1
|
Piccinno E, Scalavino V, Armentano R, Giannelli G, Serino G. miR-195-5p as Regulator of γ-Catenin and Desmosome Junctions in Colorectal Cancer. Int J Mol Sci 2023; 24:17084. [PMID: 38069408 PMCID: PMC10707010 DOI: 10.3390/ijms242317084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Desmosomes play a key role in the regulation of cell adhesion and signaling. Dysregulation of the desmosome complex is associated with the loss of epithelial cell polarity and disorganized tissue architecture typical of colorectal cancer (CRC). The aim of this study was to investigate and characterize the effect of miR-195-5p on desmosomal junction regulation in CRC. In detail, we proposed to investigate the deregulation of miR-195-5p and JUP, a gene target that encodes a desmosome component in CRC patients. JUP closely interacts with desmosomal cadherins, and downstream, it regulates several intracellular transduction factors. We restored the miR-195-5p levels by transient transfection in colonic epithelial cells to examine the effects of miR-195-5p on JUP mRNA and protein expression. The JUP regulation by miR-195-5p, in turn, determined a modulation of desmosome cadherins (Desmoglein 2 and Desmocollin 2). Furthermore, we focused on whether the miR-195-5p gain of function was also able to modulate the expression of key components of Wnt signaling, such as NLK, LEF1 and Cyclin D1. In conclusion, we have identified a novel mechanism controlled by miR-195-5p in the regulation of adhesive junctions, suggesting its potential clinical relevance for future miRNA-based therapy in CRC.
Collapse
Affiliation(s)
| | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (R.A.); (G.G.)
| |
Collapse
|
2
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
3
|
Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Electrophoresis 2023; 44:1097-1113. [PMID: 36971330 PMCID: PMC10522790 DOI: 10.1002/elps.202300040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Breast cancer (BC) is one of the most common cancers and one of the most common causes for cancer-related mortality. Discovery of protein biomarkers associated with cancer is considered important for early diagnosis and prediction of the cancer risk. Protein biomarkers could be investigated by large-scale protein investigation or proteomics, using mass spectrometry (MS)-based techniques. Our group applies MS-based proteomics to study the protein pattern in human breast milk from women with BC and controls and investigates the alterations and dysregulations of breast milk proteins in comparison pairs of BC versus control. These dysregulated proteins might be considered potential future biomarkers of BC. Identification of potential biomarkers in breast milk may benefit young women without BC, but who could collect the milk for future assessment of BC risk. Previously we identified several dysregulated proteins in different sets of human breast milk samples from BC patients and controls using gel-based protein separation coupled with MS. Here, we performed 2D-PAGE coupled with nano-liquid chromatography-tandem MS (nanoLC-MS/MS) in a small-scale study on a set of six human breast milk pairs (three BC samples vs. three controls) and we identified several dysregulated proteins that have potential roles in cancer progression and might be considered potential BC biomarkers in the future.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - James Lowe
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kathleen F. Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA
| |
Collapse
|
4
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
5
|
Plakoglobin and High-Mobility Group Box 1 Mediate Intestinal Epithelial Cell Apoptosis Induced by Clostridioides difficile TcdB. mBio 2022; 13:e0184922. [PMID: 36043787 DOI: 10.1128/mbio.01849-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated intestinal disease, resulting in severe diarrhea and fatal pseudomembranous colitis. TcdB, one of the essential virulence factors secreted by this bacterium, induces host cell apoptosis through a poorly understood mechanism. Here, we performed an RNA interference (RNAi) screen customized to Caco-2 cells, a cell line model of the intestinal epithelium, to discover host factors involved in TcdB-induced apoptosis. We identified plakoglobin, also known as junction plakoglobin (JUP) or γ-catenin, a member of the catenin family, as a novel host factor and a previously known cell death-related chromatin factor, high-mobility group box 1 (HMGB1). Disruption of those host factors by RNAi and CRISPR resulted in resistance of cells to TcdB-mediated and mitochondrion-dependent apoptosis. JUP was redistributed from adherens junctions to the mitochondria and colocalized with the antiapoptotic factor Bcl-XL. JUP proteins could permeabilize the mitochondrial membrane, resulting in the release of cytochrome c. Our results reveal a novel role of JUP in targeting the mitochondria to promote the mitochondrial apoptotic pathway. Treatment with glycyrrhizin, an HMGB1 inhibitor, resulted in significantly increased resistance to TcdB-induced epithelial damage in cultured cells and a mouse ligated colon loop model. These findings demonstrate the critical roles of JUP and HMGB1 in TcdB-induced epithelial cell apoptosis. IMPORTANCE Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea. Toxins, especially TcdB, cause epithelial cell apoptosis, but the underlying cell death mechanism is less clear. Through an apoptosis-focused RNAi screen using a bacterium-made small interfering (siRNA) library customized to a human colonic epithelial cell model, we found a novel host factor, plakoglobin (γ-catenin), as a key factor required for cell apoptosis induced by TcdB. Plakoglobin targets and permeabilizes mitochondria after stimulation by TcdB, demonstrating a hitherto underappreciated role of this catenin family member in the apoptosis of intestinal epithelial cells. We also found a previously known cell death-related chromatin factor, HMGB1, and explored the inhibition of HMGB1 for CDI therapy in vivo.
Collapse
|
6
|
Richard V, Davey MG, Annuk H, Miller N, Kerin MJ. The double agents in liquid biopsy: promoter and informant biomarkers of early metastases in breast cancer. Mol Cancer 2022; 21:95. [PMID: 35379239 PMCID: PMC8978379 DOI: 10.1186/s12943-022-01506-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer continues to be a major global problem with significant mortality associated with advanced stage and metastases at clinical presentation. However, several findings suggest that metastasis is indeed an early occurrence. The standard diagnostic techniques such as invasive core needle biopsy, serological protein marker assays, and non-invasive radiological imaging do not provide information about the presence and molecular profile of small fractions of early metastatic tumor cells which are prematurely dispersed in the circulatory system. These circulating tumor cells (CTCs) diverge from the primary tumors as clusters with a defined secretome comprised of circulating cell-free nucleic acids and small microRNAs (miRNAs). These circulatory biomarkers provide a blueprint of the mutational profile of the tumor burden and tumor associated alterations in the molecular signaling pathways involved in oncogenesis. Amidst the multitude of circulatory biomarkers, miRNAs serve as relatively stable and precise biomarkers in the blood for the early detection of CTCs, and promote step-wise disease progression by executing paracrine signaling that transforms the microenvironment to guide the metastatic CTCs to anchor at a conducive new organ. Random sampling of easily accessible patient blood or its serum/plasma derivatives and other bodily fluids collectively known as liquid biopsy (LB), forms an efficient alternative to tissue biopsies. In this review, we discuss in detail the divergence of early metastases as CTCs and the involvement of miRNAs as detectable blood-based diagnostic biomarkers that warrant a timely screening of cancer, serial monitoring of therapeutic response, and the dynamic molecular adaptations induced by miRNAs on CTCs in guiding primary and second-line systemic therapy.
