1
|
LU YU, MIYAMOTO TSUTOMU, TAKEUCHI HODAKA, TSUNODA FUMI, TANAKA NAOKI, SHIOZAWA TANRI. PPARα activator irbesartan suppresses the proliferation of endometrial carcinoma cells via SREBP1 and ARID1A. Oncol Res 2023; 31:239-253. [PMID: 37305395 PMCID: PMC10229307 DOI: 10.32604/or.2023.026067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/14/2023] [Indexed: 06/13/2023] Open
Abstract
Endometrial carcinoma (EMC) is associated with obesity; however, the underlying mechanisms have not yet been elucidated. Peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that is involved in lipid, glucose, and energy metabolism. PPARα reportedly functions as a tumor suppressor through its effects on lipid metabolism; however, the involvement of PPARα in the development of EMC remains unclear. The present study demonstrated that the immunohistochemical expression of nuclear PPARα was lower in EMC than in normal endometrial tissues, suggesting the tumor suppressive nature of PPARα. A treatment with the PPARα activator, irbesartan, inhibited the EMC cell lines, Ishikawa and HEC1A, by down-regulating sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) and up-regulating the tumor suppressor genes p21 and p27, antioxidant enzymes, and AT-rich interaction domain 1A (ARID1A). These results indicate the potential of the activation of PPARα as a novel therapeutic approach against EMC.
Collapse
Affiliation(s)
- YU LU
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - TSUTOMU MIYAMOTO
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - HODAKA TAKEUCHI
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - FUMI TSUNODA
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| | - NAOKI TANAKA
- Department of Global Medical Research Promotion, School of Medicine, Shinshu University Graduate, Matsumoto, Nagano, 390-8621, Japan
- International Relations Office, School of Medicine, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
- Research Center for Social Systems, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - TANRI SHIOZAWA
- Department of Obstetrics and Gynecology, School of Medicine, Shinshu University, Matsumoto, 390-8621, Japan
| |
Collapse
|
2
|
Szychlinska MA, Ravalli S, Musumeci G. Pleiotropic effect of fibrates on senescence and autophagy in osteoarthritis. EBioMedicine 2019; 45:11-12. [PMID: 31300346 PMCID: PMC6642436 DOI: 10.1016/j.ebiom.2019.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, via S. Sofia 87, 95123 Catania, Italy
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, via S. Sofia 87, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, via S. Sofia 87, 95123 Catania, Italy; Research Center on Motor Activities (CRAM), University of Catania, via S. Sofia 97, 95123 Catania, Italy.
| |
Collapse
|
3
|
Brown M, Ahmed S. Emerging role of proprotein convertase subtilisin/kexin type-9 (PCSK-9) in inflammation and diseases. Toxicol Appl Pharmacol 2019; 370:170-177. [PMID: 30914377 DOI: 10.1016/j.taap.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is most recognized serine protease for its role in cardiovascular diseases (CVD). PCSK9 regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by selectively targeting hepatic LDL receptors (LDLR) for degradation, thereby serving as a potential therapeutic target for CVD. New pharmacological agents under development aim to lower the risk of CVD by inhibiting PCSK9 extracellularly, although secondary effects of this approach are not yet studied. Here we review the history of PCSK9 and rationale behind developing inhibitors for CVD. Importantly, we summarized the studies investigating the role and impact of modulated PCSK9 levels in inflammation, specifically in sepsis, rheumatoid arthritis and other chronic inflammatory conditions. Furthermore, we summarized studies that investigated the interactions of PCSK9 with pro-inflammatory pathways, such as scavenger receptor CD36 and thrombospondin 1 (TSP-1) in inflammatory diseases. This review highlights the conflicting role that PCSK9 plays in different inflammatory disease states and postulates that any unwanted effects of PCSK9 inhibition in early clinical testing should critically be examined.
