p53 activity. Here we review the current knowledge of miRNAs targeting Mdm2 and Mdm4, and their importance in different tissues and in pathological states such as cancer. In addition, we address the role of Alu sequences-highly abundant retroelements spread throughout the human genome, and their impact on gene regulation via the miRNA machinery. Alus occupy a significant portion of genes' 3'UTR, and as such they have the potential to impact mRNA regulation. Since Alus are primate-specific, they introduce a new regulatory layer into primate genomes. Alus can influence and alter gene regulation, creating primate-specific cancer-preventive regulatory mechanisms to sustain the transition to longer life span in primates. We review the possible influence of Alu sequences on miRNA functionality in general and specifically within the p53 network.
Collapse
Affiliation(s)
- Yonit Hoffman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
20
|
Jacob AG, Singh RK, Comiskey DF, Rouhier MF, Mohammad F, Bebee TW, Chandler DS. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS One 2014; 9:e104444. [PMID: 25105592 PMCID: PMC4126728 DOI: 10.1371/journal.pone.0104444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023] Open
Abstract
MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain the RING domain that facilitates dimerization of the full-length MDM proteins. Concordantly, MDM2-ALT1 has been shown to lead to the stabilization of p53 through its interaction with and inactivation of full-length MDM2. The impact of MDM2-ALT1 expression on the p53 pathway and the nature of its interaction with MDMX remain unclear. Also, the role of the architecturally similar MDMX-ALT2 and its influence of the MDM2-MDMX-p53 axis are yet to be elucidated. We show here that MDM2-ALT1 is capable of binding full-length MDMX as well as full-length MDM2. Additionally, we demonstrate that MDMX-ALT2 is able to dimerize with both full-length MDMX and MDM2 and that the expression of MDM2-ALT1 and MDMX-ALT2 leads to the upregulation of p53 protein, and also of its downstream target p21. Moreover, MDM2-ALT1 expression causes cell cycle arrest in the G1 phase in a p53 and p21 dependent manner, which is consistent with the increased levels of p21. Finally we present evidence that MDM2-ALT1 and MDMX-ALT2 expression can activate subtly distinct subsets of p53-transcriptional targets implying that these splice variants can modulate the p53 tumor suppressor pathway in unique ways. In summary, our study shows that the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-ALT2 are important modifiers of the p53 pathway and present a potential mechanism to tailor the p53-mediated cellular stress response.
Collapse
Affiliation(s)
- Aishwarya G. Jacob
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ravi K. Singh
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel F. Comiskey
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew F. Rouhier
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Fuad Mohammad
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas W. Bebee
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
| | - Dawn S. Chandler
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bardot B, Bouarich-Bourimi R, Leemput J, Lejour V, Hamon A, Plancke L, Jochemsen AG, Simeonova I, Fang M, Toledo F. Mice engineered for an obligatory Mdm4 exon skipping express higher levels of the Mdm4-S isoform but exhibit increased p53 activity. Oncogene 2014; 34:2943-8. [PMID: 25088193 DOI: 10.1038/onc.2014.230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Mdm4, a protein related to the ubiquitin-ligase Mdm2, is an essential inhibitor of tumor suppressor protein p53. In both human and mouse cells, the Mdm4 gene encodes two major transcripts: one encodes the full-length oncoprotein (designated below as Mdm4-FL), whereas the other, resulting from a variant splicing that skips exon 6, encodes the shorter isoform Mdm4-S. Importantly, increased Mdm4-S mRNA levels were observed in several human cancers, and correlated with poor survival. However, the role of Mdm4-S in cancer progression remains controversial, because the Mdm4-S protein appeared to be a potent p53 inhibitor when overexpressed, but the splice variant also leads to a decrease in Mdm4-FL expression. To unambiguously determine the physiological impact of the Mdm4-S splice variant, we generated a mouse model with a targeted deletion of the Mdm4 exon 6, thereby creating an obligatory exon skipping. The mutant allele (Mdm4(ΔE6)) prevented the expression of Mdm4-FL, but also led to increased Mdm4-S mRNA levels. Mice homozygous for this allele died during embryonic development, but were rescued by a concomitant p53 deficiency. Furthermore in a hypomorphic p53(ΔP/ΔP) context, the Mdm4(ΔE6) allele led to p53 activation and delayed the growth of oncogene-induced tumors. We next determined the effect of Mdm4(+/ΔE6) heterozygosity in a hypermorphic p53(+/Δ31) genetic background, recently shown to be extremely sensitive to Mdm4 activity. Mdm4(+/ΔE6) p53(+/Δ31) pups were born, but suffered from aplastic anemia and died before weaning, again indicating an increased p53 activity. Our results demonstrate that the main effect of a skipping of Mdm4 exon 6 is not the synthesis of the Mdm4-S protein, but rather a decrease in Mdm4-FL expression. These and other data suggest that increased Mdm4-S mRNA levels might correlate with more aggressive cancers without encoding significant amounts of a potential oncoprotein. Hypotheses that may account for this apparent paradox are discussed.