Collapse
|
7
|
Yin L, Li Q, Mrdenovic S, Chu GCY, Wu BJ, Bu H, Duan P, Kim J, You S, Lewis MS, Liang G, Wang R, Zhau HE, Chung LWK. KRT13 promotes stemness and drives metastasis in breast cancer through a plakoglobin/c-Myc signaling pathway. Breast Cancer Res 2022; 24:7. [PMID: 35078507 PMCID: PMC8788068 DOI: 10.1186/s13058-022-01502-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Background Keratins (KRTs) are intermediate filament proteins that interact with multiple regulatory proteins to initiate signaling cascades. Keratin 13 (KRT13) plays an important role in breast cancer progression and metastasis. The objective of this study is to elucidate the mechanism by which KRT13 promotes breast cancer growth and metastasis.
Methods The function and mechanisms of KRT13 in breast cancer progression and metastasis were assessed by overexpression and knockdown followed by examination of altered behaviors in breast cancer cells and in xenograft tumor formation in mouse mammary fat pad. Human breast cancer specimens were examined by immunohistochemistry and multiplexed quantum dot labeling analysis to correlate KRT13 expression to breast cancer progression and metastasis. Results KRT13-overexpressing MCF7 cells displayed increased proliferation, invasion, migration and in vivo tumor growth and metastasis to bone and lung. Conversely, KRT13 knockdown inhibited the aggressive behaviors of HCC1954 cells. At the molecular level, KRT13 directly interacted with plakoglobin (PG, γ-catenin) to form complexes with desmoplakin (DSP). This complex interfered with PG expression and nuclear translocation and abrogated PG-mediated suppression of c-Myc expression, while the KRT13/PG/c-Myc signaling pathway increased epithelial to mesenchymal transition and stem cell-like phenotype. KRT13 expression in 58 human breast cancer tissues was up-regulated especially at the invasive front and in metastatic specimens (12/18) (p < 0.05). KRT13 up-regulation in primary breast cancer was associated with decreased overall patient survival. Conclusions This study reveals that KRT13 promotes breast cancer cell growth and metastasis via a plakoglobin/c-Myc pathway. Our findings reveal a potential novel pathway for therapeutic targeting of breast cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01502-6.
Collapse
Affiliation(s)
- Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Qinlong Li
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Stefan Mrdenovic
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Gina Chia-Yi Chu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Boyang Jason Wu
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Duan
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Jayoung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael S Lewis
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ruoxiang Wang
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA.
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Cedars-Sinai Medical Center, 8750 Beverly Boulevard, Atrium 105, Los Angeles, CA, 90048, USA
| |
Collapse
|
8
|
Abstract
Desmoplakin (DSP), encoded by the DSP gene, is the main desmosome component and is abundant in the myocardial tissue. There are three DSP isoforms that assume the role of supporting structural stability through intercellular adhesion. It has been found that DSP regulates the transcription of adipogenic and fibrogenic genes, and maintains appropriate electrical conductivity by regulating gap junctions and ion channels. DSP is essential for normal myocardial development and the maintenance of its structural functions. Studies have suggested that DSP gene mutations are associated with a variety of hereditary cardiomyopathy, such as arrhythmia cardiomyopathy, dilated cardiomyopathy (DCM), left ventricular noncompaction, and is also closely associated with the Carvajal syndrome, Naxos disease, and erythro-keratodermia-cardiomyopathy syndrome with skin and heart damage. The structure and function of DSP, as well as the clinical manifestations of DSP-related cardiomyopathy were reviewed in this article.
Collapse
|
9
|
Liu YQ, Zou HY, Xie JJ, Fang WK. Paradoxical Roles of Desmosomal Components in Head and Neck Cancer. Biomolecules 2021; 11:914. [PMID: 34203070 PMCID: PMC8234459 DOI: 10.3390/biom11060914] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/05/2023] Open
Abstract
Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent studies have reported that the abnormal expression of various desmosomal components correlates with tumor progression and poor survival. In addition, desmosomes have been shown to act as a signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied by abnormal expression of desmosomal components and loss of desmosome structure. However, the role of desmosomal components in the progression of HNC remains controversial. This review aims to provide an overview of recent developments showing the paradoxical roles of desmosomal components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Yin-Qiao Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Hai-Ying Zou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
| | - Jian-Jun Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wang-Kai Fang
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (Y.-Q.L.); (H.-Y.Z.)
- Precision Medicine Research Center, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
10
|
Spethmann T, Böckelmann LC, Labitzky V, Ahlers AK, Schröder-Schwarz J, Bonk S, Simon R, Sauter G, Huland H, Kypta R, Schumacher U, Lange T. Opposing prognostic relevance of junction plakoglobin in distinct prostate cancer patient subsets. Mol Oncol 2021; 15:1956-1969. [PMID: 33533127 PMCID: PMC8253102 DOI: 10.1002/1878-0261.12922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
Both oncogenic and tumor suppressor functions have been described for junction plakoglobin (JUP), also known as γ-catenin. To clarify the role of JUP in prostate cancer, JUP protein expression was immunohistochemically detected in a tissue microarray containing 11 267 individual prostatectomy specimens. Considering all patients, high JUP expression was associated with adverse tumor stage (P = 0.0002), high Gleason grade (P < 0.0001), and lymph node metastases (P = 0.011). These associations were driven mainly by the subset without TMPRSS2:ERG fusion, in which high JUP expression was an independent predictor of poor prognosis (multivariate analyses, P = 0.0054) and early biochemical recurrence (P = 0.0003). High JUP expression was further linked to strong androgen receptor expression (P < 0.0001), high cell proliferation, and PTEN and FOXP1 deletion (P < 0.0001). In the ERG-negative subset, high JUP expression was additionally linked to MAP3K7 (P = 0.0007) and CHD1 deletion (P = 0.0021). Contrasting the overall prognostic effect of JUP, low JUP expression indicated poor prognosis in the fraction of CHD1-deleted patients (P = 0.039). In this subset, the association of high JUP and high cell proliferation was specifically absent. In conclusion, the controversial biological roles of JUP are reflected by antagonistic prognostic effects in distinct prostate cancer patient subsets.