Collapse
Affiliation(s)
- Madalyn Brown
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA
| | - Salahuddin Ahmed
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA, USA; Division of Rheumatology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Ashour H, Rashed LA, El-Sebaie MM, Sabry MM, Abdelmohsen MA, Eissa M. Combined gemfibrozil (peroxisome proliferator-activated receptor alpha agonist) with reduced steroid dose gives a similar management picture as the full steroid dose in a rat adjuvant-induced arthritis model. Mod Rheumatol 2018; 29:602-611. [PMID: 30074417 DOI: 10.1080/14397595.2018.1508800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objectives: The study aimed to evaluate the efficacy of combined gemfibrozil with prednisolone in the management of adjuvant-induced arthritis (AIA) rat model. Methods: Seventy two adult male Wistar albino rats were divided equally into 1-control group, three diseased groups: 2- Adjuvant induced arthritis (AIA), 3- high fat diet (HF), and 4- combined AIA-HF, and treated groups: 5- gemfibrozil 30 mg/kg treated AIA group (AIA-G) and the combined AIA-HF treated groups: 6- prednisolone equivalent to human 10 mg (AIA-HF-P10), 7- prednisolone equivalent to human 5 mg (AIA-HF-P5) 8- gemfibrozil (HF-AIA-G) and 9- combined treatment (HF-AIA-G-P5) Results: HF diet represents a precipitating factor for knee arthritis. Gemfibrozil improved the inflammatory findings in both AIA and AIA-HF groups. Combined administration of gemfibrozil with reduced steroid dose gave a similar therapeutic effect to the full steroid dose. Fortunately, we reported more reduction in the nuclear factor kappa-B (NF-κB) and high mobility group box 1 (HMGB1) in the HF-AIA-G-P5 compared with the HF-AIA-P10 group. The improvement was proved by the histological findings. Conclusion: Combined reduced prednisolone dose with gemfibrozil potentiates its anti-inflammatory activity. This could be a target in the management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Hend Ashour
- a Department of Physiology, Kasr Alainy, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Laila Ahmed Rashed
- b Department of Biochemistry, Kasr Alainy, Faculty of Medicine , Cairo University , Cairo , Egypt
| | | | - Marwa Mohammed Sabry
- c Department of Histology, Kasr Alainy, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Manal Ali Abdelmohsen
- c Department of Histology, Kasr Alainy, Faculty of Medicine , Cairo University , Cairo , Egypt
| | - Mervat Eissa
- d Department of Rheumatology, Kasr Alainy, Faculty of Medicine , Cairo University , Cairo , Egypt
| |
Collapse
|
5
|
Pease LI, Clegg PD, Proctor CJ, Shanley DJ, Cockell SJ, Peffers MJ. Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. Sci Rep 2017; 7:14443. [PMID: 29089527 PMCID: PMC5663855 DOI: 10.1038/s41598-017-14650-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/13/2017] [Indexed: 01/21/2023] Open
Abstract
The development of tendinopathy is influenced by a variety of factors including age, gender, sex hormones and diabetes status. Cross platform comparative analysis of transcriptomic data elucidated the connections between these entities in the context of ageing. Tissue-engineered tendons differentiated from bone marrow derived mesenchymal stem cells from young (20-24 years) and old (54-70 years) donors were assayed using ribonucleic acid sequencing (RNA-seq). Extension of the experiment to microarray and RNA-seq data from tendon identified gender specific gene expression changes highlighting disparity with existing literature and published pathways. Separation of RNA-seq data by sex revealed underlying negative binomial distributions which increased statistical power. Sex specific de novo transcriptome assemblies generated fewer larger transcripts that contained miRNAs, lincRNAs and snoRNAs. The results identify that in old males decreased expression of CRABP2 leads to cell proliferation, whereas in old females it leads to cellular senescence. In conjunction with existing literature the results explain gender disparity in the development and types of degenerative diseases as well as highlighting a wide range of considerations for the analysis of transcriptomic data. Wider implications are that degenerative diseases may need to be treated differently in males and females because alternative mechanisms may be involved.
Collapse
Affiliation(s)
- Louise I Pease
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
| | - Peter D Clegg
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Carole J Proctor
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Daryl J Shanley
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Simon J Cockell
- Faculty of Medical Sciences, Bioinformatics Support Unit, Framlington Place, Newcastle University, Newcastle, NE2 4HH, UK
| | - Mandy J Peffers
- MRC - Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool, UK.