Collapse
Affiliation(s)
- B Bardot
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - R Bouarich-Bourimi
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - J Leemput
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - V Lejour
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - A Hamon
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - L Plancke
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - A G Jochemsen
- Leiden University Medical Center, Leiden, The Netherlands
| | - I Simeonova
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - M Fang
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - F Toledo
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| |
Collapse
|
22
|
Tong L, Wu S. ROS and p53 in regulation of UVB-induced HDM2 alternative splicing. Photochem Photobiol 2014; 91:221-4. [PMID: 24986024 DOI: 10.1111/php.12306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/29/2014] [Indexed: 11/30/2022]
Abstract
Alternative splicing plays an important role in proteasome diversity and gene expression regulation in eukaryotic cells. Hdm2, the human homolog of mdm2 (murine double minute oncogene 2), is known to be an oncogene as its role in suppression of p53. Hdm2 alternative splicing, occurs in both tumor and normal tissues, is believed to be a response of cells for cellular stress, and thus modulate p53 activity. Therefore, understanding the regulation of hdm2 splicing is critical in elucidating the mechanisms of tumor development and progression. In this study, we determined the effect of ultraviolet B light (UVB) on alternative splicing of hdm2. Our data indicated that UVB (50 mJ cm(-2)) alone is not a good inducer of alternative splicing of hdm2. The less effectiveness could be due to the induction of ROS and p53 by UVB because removing ROS by L-NAC (10 mm) in p53 null cells could lead to alternative splicing of hdm2 upon UVB irradiation.
Collapse
Affiliation(s)
- Lingying Tong
- Department of Chemistry and Biochemistry, and Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH
| | | |
Collapse
|
23
|
Levav-Cohen Y, Goldberg Z, Tan KH, Alsheich-Bartok O, Zuckerman V, Haupt S, Haupt Y. The p53-Mdm2 loop: a critical juncture of stress response. Subcell Biochem 2014; 85:161-86. [PMID: 25201194 DOI: 10.1007/978-94-017-9211-0_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The presence of a functional p53 protein is a key factor for the proper suppression of cancer development. A loss of p53 activity, by mutations or inhibition, is often associated with human malignancies. The p53 protein integrates various stress signals into a growth restrictive cellular response. In this way, p53 eliminates cells with a potential to become cancerous. Being a powerful decision maker, it is imperative that p53 will be activated properly, efficiently and temporarily in response to stress. Equally important is that p53 activation will be extinguished upon recovery from stress, and that improper activation of p53 will be avoided. Failure to achieve these aims is likely to have catastrophic consequences for the organism. The machinery that governs this tight regulation is largely based on the major inhibitor of p53, Mdm2, which both blocks p53 activities and promotes its destabilization. The interplay between p53 and Mdm2 involves a complex network of positive and negative feedback loops. Relief from Mdm2 suppression is required for p53 to be stabilized and activated in response to stress. Protection from Mdm2 entails a concerted action of modifying enzymes and partner proteins. The association of p53 with the PML-nuclear bodies may provide an infrastructure in which this complex regulatory network can be orchestrated. In this chapter we use examples to illustrate the regulatory machinery that drives this network.