Collapse
Affiliation(s)
- Tanja Spethmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Robert Kypta
- Department of Surgery and Cancer, Imperial College London, UK.,Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
11
|
Chen K, Zeng J, Sun Y, Ouyang W, Yu G, Zhou H, Zhang Y, Yao W, Xiao W, Hu J, Xing J, Xiao K, Wu L, Chen Z, Ye Z, Xu H. Junction plakoglobin regulates and destabilizes HIF2α to inhibit tumorigenesis of renal cell carcinoma. Cancer Commun (Lond) 2021; 41:316-332. [PMID: 33591636 PMCID: PMC8045910 DOI: 10.1002/cac2.12142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/24/2020] [Accepted: 01/31/2021] [Indexed: 12/21/2022] Open
Abstract
Background Increased hypoxia‐inducible factor 2α (HIF2α) activation is a common event in clear cell renal cell carcinoma (ccRCC) progression. However, the function and underlying mechanism of HIF2α in ccRCC remains uninvestigated. We conducted this study to access the potential link between junction plakoglobin (JUP) and HIF2α in ccRCC. Methods Affinity purification and mass spectrometry (AP‐MS) screening, glutathione‐s‐transferase (GST) pull‐down and co‐immunoprecipitation (Co‐IP) assays were performed to detect the interacting proteins of HIF2α. Quantitative PCR (qPCR) and Western blotting were used to detect the expression of JUP in human ccRCC samples. Luciferase reporter assays, chromatin immunoprecipitation (ChIP), cycloheximide chase assays, and ubiquitination assays were conducted to explore the regulation of JUP on the activity of HIF2α. Cell Counting Kit‐8 (CCK‐8) assays, colony formation assays, transwell assays, and xenograft tumor assays were performed to investigate the effect of JUP knockdown or overexpression on the tumorigenicity of renal cancer cells. Results We identified JUP as a novel HIF2α‐binding partner and revealed an important role of JUP in recruiting von Hippel‐Lindau (VHL) and histone deacetylases 1/2 (HDAC1/2) to HIF2α to regulate its stability and transactivation. JUP knockdown promoted and overexpression suppressed the tumorigenicity of renal cell carcinoma in vitro and in vivo. Importantly, the low expression of JUP was found in clinical ccRCC samples and correlated with enhanced hypoxia scores and poor treatment outcomes. Conclusion Taken together, these data support a role of JUP in modulating HIF2α signaling during ccRCC progression and identify JUP as a potential therapeutic target.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China.,Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, P. R. China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Wei Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Yangjun Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Junhui Hu
- Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P. R. China
| | - Kefeng Xiao
- Department of Urology, The People's Hospital of Shenzhen City, Shenzhen, Guangdong, 518020, P. R. China
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China.,Hubei Institute of Urology, Wuhan, Hubei, 430030, P. R. China
| |
Collapse
|
12
|
Weiland F, Lokman NA, Klingler-Hoffmann M, Jobling T, Stephens AN, Sundfeldt K, Hoffmann P, Oehler MK. Ovarian Blood Sampling Identifies Junction Plakoglobin as a Novel Biomarker of Early Ovarian Cancer. Front Oncol 2020; 10:1767. [PMID: 33102207 PMCID: PMC7545354 DOI: 10.3389/fonc.2020.01767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Early detection would improve survival, but an effective diagnostic test does not exist. Novel biomarkers for early ovarian cancer diagnosis are therefore warranted. We performed intraoperative blood sampling from ovarian veins of stage I epithelial ovarian carcinomas and analyzed the serum proteome. Junction plakoglobin (JUP) was found to be elevated in venous blood from ovaries with malignancies when compared to those with benign disease. Peripheral plasma JUP levels were validated by ELISA in a multicenter international patient cohort. JUP was significantly increased in FIGO serous stage IA+B (1.97-fold increase; p < 0.001; n = 20), serous stage I (2.09-fold increase; p < 0.0001; n = 40), serous stage II (1.81-fold increase, p < 0.001, n = 23) and serous stage III ovarian carcinomas (1.98-fold increase; p < 0.0001; n = 34) vs. normal controls (n = 109). JUP plasma levels were not increased in early stage breast cancer (p = 0.122; n = 12). In serous ovarian cancer patients, JUP had a sensitivity of 85% in stage IA+B and 60% in stage IA-C, with specificities of 76 and 94%, respectively. A logistic regression model of JUP and Cancer Antigen 125 (CA125) revealed a sensitivity of 70% for stage IA+B and 75% for stage IA-C serous carcinomas at 100% specificity. Our novel ovarian blood sampling – proteomics approach identified JUP as a promising new biomarker for epithelial ovarian cancer, which in combination with CA125 might fulfill the test criteria for ovarian cancer screening.
Collapse
Affiliation(s)
- Florian Weiland
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia.,Department of Microbial and Molecular Systems (M2S), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), KU Leuven, Leuven, Belgium
| | - Noor A Lokman
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Thomas Jobling
- Department of Gynecological Oncology, Monash Medical Centre, Clayton, VIC, Australia
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Sahlgrenska Cancer Center, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Hoffmann
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Martin K Oehler
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,Department of Gynecological Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
13
|
Wang G, Liu F, Xu Z, Ge J, Li J. Identification of Hc-β-catenin in freshwater mussel Hyriopsis cumingii and its involvement in innate immunity and sex determination. FISH & SHELLFISH IMMUNOLOGY 2019; 91:99-107. [PMID: 31075405 DOI: 10.1016/j.fsi.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/29/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
β-catenin is a multifunctional protein that participates in a variety of physiological activities, including immune regulation, sex determination, nervous system development and, cell differentiation. However, the function of β-catenin in freshwater mussel Hyriopsis cumingii remains unclear. Herein, the gene encoding β-catenin from H. cumingii (Hc-β-catenin) was cloned and characterised. The full-length 5544 bp gene includes an open reading frame (ORF) of 2463 bp encoding a putative protein of 820 amino acids residues containing 12 armadillo (ARM) repeats. After injecting H. cumingii with Aeromonas hydrophila or lipopolysaccharides, Hc-β-catenin transcription was induced in hemocytes and gills, and the greatest responses occurred at 24 h after bacterial challenge, confirming an important role in immune responses. Quantitative real-time PCR analysis showed that Hc-β-catenin mRNA was distributed in the gill, foot, liver, kidney, mantle, adductor muscle and gonad of male and female mussels. In gonad, Hc-β-catenin expression was markedly higher in females than males. During the embryonic period, Hc-β-catenin expression was highest at 3 day. In 1-, 2- and 3-year-old mature mussels, Hc-β-catenin expression in female gonad tissue was notably higher than in males. In situ hybridisation revealed a significant hybridisation signal in female gonads, indicating that Hc-β-catenin is a pro-ovarian, anti-testis gene. Our findings demonstrate that Hc-β-catenin is important in immune regulation and sex determination in freshwater mussel.
Collapse
Affiliation(s)
- Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Feifei Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Zhicheng Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jinyuan Ge
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
14
|
Tumor-Derived Exosomes Mediate the Instability of Cadherins and Promote Tumor Progression. Int J Mol Sci 2019; 20:ijms20153652. [PMID: 31357383 PMCID: PMC6696460 DOI: 10.3390/ijms20153652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cadherins, including E-cadherin, N-cadherin, VE-cadherin, etc., are important adhesion molecules mediating intercellular junctions. The abnormal expression of cadherins is often associated with tumor development and progression. Epithelial–mesenchymal transition (EMT) is the most important step in the metastasis cascade and is accompanied by altered expression of cadherins. Recent studies reveal that as a cargo for intercellular communication, exosomes—one type of extracellular vesicles that can be secreted by tumor cells—are involved in a variety of physiological and pathological processes, especially in tumor metastasis. Tumor-derived exosomes play a crucial role in mediating the cadherin instability in recipient cells by transferring bioactive molecules (oncogenic microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), EMT-related proteins, and others), modulating their local and distant microenvironment, and facilitating cancer metastasis. In turn, aberrant expression of cadherins in carcinoma cells can also affect the biogenesis and release of exosomes. Therefore, we summarize the current research on the crosstalk between tumor-derived exosomes and aberrant cadherin signals to reveal the unique role of exosomes in cancer progression.