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, The University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
6
|
Wang L, Nanayakkara G, Yang Q, Tan H, Drummer C, Sun Y, Shao Y, Fu H, Cueto R, Shan H, Bottiglieri T, Li YF, Johnson C, Yang WY, Yang F, Xu Y, Xi H, Liu W, Yu J, Choi ET, Cheng X, Wang H, Yang X. A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. J Hematol Oncol 2017; 10:168. [PMID: 29065888 PMCID: PMC5655880 DOI: 10.1186/s13045-017-0526-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
Background Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. Methods To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. Results We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Conclusions Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies. Electronic supplementary material The online version of this article (10.1186/s13045-017-0526-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.,Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Gayani Nanayakkara
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Qian Yang
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Ultrasound, Xijing Hospital and Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Charles Drummer
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yu Sun
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hangfei Fu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Ramon Cueto
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Huimin Shan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, 3500 Gaston Avenue, Dallas, TX, 75246, USA
| | - Ya-Feng Li
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Weiqing Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jun Yu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Centers for Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
7
|
Lima EDA, Lima MMDDA, Marques CDL, Duarte ALBP, Pita IDR, Pita MGDR. Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis. An Bras Dermatol 2014; 88:1029-35. [PMID: 24474126 PMCID: PMC3900368 DOI: 10.1590/abd1806-4841.20132653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/24/2013] [Indexed: 01/04/2023] Open
Abstract
Psoriasis is a polygenic, inflammatory and progressive disease, characterized by an
abnormal differentiation and hyperproliferation of keratinocytes, associated with
impaired immunologic activation and systemic disorders, while psoriatic arthritis is
a chronic inflammatory articular disease. Pathophysiology of psoriasis comprises a
dysfunction of the immune system cells with an interactive network between cells and
cytokines supporting the initiation and perpetuation of disease and leading to
inflammation of skin, enthesis and joints. Recent studies have shown an important
role of systemic inflammation in the development of atherosclerosis. Corroborating
these findings, patients with severe Psoriasis have marked incidence of psoriatic
arthritis, cardiovascular diseases, hypertension, dyslipidemia, obesity and diabetes
mellitus, showing an increased risk for acute myocardial infarction, which suggests
that the condition is not restricted to the skin. Nuclear receptors are
ligand-dependent transcription factors, whose activation affects genes that control
vital processes. Among them the peroxisome proliferator-activated receptor is
responsible for establishing the relationship between lipids, metabolic diseases and
innate immunity. In the skin, peroxisome proliferator-activated receptors have an
important effect in keratinocyte homeostasis, suggesting a role in diseases such as
psoriasis. The peroxisome proliferator-activated receptors agonists represent a
relevant source of research in the treatment of skin conditions, however more
clinical studies are needed to define the potential response of these drugs in
patients with psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Emerson de Andrade Lima
- São Paulo University, MD, PhD in Dermatology at São Paulo University (USP) - Preceptor of the Dermatology Post-Graduation Program at Santa Casa de Misericórdia do Recife - Recife (PE), Brazil
| | - Mariana Modesto Dantas de Andrade Lima
- Pernambuco Federal University, RecifePE, Brazil, MD, Board certified dermatologist - Preceptor at Pernambuco Federal University (UFPE) - Recife (PE), Brazil
| | - Cláudia Diniz Lopes Marques
- Pernambuco Federal University, RecifePE, Brazil, MD, PhD - Adjunct Professor of Rheumatology at Pernambuco Federal University (UFPE) - Recife (PE), Brazil
| | - Angela Luzia Branco Pinto Duarte
- Pernambuco Federal University, RecifePE, Brazil, MD, PhD - Full Professor of Rheumatology at Pernambuco Federal University (UFPE) - Recife (PE), Brazil
| | - Ivan da Rocha Pita
- Pernambuco Federal University, RecifePE, Brazil, MD, PhD, Post-doctorate - Full Professor of Rheumatology at Pernambuco Federal University (UFPE) - Recife (PE), Brazil
| | - Maira Galdino da Rocha Pita
- Biochemistry Department, Pernambuco Federal University, RecifePE, Brazil, Post-doctorate - Adjunct Professor Level II at the Biochemistry Department at Pernambuco Federal University (UFPE) - Recife (PE), Brazil
| |
Collapse
|
8
|
Shirinsky IV, Shirinsky VS. Treatment of erosive osteoarthritis with peroxisome proliferator-activated receptor alpha agonist fenofibrate: a pilot study. Rheumatol Int 2013; 34:613-6. [PMID: 23620259 DOI: 10.1007/s00296-013-2766-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/18/2013] [Indexed: 01/21/2023]
Abstract
Hand osteoarthritis (HOA) is a common condition associated with high disease burden and frequently accompanied by comorbidities including dyslipidemia, atherosclerosis and obesity. The most debilitating HOA phenotype is erosive HOA (EHOA), characterized by synovial inflammation, formation of erosions, and substantial decline in hand function. Currently, there is no proven symptomatic treatment for the EHOA. Due to their broad spectrum effects directed on lipid metabolism, inflammation and pain, the agonists of peroxisome proliferator-activated receptor alpha or fibrates are a candidate class of drugs for the treatment of EHOA. In this study, we assessed the influence of fenofibrate treatment on clinical efficacy parameters, in vivo cytokine and adipokine production and concentrations of endothelial progenitor cells (EPC) in patients with EHOA. Fourteen patients received treatment with 145 mg of fenofibrate/day for 12 weeks. Fenofibrate treatment was associated with significant decreases in pain score, tender joint count, duration of morning stiffness, disease activity score, Cochin index, and ESR. Eight (57.14 %) patients developed Outcome Measures in Rheumatology Clinical Trials-Osteoarthritis Research Society response at the end of treatment. Paracetamol consumption did not change during the treatment course. There was a significant reduction in triglyceride levels. No changes were detected in serum pro-inflammatory cytokine and adipokine concentrations while circulating IL-10 levels significantly decreased. There were no differences in circulating EPC numbers before and after the treatment. Fenofibrate was well tolerated, no patient experienced disease flare during the treatment. In conclusion, in EHOA patients, fenofibrate is associated with pleiotropic effects on pain, inflammation, and lipid profile. Larger, controlled studies are needed to confirm these results.