Collapse
Affiliation(s)
- Yaara Levav-Cohen
- Lautenberg Center, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Touqan N, Diggle CP, Verghese ET, Perry S, Horgan K, Merchant W, Anwar R, Markham AF, Carr IM, Achuthan R. An observational study on the expression levels of MDM2 and MDMX proteins, and associated effects on P53 in a series of human liposarcomas. BMC Clin Pathol 2013; 13:32. [PMID: 24330579 PMCID: PMC4028812 DOI: 10.1186/1472-6890-13-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 12/31/2022] Open
Abstract
Background Inactivation of wild type P53 by its main cellular inhibitors (MDM2 and MDMX) is a well recognised feature of tumour formation in liposarcomas. MDM2 over-expression has been detected in approximately 80% of liposarcomas but only limited information is available about MDMX over-expression. To date, we are not aware of any study that has described the patterns of MDM2 and MDMX co-expression in liposarcomas. Such information has become more pertinent as various novel MDM2 and/or MDMX single and dual affinity antagonist compounds are emerging as an alternative approach for potential targeted therapeutic strategies. Methods We analysed a case series of 61 fully characterized liposarcomas of various sub-types by immunohistochemistry, to assess the expression levels of P53, MDM2 and MDMX, simultaneously. P53 sequencing was performed in all cases that expressed P53 protein in 10% or more of cells to rule out mutation-related over-expression. Results 50 cases over-expressed MDM2 and 42 of these co-expressed MDMX at varying relative levels. The relative expression levels of the two proteins with respect to each other were subtype-dependent. This apparently affected the detected levels of P53 directly in two distinct patterns. Diminished levels of P53 were observed when MDM2 was significantly higher in relation to MDMX, suggesting a dominant role for MDM2 in the degradation of P53. Higher levels of P53 were noted with increasing MDMX levels suggesting an interaction between MDM2 and MDMX that resulted in a reduced efficiency of MDM2 in degrading P53. Of the 26 cases of liposarcoma with elevated P53 expression, 5 were found to have a somatic mutation in the P53 gene. Conclusions The results suggest that complex dynamic interactions between MDM2 and MDMX proteins may directly affect the cellular levels of P53. This therefore suggests that careful characterization of both these markers will be necessary in tumours when considering in vivo evaluation of novel blocker compounds for MDM proteins, as a therapeutic strategy to restore wild type P53 function.
Collapse
Affiliation(s)
- Nader Touqan
- School of Medicine, University of Leeds, Wellcome Trust Brenner Building, St James's University Hospital, Leeds LS9 7TF, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
In vitro and in silico studies of MDM2/MDMX isoforms predict Nutlin-3A sensitivity in well/de-differentiated liposarcomas. J Transl Med 2013; 93:1232-40. [PMID: 24018792 DOI: 10.1038/labinvest.2013.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/04/2013] [Indexed: 12/31/2022] Open
Abstract
The molecular marker of well-differentiated/de-differentiated liposarcomas is MDM2 gene amplification coupled with protein overexpression and wild-type TP53. MDMX is a recently identified MDM2 homolog and its presence in this tumor is unexplored. Our aim was to investigate the role of full-length MDM2 and MDMX proteins and their isoforms in surgical specimens of well-differentiated/de-differentiated liposarcomas in view of Nutlin-3A (a MDM2 inhibitor) treatment. Frozen and matched formalin-fixed, paraffin-embedded material from surgical specimens was examined by means of: (1) fluorescence in situ hybridization to determine MDM2 and MDMX gene copy numbers; (2) RT-PCR and densitometry to analyze alternative splicing forms of mdm2 and mdmx; (3) immunoblotting and immunohistochemistry to assess the corresponding translated proteins; and (4) in vitro and in silico assays to determine their affinity for Nutlin-3A. All these cases showed MDM2 gene amplification with an MDMX disomic pattern. In all cases, the full-length mdm2 transcript was associated with the mdm2-b transcript, with ratios ranging from 0.07 to 5.6, and both were translated into protein; mdmx and mdmx-s were co-transcripted, with ratios ranging from 0.1 to 5.6. MDMX-S was frequently more upregulated than MDMX at both transcriptional and protein level. Each case showed different amounts of mdm2, mdm2-b, mdmx, and mdmx-s transcripts and the corresponding proteins. In vitro assays showed that Nutlin-3A was ineffective against MDM2-B and was unable to disrupt the MDMX/TP53 and MSMX-S/TP53 complexes. Molecular simulations confirmed these in vitro findings by showing that MDM2 has high Nutlin-3A affinity, followed by MDMX-S, MDMX, and MDM2-B. Nutlin-3A is predicted to be a good therapeutic option for well-differentiated/de-differentiated liposarcomas. However, our findings predict heterogeneous responses depending on the relative expression of mdm2, mdm2-b, mdmx, and mdmx-s transcripts and proteins.