Collapse
|
15
|
Huang L, Ji H, Yin L, Niu X, Wang Y, Liu Y, Xuan Q, Li L, Zhang H, Zhou X, Li J, Cui C, Yang Y, An W, Zhang Q. High Expression of Plakoglobin Promotes Metastasis in Invasive Micropapillary Carcinoma of the Breast via Tumor Cluster Formation. J Cancer 2019; 10:2800-2810. [PMID: 31258788 PMCID: PMC6584935 DOI: 10.7150/jca.31411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/06/2019] [Indexed: 01/22/2023] Open
Abstract
Invasive micropapillary carcinoma of the breast (IMPC) is a rare subtype of breast cancer that has a high frequency of lymph node (LN) involvement and metastasis to distant organs. IMPC is characterized by distinct histomorphology and unfavorable prognosis when compared with invasive ductal carcinoma no special type (IDC-NST). However, the underlying molecular mechanisms remain unclear. We reported here that plakoglobin, as a key component in cell adhesion, can promote collective metastasis through facilitating IMPC clusters formation. In comparing the clinicopathological features of 451 IMPC patients and 282 IDC-NST patients, our results showed that tumor emboli were significantly higher in IMPC patients and were associated with a high frequency of metastasis. Both in vitro and in vivo data showed overexpression of plakoglobin in both the cell membrane and the cytoplasm of IMPC clusters. When plakoglobin was knocked down in IMPC cell models, the tumor cell clusters were depolymerized. Using mouse models, we validated the metastatic potential of tumor clusters was higher than single cells in vivo. Further analysis showed that higher expression of plakoglobin was able to promote activation of the PI3K/Akt/Bcl-2 pathway, which might protect the clusters from anoikis. Our data indicate that plakoglobin promotes tumor cluster formation in IMPC and downregulates apoptosis in the cell clusters through activation of PI3K/Akt/Bcl-2 signaling. These results provide a convincing rationale for the high metastatic propensity seen in IMPC.
Collapse
Affiliation(s)
- Lan Huang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Lei Yin
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yang Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China
| | - Qijia Xuan
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Liru Li
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaoping Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jingtong Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chengwei Cui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Weiwei An
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China.,Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
16
|
Luong-Gardiol N, Siddiqui I, Pizzitola I, Jeevan-Raj B, Charmoy M, Huang Y, Irmisch A, Curtet S, Angelov GS, Danilo M, Juilland M, Bornhauser B, Thome M, Hantschel O, Chalandon Y, Cazzaniga G, Bourquin JP, Huelsken J, Held W. γ-Catenin-Dependent Signals Maintain BCR-ABL1 + B Cell Acute Lymphoblastic Leukemia. Cancer Cell 2019; 35:649-663.e10. [PMID: 30991025 DOI: 10.1016/j.ccell.2019.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
The BCR-ABL1 fusion protein is the cause of chronic myeloid leukemia (CML) and of a significant fraction of adult-onset B cell acute lymphoblastic leukemia (B-ALL) cases. Using mouse models and patient-derived samples, we identified an essential role for γ-catenin in the initiation and maintenance of BCR-ABL1+ B-ALL but not CML. The selectivity was explained by a partial γ-catenin dependence of MYC expression together with the susceptibility of B-ALL, but not CML, to reduced MYC levels. MYC and γ-catenin enabled B-ALL maintenance by augmenting BIRC5 and enforced BIRC5 expression overcame γ-catenin loss. Since γ-catenin was dispensable for normal hematopoiesis, these lineage- and disease-specific features of canonical Wnt signaling identified a potential therapeutic target for the treatment of BCR-ABL1+ B-ALL.
Collapse
Affiliation(s)
- Noemie Luong-Gardiol
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Imran Siddiqui
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Irene Pizzitola
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Beena Jeevan-Raj
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Mélanie Charmoy
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Yun Huang
- Department of Pediatric Oncology and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland
| | - Anja Irmisch
- Swiss Institute for Experimental Cancer Research (ISREC), Federal University of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sara Curtet
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Georgi S Angelov
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Maxime Danilo
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Beat Bornhauser
- Department of Pediatric Oncology and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Oliver Hantschel
- Swiss Institute for Experimental Cancer Research (ISREC), Federal University of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yves Chalandon
- Service d'Hématologie, Hôpitaux Universitaire de Genève, Geneva, Switzerland
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Pediatric Clinic University of Milano-Bicocca, Monza, Italy
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland
| | - Joerg Huelsken
- Swiss Institute for Experimental Cancer Research (ISREC), Federal University of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Werner Held
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
17
|
Sang Y, Sun L, Wu Y, Yuan W, Liu Y, Li SW. Histone deacetylase 7 inhibits plakoglobin expression to promote lung cancer cell growth and metastasis. Int J Oncol 2019; 54:1112-1122. [PMID: 30628670 DOI: 10.3892/ijo.2019.4682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] Open
Abstract
Plakoglobin is a tumor suppressor gene in lung cancer; however, the mechanism by which it is downregulated in lung cancer is largely unknown. The aim of the present study was to investigate whether histone deacetylases (HDACs) regulate plakoglobin expression in lung cancer. The effects of overexpression or knockdown of HDAC7 on plakoglobin were determined using stably transfected lung cancer cell lines. Chromatin immunoprecipitation assays were performed to elucidate the mechanisms underlying the HDAC7‑induced suppression of plakoglobin. A Cell Counting Kit‑8 and Transwell assays were performed, and a nude mouse in vivo model was established to investigate the role of the HDAC7/plakoglobin pathway in cell migration, invasion and metastasis. Ectopic expression of HDAC7 was identified to suppress mRNA and protein levels of plakoglobin in lung cancer cells, whereas silencing HDAC7 with short hairpin RNA increased the expression of plakoglobin. HDAC7 was proposed to suppressed plakoglobin by directly binding to its promoter. Overexpression or knockdown of HDAC7 promoted or inhibited cell proliferation, migration and invasion, respectively. Furthermore, knockdown of HDAC7 significantly suppressed tumor growth and metastasis in vivo. In addition, overexpression of plakoglobin significantly reduced the enhanced cell proliferation, migration and invasion induced by ectopic HDAC7. In conclusion, suppression of plakoglobin by HDAC7 promoted the proliferation, migration, invasion and metastasis in lung cancer. This novel axis of HDAC7/plakoglobin may be valuable in the development of novel therapeutic strategies for treating patients with lung cancer.