Collapse
Affiliation(s)
- Ivan V Shirinsky
- Laboratory of Clinical Immunopharmacology, Institute of Clinical Immunology RAMS, 6 Zalesskogo str., 630099, Novosibirsk, Russia,
| | | |
Collapse
|
9
|
Shirinsky I, Polovnikova O, Kalinovskaya N, Shirinsky V. The effects of fenofibrate on inflammation and cardiovascular markers in patients with active rheumatoid arthritis: a pilot study. Rheumatol Int 2012; 33:3045-8. [PMID: 23263548 DOI: 10.1007/s00296-012-2613-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/09/2012] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activated receptors α (PPARα) agonists, or fibrates, are used in the treatment for dyslipidemia. Experimental data suggest that fibrates have anti-inflammatory properties, and PPARα is essential for the differentiation of endothelial progenitor cells (EPC) which diminished pool in rheumatoid arthritis (RA) contributes to accelerated atherosclerosis. The data on fibrates' effects in patients with RA are limited. The aim of this study was to investigate changes in disease activity, inflammatory markers, lipid profile, and circulating EPC in active RA patients treated with fenofibrate. Twenty-seven patients with active RA taking traditional disease-modifying antirheumatic drugs (DMARDs) were prescribed fenofibrate (145 mg/day) for 3 months. All patients received background traditional DMARDs in stable doses. The outcomes measured were clinical disease activity variables, circulating cytokines, adipokines, lipids, and EPC. Twenty-five patients completed the study. At the end of treatment, there was a significant reduction in DAS28, all individual DAS28 components except tender joint count, the duration of morning stiffness, and in the patient's assessment of disease activity. Fifteen (60 %) patients achieved good/moderate EULAR response, while 10 (40 %) patients satisfied ACR20 response criteria. Treatment with fenofibrate resulted in significant decrease in CRP and IL-6 concentrations and improvement in lipid profile. There was no change in the concentrations of circulating EPC. In conclusion, fenofibrate treatment is associated with reduced inflammation and improved lipid profile in RA patients. Large randomized controlled studies are needed to confirm these results and to define the role of fibrates in the treatment for RA.
Collapse
|
10
|
Abstract
The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis GmbH, Neurather Ring 1, Koeln, Germany.
| | | |
Collapse
|
11
|
Castillero E, Martín AI, Nieto-Bona MP, Fernández-Galaz C, López-Menduiña M, Villanúa MÁ, López-Calderón A. Fenofibrate administration to arthritic rats increases adiponectin and leptin and prevents oxidative muscle wasting. Endocr Connect 2012; 1:1-12. [PMID: 23781298 PMCID: PMC3681315 DOI: 10.1530/ec-12-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/08/2022]
Abstract
Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion.
Collapse
Affiliation(s)
| | | | - Maria Paz Nieto-Bona
- Department of Histology, Faculty of Health SciencesRey Juan Carlos University28922 Alcorcón, MadridSpain
| | | | | | | | | |
Collapse
|
12
|
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122:787-95. [PMID: 22378047 DOI: 10.1172/jci59643] [Citation(s) in RCA: 4642] [Impact Index Per Article: 357.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Antonio Sica
- Istituto Clinico Humanitas IRCCS, Rozzano, Italy.
| | | |
Collapse
|