Collapse
|
26
|
Colacurcio DJ, Yeager A, Kolson DL, Jordan-Sciutto KL, Akay C. Calpain-mediated degradation of MDMx/MDM4 contributes to HIV-induced neuronal damage. Mol Cell Neurosci 2013; 57:54-62. [PMID: 24128662 PMCID: PMC3868345 DOI: 10.1016/j.mcn.2013.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/10/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022] Open
Abstract
Neuronal damage in HIV-associated Neurocognitive Disorders (HAND) has been linked to inflammation induced by soluble factors released by HIV-infected, and non-infected, activated macrophages/microglia (HIV M/M) in the brain. It has been suggested that aberrant neuronal cell cycle activation determines cell fate in response to these toxic factors. We have previously shown increased expression of cell cycle proteins such as E2F1 and phosphorylated pRb in HAND midfrontal cortex in vivo and in primary neurons exposed to HIV M/M supernatants in vitro. In addition, we have previously shown that MDMx (also referred to as MDM4), a negative regulator of E2F1, was decreased in the brain in a primate model of HIV-induced CNS neurodegeneration. Thus, we hypothesized that MDMx provides indirect neuroprotection from HIV-induced neurodegeneration in our in vitro model. In this report, we found significant reductions in MDMx protein levels in the mid-frontal cortex of patients with HAND. In addition, treatment of primary rat neuroglial cultures with HIV M/M led to NMDA receptor- and calpain-dependent degradation of MDMx and decreased neuronal survival, while overexpression of MDMx conferred partial protection from HIV M/M toxicity in vitro. Further, our results demonstrate that MDMx is a novel and direct calpain substrate. Finally, blocking MDMx activity led to neuronal death in vitro in the absence of toxic stimulus, which was reversed by calpain inhibition. Overall, our results indicate that MDMx plays a pro-survival role in neurons, and that strategies to stabilize and/or induce MDMx can provide neuroprotection in HAND and in other neurodegenerative diseases where calpain activation contributes to neuropathogenesis.
Collapse
Affiliation(s)
- Daniel J. Colacurcio
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 312 Levy Building, 240 South 40 Street, Philadelphia, PA, 19104
| | - Alyssa Yeager
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104
| | - Dennis L. Kolson
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 312 Levy Building, 240 South 40 Street, Philadelphia, PA, 19104
| | - Cagla Akay
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 312 Levy Building, 240 South 40 Street, Philadelphia, PA, 19104
| |
Collapse
|
27
|
Abstract
MDM2 and MDMX are homologous proteins that bind to p53 and regulate its activity. Both contain three folded domains and ~70% intrinsically disordered regions. Previous detailed structural and biophysical studies have concentrated on the isolated folded domains. The N-terminal domains of both exhibit high affinity for the disordered N-terminal of p53 (p53TAD) and inhibit its transactivation function. Here, we have studied full-length MDMX and found a ~100-fold weaker affinity for p53TAD than does its isolated N-terminal domain. We found from NMR spectroscopy and binding studies that MDMX (but not MDM2) contains a conserved, disordered self-inhibitory element that competes intramolecularly for binding with p53TAD. This motif, which we call the WWW element, is centered around residues Trp200 and Trp201. Deletion or mutation of the element increased binding affinity of MDMX to that of the isolated N-terminal domain level. The self-inhibition of MDMX implies a regulatory, allosteric mechanism of its activity. MDMX rests in a latent state in which its binding activity with p53TAD is masked by autoinhibition. Activation of MDMX would require binding to a regulatory protein. The inhibitory function of the WWW element may explain the oncogenic effects of an alternative splicing variant of MDMX that does not contain the WWW element and is found in some aggressive cancers.