Collapse
Affiliation(s)
- Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Department of Center Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Longhua Sun
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Si-Wei Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
18
|
Merrick DT, Edwards MG, Franklin WA, Sugita M, Keith RL, Miller YE, Friedman MB, Dwyer-Nield LD, Tennis MA, O'Keefe MC, Donald EJ, Malloy JM, van Bokhoven A, Wilson S, Koch PJ, O'Shea C, Coldren C, Orlicky DJ, Lu X, Baron AE, Hickey G, Kennedy TC, Powell R, Heasley L, Bunn PA, Geraci M, Nemenoff RA. Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia. Cancer Res 2018; 78:4971-4983. [PMID: 29997230 PMCID: PMC6147150 DOI: 10.1158/0008-5472.can-17-3822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Persistent bronchial dysplasia is associated with increased risk of developing invasive squamous cell carcinoma (SCC) of the lung. In this study, we hypothesized that differences in gene expression profiles between persistent and regressive bronchial dysplasia would identify cellular processes that underlie progression to SCC. RNA expression arrays comparing baseline biopsies from 32 bronchial sites that persisted/progressed to 31 regressive sites showed 395 differentially expressed genes [ANOVA, FDR ≤ 0.05). Thirty-one pathways showed significantly altered activity between the two groups, many of which were associated with cell-cycle control and proliferation, inflammation, or epithelial differentiation/cell-cell adhesion. Cultured persistent bronchial dysplasia cells exhibited increased expression of Polo-like kinase 1 (PLK1), which was associated with multiple cell-cycle pathways. Treatment with PLK1 inhibitor induced apoptosis and G2-M arrest and decreased proliferation compared with untreated cells; these effects were not seen in normal or regressive bronchial dysplasia cultures. Inflammatory pathway activity was decreased in persistent bronchial dysplasia, and the presence of an inflammatory infiltrate was more common in regressive bronchial dysplasia. Regressive bronchial dysplasia was also associated with trends toward overall increases in macrophages and T lymphocytes and altered polarization of these inflammatory cell subsets. Increased desmoglein 3 and plakoglobin expression was associated with higher grade and persistence of bronchial dysplasia. These results identify alterations in the persistent subset of bronchial dysplasia that are associated with high risk for progression to invasive SCC. These alterations may serve as strong markers of risk and as effective targets for lung cancer prevention.Significance: Gene expression profiling of high-risk persistent bronchial dysplasia reveals changes in cell-cycle control, inflammatory activity, and epithelial differentiation/cell-cell adhesion that may underlie progression to invasive SCC. Cancer Res; 78(17); 4971-83. ©2018 AACR.
Collapse
Affiliation(s)
- Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Michael G Edwards
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michio Sugita
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Robert L Keith
- Department of Medicine/Division of Pulmonary Medicine, Denver Veterans Affairs Medical Center, Aurora, Colorado
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - York E Miller
- Department of Medicine/Division of Pulmonary Medicine, Denver Veterans Affairs Medical Center, Aurora, Colorado
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Micah B Friedman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lori D Dwyer-Nield
- Department of Medicine/Division of Pulmonary Medicine, Denver Veterans Affairs Medical Center, Aurora, Colorado
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Meredith A Tennis
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary C O'Keefe
- Department of Pathology, Denver Health Medical Center, Denver, Colorado
| | - Elizabeth J Donald
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica M Malloy
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Storey Wilson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter J Koch
- Department of Regenerative Medicine and Stem Cell Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Charlene O'Shea
- Department of Regenerative Medicine and Stem Cell Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xian Lu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Denver, Colorado
| | - Anna E Baron
- Department of Biostatistics and Informatics, Colorado School of Public Health, Denver, Colorado
| | - Greg Hickey
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy C Kennedy
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Roger Powell
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul A Bunn
- Department of Medicine/Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mark Geraci
- Department of Medicine, Indiana University, Bloomington, Indiana
| | - Raphael A Nemenoff
- Department of Medicine/Division of Pulmonary Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, Division of Renal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
19
|
Alaee M, Nool K, Pasdar M. Plakoglobin restores tumor suppressor activity of p53 R175H mutant by sequestering the oncogenic potential of β-catenin. Cancer Sci 2018; 109:1876-1888. [PMID: 29660231 PMCID: PMC5989865 DOI: 10.1111/cas.13612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor suppressor/transcription factor p53 is mutated in over 50% of all cancers. Some mutant p53 proteins have not only lost tumor suppressor activities but they also gain oncogenic functions (GOF). One of the most frequently expressed GOF p53 mutants is Arg175His (p53R175H ) with well-documented roles in cancer development and progression. Plakoglobin is a cell adhesion and signaling protein and a paralog of β-catenin. Unlike β-catenin that has oncogenic function through its role in the Wnt pathway, plakoglobin generally acts as a tumor/metastasis suppressor. We have shown that plakoglobin interacted with wild type and a number of p53 mutants in various carcinoma cell lines. Plakoglobin and mutant p53 interacted with the promoter and regulated the expression of several p53 target genes. Furthermore, plakoglobin interactions with p53 mutants restored their tumor suppressor/metastasis activities in vitro. GOF p53 mutants induce accumulation and oncogenic activation of β-catenin. Previously, we showed that one mechanism by which plakoglobin may suppress tumorigenesis is by sequestering β-catenin's oncogenic activity. Here, we examined the effects of p53R175H expression on β-catenin accumulation and transcriptional activation and their modifications by plakoglobin coexpression. We showed that p53R175H expression in plakoglobin null cells increased total and nuclear levels of β-catenin and its transcriptional activity. Coexpression of plakoglobin in these cells promoted β-catenin's proteasomal degradation, and decreased its nuclear levels and transactivation. Wnt/β-catenin targets, c-MYC and S100A4 were upregulated in p53R175H cells and were downregulated when plakoglobin was coexpressed. Plakoglobin-p53R175H cells also showed significant reduction in their migration and invasion in vitro.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Kristina Nool
- Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Manijeh Pasdar
- Department of OncologyUniversity of AlbertaEdmontonCanada
| |
Collapse
|
20
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z, Yin D. FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun 2018; 497:473-479. [PMID: 29408378 DOI: 10.1016/j.bbrc.2018.01.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
Abstract
FBW7 is an E3 ubiquitin ligase and frequently mutated in various types of cancer. As a component of SCF ubiquitin ligase complex, FBW7 usually targets the substrates via K11 or K48-linked ubiquitylation and subsequent degradation of target proteins. Nevertheless, the role of FBW7 in mediating non-degradable ubiquitin signaling remains unknown in human cancers. In this study, we identified γ-catenin as a new binding protein of FBW7 by TAP-MS (tandem affinity purification-mass spectrum). Knockdown of FBW7 did not affect the stability of γ-catenin, but significantly reduced the K63-linked ubiquitin of γ-catenin, resulting in decreased expression of γ-catenin downstream gene 14-3-3σ. Rescue experiment revealed that γ-catenin promoted the expression of 14-3-3σ in a K63-linked ubiquitin signaling dependent manner. Furthermore, we showed that FBW7 cooperated with γ-catenin to inhibit G2/M cell cycle transition and cell proliferation. Taken together, our study uncovered a novel mechanism that FBW7 associated with γ-catenin and promoted its K63-linked ubiquitylation, providing new insights in understanding the role of FBW7 in inhibiting G2/M cell cycle transition and tumor cell proliferation.
Collapse
Affiliation(s)
- Yu Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xing Xiao
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiyan Yan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Hengxing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
22
|
Alaee M, Padda A, Mehrabani V, Churchill L, Pasdar M. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion. Oncotarget 2018; 7:26898-915. [PMID: 27058623 PMCID: PMC5042024 DOI: 10.18632/oncotarget.8616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Amarjot Padda
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Vahedah Mehrabani
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Lucas Churchill
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| |
Collapse
|
23
|
He X, Zhou T, Yang G, Fang W, Li Z, Zhan J, Zhao Y, Cheng Z, Huang Y, Zhao H, Zhang L. The expression of plakoglobin is a potential prognostic biomarker for patients with surgically resected lung adenocarcinoma. Oncotarget 2017; 7:15274-87. [PMID: 26933815 PMCID: PMC4924786 DOI: 10.18632/oncotarget.7729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 02/05/2016] [Indexed: 01/12/2023] Open
Abstract
Purpose This study aimed to explore the relationship between plakoglobin expression and clinical data in the patients with surgically resected lung adenocarcinoma. Results With follow-up of median 50.14 months, the average PFS and OS were 16.82 and 57.92 months, respectively. In 147 patients, recurrence or death was observed in 131 patients. According to the log-rank test, low plakoglobin expression was a significant predictor for favorable DFS (P=0.006) and OS (P=0.043). For the analyses within subgroups, high plakoglobin expression was an independent factor for reducing DFS in non-metastatic patients with resected lung adenocarcinoma (P < 0.05). Moreover, high plakoglobin expression was associated with poor DFS even receiving adjuvant chemotherapy (P =0.028) and with a shorter DFS (HR, 2.01, 95%CIs, 1.35 to 2.97, P=0.001) and OS (HR, 1.94, 95%CIs, 1.12 to 3.37, P=0.019). Patients and methods The expression of plakoglobin in 147 primary tumor tissues was examined by using immunohistochemistry and clinical data were collected. The optimal cutoff value of immunoreactivity score (IRS) was calculated and used to divide all the patients into two groups: low-level group (IRS: 0-3, n=59) and high-level group (IRS: 4-12, n=88). Kaplan–Meier curves were applied to assess the plakoglobin expression and clinical variables. The univariate and multivariate Cox model analyses were performed to evaluate the effects of clinical factors and plakoglobin expression on disease-free survival (DFS) and overall survival (OS). Conclusion High plakoglobin expression is an independent negative prognostic factor for patients with surgically resected lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaobo He
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Guangwei Yang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Oncological Radiotherapy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zelei Li
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jianhua Zhan
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhibin Cheng
- Department of Oncological Radiotherapy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongyun Zhao
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
24
|
Rousset M, Leturque A, Thenet S. The nucleo-junctional interplay of the cellular prion protein: A new partner in cancer-related signaling pathways? Prion 2017; 10:143-52. [PMID: 27216988 DOI: 10.1080/19336896.2016.1163457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein PrP(c) plays important roles in proliferation, cell death and survival, differentiation and adhesion. The participation of PrP(c) in tumor growth and metastasis was pointed out, but the underlying mechanisms were not deciphered completely. In the constantly renewing intestinal epithelium, our group demonstrated a dual localization of PrP(c), which is targeted to cell-cell junctions in interaction with Src kinase and desmosomal proteins in differentiated enterocytes, but is predominantly nuclear in dividing cells. While the role of PrP(c) in the dynamics of intercellular junctions was confirmed in other biological systems, we unraveled its function in the nucleus only recently. We identified several nuclear PrP(c) partners, which comprise γ-catenin, one of its desmosomal partners, β-catenin and TCF7L2, the main effectors of the canonical Wnt pathway, and YAP, one effector of the Hippo pathway. PrP(c) up-regulates the activity of the β-catenin/TCF7L2 complex and its invalidation impairs the proliferation of intestinal progenitors. We discuss how PrP(c) could participate to oncogenic processes through its interaction with Wnt and Hippo pathway effectors, which are controlled by cell-cell junctions and Src family kinases and dysregulated during tumorigenesis. This highlights new potential mechanisms that connect PrP(c) expression and subcellular redistribution to cancer.
Collapse
Affiliation(s)
- Monique Rousset
- a Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,b INSERM, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,c Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France
| | - Armelle Leturque
- a Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,b INSERM, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,c Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France
| | - Sophie Thenet
- a Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,b INSERM, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,c Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers , Paris , France ;,d EPHE, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire , Paris , France
| |
Collapse
|
25
|
Goto W, Kashiwagi S, Asano Y, Takada K, Takahashi K, Hatano T, Takashima T, Tomita S, Motomura H, Ohsawa M, Hirakawa K, Ohira M. Circulating tumor cell clusters-associated gene plakoglobin is a significant prognostic predictor in patients with breast cancer. Biomark Res 2017; 5:19. [PMID: 28507762 PMCID: PMC5427626 DOI: 10.1186/s40364-017-0099-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are linked to metastatic relapse and are regarded as a prognostic marker for human cancer. High expression of plakoglobin, a cell adhesion protein, within the primary tumor is positively associated with CTC clusters in breast cancer. In this study, we investigated the correlation between plakoglobin expression and survival of breast cancer. METHODS We evaluated 121 breast cancer patients treated with neoadjuvant chemotherapy. Expression of plakoglobin was identified by immunohistochemical staining in the cell membrane. We also examined the relation between the expression of plakoglobin and E-cadherin, an epithelial-mesenchymal transition (EMT) marker. RESULTS Patients with high plakoglobin expression had significantly worse distant-metastasis-free survival (DMFS) (P = 0.016, log rank). Plakoglobin expression had no correlation with pathological complete response rate (P = 0.627). On univariate analysis with respect to distant metastasis, high plakoglobin expression showed worse prognosis than low plakoglobin expression [P = 0.036, hazard ratio (HR) = 3.719]. Multivariate analysis found the same result (P = 0.013, HR = 5.052). In addition, there was a significant relationship between the expression of plakoglobin and E-cadherin (P = 0.023). CONCLUSIONS Plakoglobin expression is an independent prognostic factor in patients with breast cancer, particularly for DMFS, and this is related to EMT.
Collapse
Affiliation(s)
- Wataru Goto
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Shinichiro Kashiwagi
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Yuka Asano
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Koji Takada
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Katsuyuki Takahashi
- Department of Pharmacology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Takaharu Hatano
- Department of Plastic and Reconstructive Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Tsutomu Takashima
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Hisashi Motomura
- Department of Plastic and Reconstructive Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Masahiko Ohsawa
- Department of Diagnostic Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Masaichi Ohira
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| |
Collapse
|
26
|
Hütz K, Zeiler J, Sachs L, Ormanns S, Spindler V. Loss of desmoglein 2 promotes tumorigenic behavior in pancreatic cancer cells. Mol Carcinog 2017; 56:1884-1895. [PMID: 28277619 DOI: 10.1002/mc.22644] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
Abstract
The ability to maintain cell-cell adhesion is crucial for tissue integrity and organization. Accordingly, loss of cohesiveness plays a critical role in cancer invasion and metastasis. Desmosomes are cell junctions providing strong intercellular adhesive strength and dysregulation of desmosomal constituents contributes to cancer progression through altered cell signaling pathways. Here, we focused on the desmosomal adhesion molecules Desmoglein 2 (Dsg2) and Desmocollin 2 (Dsc2), and their contribution to migration and invasion in pancreatic cancer cells. Silencing of Dsg2 but not Dsc2 resulted in loss of cell cohesion and enhanced migration, and invasion of pancreatic adenocarcinoma cells. To identify potential pathways regulated by Dsg2, we performed kinase arrays and detected the activity of ERK and growth factor receptors to be significantly enhanced in Dsg2-deficient cells. Consequently, inhibition of ERK phosphorylation in Dsg2 knockdown cells normalized migration. Loss of Dsg2 resulted in reduced levels of the desmosomal adapter protein and transcriptional regulator Plakoglobin (PG) in an ERK-dependent manner, whereas other desmosomal molecules were not altered. Overexpression of PG rescued enhanced migration induced by silencing of Dsg2. These results identify a novel pro-migratory pathway of pancreatic cancer cells in which loss of Dsg2 reduces the levels of PG via deregulated MAPK signaling.