Collapse
|
28
|
Bezzi M, Teo SX, Muller J, Mok WC, Sahu SK, Vardy LA, Bonday ZQ, Guccione E. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 2013; 27:1903-16. [PMID: 24013503 PMCID: PMC3778243 DOI: 10.1101/gad.219899.113] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
The tight control of gene expression at the level of both transcription and post-transcriptional RNA processing is essential for mammalian development. We here investigate the role of protein arginine methyltransferase 5 (PRMT5), a putative splicing regulator and transcriptional cofactor, in mammalian development. We demonstrate that selective deletion of PRMT5 in neural stem/progenitor cells (NPCs) leads to postnatal death in mice. At the molecular level, the absence of PRMT5 results in reduced methylation of Sm proteins, aberrant constitutive splicing, and the alternative splicing of specific mRNAs with weak 5' donor sites. Intriguingly, the products of these mRNAs are, among others, several proteins regulating cell cycle progression. We identify Mdm4 as one of these key mRNAs that senses the defects in the spliceosomal machinery and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in vivo. Our data demonstrate that PRMT5 is a master regulator of splicing in mammals and uncover a new role for the Mdm4 pre-mRNA, which could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Marco Bezzi
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Shun Xie Teo
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Julius Muller
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Wei Chuen Mok
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Sanjeeb Kumar Sahu
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
| | - Leah A. Vardy
- Institute of Medical Biology (IMB), A*STAR, Singapore 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zahid Q. Bonday
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Ernesto Guccione
- Division of Cancer Genetics and Therapeutics, Laboratory of Chromatin, Epigenetics, and Differentiation, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology, and Research), Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
29
|
Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013; 37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/21/2013] [Indexed: 11/12/2022]
Abstract
Ample adaptive and functional opportunities of a living cell are determined by the complexity of its structural organisation. However, such complexity gives rise to a problem of maintenance of the coherence of inner processes in macroscopic interims and in macroscopic volumes which is necessary to support the structural robustness of a cell. The solution to this problem lies in multidimensional control of the adaptive and functional changes of a cell as well as its self-renewing processes in the context of environmental conditions. Six mechanisms (principles) form the basis of this multidimensional control: regulatory circuits with feedback loops, redundant inner diversity within a cell, multilevel distributed network organisation of a cell, molecular selection within a cell, continuous informational flows and functioning with a reserve of power. In the review we provide detailed analysis of these mechanisms, discuss their specific functions and the role of the superposition of these mechanisms in the maintenance of cell structural robustness in a wide range of environmental conditions.
Collapse
Affiliation(s)
- Vasily V Grinev
- Biology Faculty, Department of Genetics, Belarusian State University, 220030, Minsk, Belarus.
| | | | | |
Collapse
|
30
|
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc Natl Acad Sci U S A 2012; 109:11788-93. [PMID: 22745160 DOI: 10.1073/pnas.1203789109] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers.