Collapse
Affiliation(s)
- Katharina Hütz
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julian Zeiler
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Lena Sachs
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Volker Spindler
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| |
Collapse
|
27
|
Gao Y, Zhu Y, Yuan Z. Circulating Tumor Cells and Circulating Tumor DNA Provide New Insights into Pancreatic Cancer. Int J Med Sci 2016; 13:902-913. [PMID: 27994495 PMCID: PMC5165683 DOI: 10.7150/ijms.16734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has a rather dismal prognosis mainly due to high malignance of tumor biology. Up to now, the relevant researches on pancreatic cancer lag behind seriously partly due to the obstacles for tissue biopsy, which handicaps the understanding of molecular and genetic features of pancreatic cancer. In the last two decades, liquid biopsy, including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), is promising to provide new insights into the biological and clinical characteristics of malignant tumors. Both CTCs and ctDNA provide an opportunity for studying tumor heterogeneity, drug resistance, and metastatic mechanism for pancreatic cancer. Furthermore, they can also play important roles in detecting early-stage tumors, providing prognostic information, monitoring tumor progression and guiding treatment regimens. In this review, we will introduce the latest findings on biological features and clinical applications of both CTCs and ctDNA in pancreatic cancer. In a word, CTCs and ctDNA are promising to promote precision medicine in pancreatic cancer.
Collapse
Affiliation(s)
| | | | - Zhou Yuan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Kim S, Ahn SH, Yang HY, Lee JS, Choi HG, Park YK, Lee TH. Modification of cysteine 457 in plakoglobin modulates the proliferation and migration of colorectal cancer cells by altering binding to E-cadherin/catenins. Redox Rep 2016; 22:272-281. [PMID: 27571934 DOI: 10.1080/13510002.2016.1215120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES In tissue samples from patients with colorectal cancer (CRC), oxidation of C420 and C457 of plakoglobin (Pg) within tumor tissue was identified by proteomic analysis. The aim of this study was to identify the roles of Pg C420 and C457. METHODS Human CRC tissues, CRC and breast cancer cells, and normal mouse colon were prepared to validate Pg oxidation. MC38 cells were co-transfected with E-cadherin plus wild type (WT) or mutant (C420S or C457S) Pg to evaluate protein interactions and cellular localization, proliferation, and migration. RESULTS Pg was more oxidized in stage III CRC tumor tissue than in non-tumor tissue. Similar oxidation of Pg was elicited by H2O2 treatment in normal colon and cancer cells. C457S Pg exhibited diminished binding to E-cadherin and α-catenin, and reduced the assembly of E-cadherin-α-/β-catenin complexes. Correspondingly, immunofluorescent analysis of Pg cellular localization suggested impaired binding of C457S Pg to membranes. Cell migration and proliferation were also suppressed in C457S-expressing cells. DISCUSSION Pg appears to be redox-sensitive in cancer, and the C457 modification may impair cell migration and proliferation by affecting its interaction with the E-cadherin/catenin axis. Our findings suggest that redox-sensitive cysteines of Pg may be the targets for CRC therapy.
Collapse
Affiliation(s)
- Suhee Kim
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea.,b Department of Molecular Medicine (BK21plus) , Chonnam National University Graduate School , Gwangju , Republic of Korea
| | - Sun Hee Ahn
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Hee-Young Yang
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Jin-Sil Lee
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Hyang-Gi Choi
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea.,b Department of Molecular Medicine (BK21plus) , Chonnam National University Graduate School , Gwangju , Republic of Korea
| | - Young-Kyu Park
- c Department of Surgery , Chonnam National University Hwasun Hospital , Hwasun , Republic of Korea
| | - Tae-Hoon Lee
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea.,b Department of Molecular Medicine (BK21plus) , Chonnam National University Graduate School , Gwangju , Republic of Korea
| |
Collapse
|
29
|
Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent β-catenin signaling. Pigment Cell Melanoma Res 2016; 29:524-40. [PMID: 27311806 DOI: 10.1111/pcmr.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
β-catenin is known as an Armadillo protein that regulates gene expression following WNT pathway activation. However, WNT-independent pathways also activate β-catenin. During the establishment of the melanocyte lineage, β-catenin plays an important role. In the context of physiopathology, β-catenin is activated genetically or transiently in various cancers, including melanoma, where it can be found in the nucleus of tumors. In this review, we discuss alternative pathways that activate β-catenin independent of WNTs and highlight what is known regarding these pathways in melanoma. We also discuss the role of β-catenin as a transcriptional regulator in various cell types, with emphasis on the different transcription factors it associates with independent of WNT induction. Finally, the role of WNT-independent β-catenin in melanocyte development and melanomagenesis is also discussed.
Collapse
Affiliation(s)
- Zackie Aktary
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Juliette U Bertrand
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France.,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Lionel Larue
- Normal and Pathological Development of Melanocytes, INSERM U1021, Institut Curie, PSL Research University, Orsay, France. .,CNRS UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France. .,Equipe Labellisée Ligue Contre le Cancer, Orsay, France.