Collapse
|
31
|
Lenos K, Grawenda AM, Lodder K, Kuijjer ML, Teunisse AFAS, Repapi E, Grochola LF, Bartel F, Hogendoorn PCW, Wuerl P, Taubert H, Cleton-Jansen AM, Bond GL, Jochemsen AG. Alternate splicing of the p53 inhibitor HDMX offers a superior prognostic biomarker than p53 mutation in human cancer. Cancer Res 2012; 72:4074-84. [PMID: 22700878 DOI: 10.1158/0008-5472.can-12-0215] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventional high-grade osteosarcoma is the most common primary bone malignancy. Although altered expression of the p53 inhibitor HDMX (Mdmx/Mdm4) is associated with cancer risk, progression, and outcome in other tumor types, little is known about its role in osteosarcoma. High expression of the Hdmx splice variant HDMX-S relative to the full-length transcript (the HDMX-S/HDMX-FL ratio) correlates with reduced HDMX protein expression, faster progression, and poorer survival in several cancers. Here, we show that the HDMX-S/HDMX-FL ratio positively correlates with less HDMX protein expression, faster metastatic progression, and a trend to worse overall survival in osteosarcomas. We found that the HDMX-S/HDMX-FL ratio associated with common somatic genetic lesions connected with p53 inhibition, such as p53 mutation and HDM2 overexpression in osteosarcoma cell lines. Interestingly, this finding was not limited to osteosarcomas as we observed similar associations in breast cancer and a variety of other cancer cell lines, as well as in tumors from patients with soft tissue sarcoma. The HDMX-S/HDMX-FL ratio better defined patients with sarcoma with worse survival rates than p53 mutational status. We propose a novel role for alternative splicing of HDMX, whereby it serves as a mechanism by which HDMX protein levels are reduced in cancer cells that have already inhibited p53 activity. Alternative splicing of HDMX could, therefore, serve as a more effective biomarker for p53 pathway attenuation in cancers than p53 gene mutation.
Collapse
Affiliation(s)
- Kristiaan Lenos
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 2012; 485:201-6. [PMID: 22575960 DOI: 10.1038/nature11112] [Citation(s) in RCA: 3598] [Impact Index Per Article: 276.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 04/11/2012] [Indexed: 12/22/2022]
Abstract
An extensive repertoire of modifications is known to underlie the versatile coding, structural and catalytic functions of RNA, but it remains largely uncharted territory. Although biochemical studies indicate that N(6)-methyladenosine (m(6)A) is the most prevalent internal modification in messenger RNA, an in-depth study of its distribution and functions has been impeded by a lack of robust analytical methods. Here we present the human and mouse m(6)A modification landscape in a transcriptome-wide manner, using a novel approach, m(6)A-seq, based on antibody-mediated capture and massively parallel sequencing. We identify over 12,000 m(6)A sites characterized by a typical consensus in the transcripts of more than 7,000 human genes. Sites preferentially appear in two distinct landmarks--around stop codons and within long internal exons--and are highly conserved between human and mouse. Although most sites are well preserved across normal and cancerous tissues and in response to various stimuli, a subset of stimulus-dependent, dynamically modulated sites is identified. Silencing the m(6)A methyltransferase significantly affects gene expression and alternative splicing patterns, resulting in modulation of the p53 (also known as TP53) signalling pathway and apoptosis. Our findings therefore suggest that RNA decoration by m(6)A has a fundamental role in regulation of gene expression.
Collapse
Affiliation(s)
- Dan Dominissini
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Allende-Vega N, Dayal S, Agarwala U, Sparks A, Bourdon JC, Saville MK. p53 is activated in response to disruption of the pre-mRNA splicing machinery. Oncogene 2012; 32:1-14. [PMID: 22349816 DOI: 10.1038/onc.2012.38] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we show that interfering with the splicing machinery results in activation of the tumour-suppressor p53. The spliceosome was targeted by small interfering RNA-mediated knockdown of proteins associated with different small nuclear ribonucleoprotein complexes and by using the small-molecule splicing modulator TG003. These interventions cause: the accumulation of p53, an increase in p53 transcriptional activity and can result in p53-dependent G(1) cell cycle arrest. Mdm2 and MdmX are two key repressors of p53. We show that a decrease in MdmX protein level contributes to p53 activation in response to targeting the spliceosome. Interfering with the spliceosome also causes an increase in the rate of degradation of Mdm2. Alterations in splicing are linked with tumour development. There are frequently global changes in splicing in cancer. Our study suggests that p53 activation could participate in protection against potential tumour-promoting defects in the spliceosome. A number of known p53-activating agents affect the splicing machinery and this could contribute to their ability to upregulate p53. Preclinical studies indicate that tumours can be more sensitive than normal cells to small-molecule spliceosome inhibitors. Activation of p53 could influence the selective anti-tumour activity of this therapeutic approach.
Collapse
Affiliation(s)
- N Allende-Vega
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Angus, UK
| | | | | | | | | | | |
Collapse
|