| |
Collapse
|
30
|
Zhang S, Shi L, L K, Li H, Wang S, He J, Li C. Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 54:411-418. [PMID: 27036405 DOI: 10.1016/j.fsi.2016.03.162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Wnt signaling is known to control multiple of cellular processes such as cell differentiation, communication, apoptosis and proliferation, and is also reported to play a role during microbial infection. β-catenin is a key regulator of the Wnt signaling cascade. In the present study, we cloned and identified a β-catenin homologue from Litopenaeus vannamei termed Lvβ-catenin. The full-length of Lvβ-catenin transcript was 2797 bp in length within a 2451 bp open reading frame (ORF) that encoded a protein of 816 amino acids. Lvβ-catenin protein was comprised of several characteristic domains such as an N-terminal region of GSK-β consensus phosphorylation site and Coed coil section, a central region of 12 continuous Armadillo/β-Catenin-like repeat (ARM) domains and a C-terminal region. Real-time PCR showed Lvβ-catenin expression was responsive to Vibrio parahaemolyticus and white spot syndrome virus (WSSV) infection. Dual-reporter analysis showed that over-expression of Lvβ-catenin could induce activation of the promoter activities of several antimicrobial peptides (AMPs) such as shrimp PEN4, suggesting that Lvβ-catenin could play a role in regulating the production of AMPs. Knockdown of Lvβ-catenin enhanced the sensitivity of shrimps to V. parahaemolyticus and WSSV challenge, suggesting Lvβ-catenin could play a positive role against bacterial and viral pathogens. In summary, the results presented in this study provided some insights into the function of Wnt/β-catenin of shrimp in regulating AMPs and the host defense against invading pathogens.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, PR China
| | - Kai L
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals, Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
31
|
Xu J, Wu W, Shen W, Liu P. The clinical significance of γ-catenin in acute myeloid leukemia. Onco Targets Ther 2016; 9:3861-71. [PMID: 27390526 PMCID: PMC4930232 DOI: 10.2147/ott.s105514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dysregulation of γ-catenin may function as an oncogenic factor in various malignancies. We investigated γ-catenin expression in acute myeloid leukemia (AML) and explored its role in the pathogenesis of AML. γ-Catenin was significantly overexpressed in AML patients compared to healthy donors. The γ-catenin expression in AML patients with lower white blood cells (<30×109/L) was significantly higher than those with higher white blood cells (≥30×109/L). The expression levels of γ-catenin in AML patients with mutated CEBPα were significantly higher than those with unmutated CEBPα. AML patients with lower γ-catenin levels were more likely to achieve complete remission compared with patients who have higher γ-catenin levels. In K562 cells, γ-catenin knockdown suppressed cellular proliferation, while the cellular migration was greatly enhanced. Moreover, knocking down of γ-catenin enhanced the cytotoxicity of decitabine in K562 cells. Our investigation has indicated a potential role of γ-catenin in the pathogenesis of AML.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Wei Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Wenyi Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Ortega-Martínez I, Gardeazabal J, Erramuzpe A, Sanchez-Diez A, Cortés J, García-Vázquez MD, Pérez-Yarza G, Izu R, Luís Díaz-Ramón J, de la Fuente IM, Asumendi A, Boyano MD. Vitronectin and dermcidin serum levels predict the metastatic progression of AJCC I-II early-stage melanoma. Int J Cancer 2016; 139:1598-607. [PMID: 27216146 PMCID: PMC5089559 DOI: 10.1002/ijc.30202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/11/2016] [Indexed: 01/03/2023]
Abstract
Like many cancers, an early diagnosis of melanoma is fundamental to ensure a good prognosis, although an important proportion of stage I-II patients may still develop metastasis during follow-up. The aim of this work was to discover serum biomarkers in patients diagnosed with primary melanoma that identify those at a high risk of developing metastasis during the follow-up period. Proteomic and mass spectrophotometry analysis was performed on serum obtained from patients who developed metastasis during the first years after surgery for primary tumors and compared with that from patients who remained disease-free for more than 10 years after surgery. Five proteins were selected for validation as prognostic factors in 348 melanoma patients and 100 controls by ELISA: serum amyloid A and clusterin; immune system proteins; the cell adhesion molecules plakoglobin and vitronectin and the antimicrobial protein dermcidin. Compared to healthy controls, melanoma patients have high serum levels of these proteins at the moment of melanoma diagnosis, although the specific values were not related to the histopathological stage of the tumors. However, an analysis based on classification together with multivariate statistics showed that tumor stage, vitronectin and dermcidin levels were associated with the metastatic progression of patients with early-stage melanoma. Although melanoma patients have increased serum dermcidin levels, the REPTree classifier showed that levels of dermcidin <2.98 μg/ml predict metastasis in AJCC stage II patients. These data suggest that vitronectin and dermcidin are potent biomarkers of prognosis, which may help to improve the personalized medical care of melanoma patients and their survival.
Collapse
Affiliation(s)
- Idoia Ortega-Martínez
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jesús Gardeazabal
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Asier Erramuzpe
- BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Ana Sanchez-Diez
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Jesús Cortés
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain.,Ikerbasque: The Basque Foundation for Science, Bilbao, Spain
| | - María D García-Vázquez
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Rosa Izu
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Jose Luís Díaz-Ramón
- Department of Dermatology, Ophthalmology and Otorhinolaryngology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - Ildefonso M de la Fuente
- Institute of Parasitology and Biomedicine Lopez-Neyra, Parque Tecnológico Ciencias De La Salud, Avenida Del Conocimiento S/N, Armilla, Granada, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| | - María D Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain.,BioCruces Health Research Institute, Plaza De Cruces S/N, Barakaldo, Bizkaia, Spain
| |
Collapse
|
33
|
Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS One 2016; 11:e0154323. [PMID: 27144941 PMCID: PMC4856367 DOI: 10.1371/journal.pone.0154323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Ghazal Danesh
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
- * E-mail:
| |
Collapse
|
34
|
Kallak TK, Baumgart J, Nilsson K, Åkerud H, Poromaa IS, Stavreus-Evers A. Vaginal Gene Expression During Treatment With Aromatase Inhibitors. Clin Breast Cancer 2015; 15:527-535.e2. [DOI: 10.1016/j.clbc.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
|
35
|
Matthes SA, LaRouere TJ, Horowitz JC, White ES. Plakoglobin expression in fibroblasts and its role in idiopathic pulmonary fibrosis. BMC Pulm Med 2015; 15:140. [PMID: 26545977 PMCID: PMC4636798 DOI: 10.1186/s12890-015-0137-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/30/2015] [Indexed: 01/21/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an interstitial fibrotic lung disease of unknown origin and without effective therapy characterized by deposition of extracellular matrix by activated fibroblasts in the lung. Fibroblast activation in IPF is associated with Wnt/β-catenin signaling, but little is known about the role of the β-catenin-homologous desmosomal protein, plakoglobin (PG), in IPF. The objective of this study was to assess the functional role of PG in human lung fibroblasts in IPF. Methods Human lung fibroblasts from normal or IPF patients were transfected with siRNA targeting PG and used to assess cellular adhesion to a fibronectin substrate, apoptosis and proliferation. Statistical analysis was performed using Student’s t-test with Mann–Whitney post-hoc analyses and results were considered significant when p < 0.05. Results We found that IPF lung fibroblasts expressed less PG protein than control fibroblasts, but that characteristic fibroblast phenotypes (adhesion, proliferation, and apoptosis) were not controlled by PG expression. Consistent with this, normal fibroblasts in which PG was silenced displayed no change in functional phenotype. Conclusions We conclude that diminished PG levels in IPF lung fibroblasts do not directly affect certain phenotypic behaviors. Further study is needed to identify the functional consequences of decreased PG in these cells.
Collapse
Affiliation(s)
- Stephanie A Matthes
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| | - Thomas J LaRouere
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
36
|
Zhou L, Pradhan-Sundd T, Poddar M, Singh S, Kikuchi A, Stolz DB, Shou W, Li Z, Nejak-Bowen KN, Monga SP. Mice with Hepatic Loss of the Desmosomal Protein γ-Catenin Are Prone to Cholestatic Injury and Chemical Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3274-89. [PMID: 26485505 DOI: 10.1016/j.ajpath.2015.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
γ-Catenin, an important component of desmosomes, may also participate in Wnt signaling. Herein, we dissect the role of γ-catenin in liver by generating conditional γ-catenin knockout (KO) mice and assessing their phenotype after bile duct ligation (BDL) and diethylnitrosamine-induced chemical carcinogenesis. At baseline, KO and wild-type littermates showed comparable serum biochemistry, liver histology, and global gene expression. β-Catenin protein was modestly increased without any change in Wnt signaling. Desmosomes were maintained in KO, and despite no noticeable changes in gene expression, differential detergent fractionation revealed quantitative and qualitative changes in desmosomal cadherins, plaque proteins, and β-catenin. Enhanced association of β-catenin to desmoglein-2 and plakophilin-3 was observed in KO. When subjected to BDL, wild-type littermates showed specific changes in desmosomal protein expression. In KO, BDL deteriorated baseline compensatory changes, which manifested as enhanced injury and fibrosis. KO also showed enhanced tumorigenesis to diethylnitrosamine treatment because of Wnt activation, as also verified in vitro. γ-Catenin overexpression in hepatoma cells increased its binding to T-cell factor 4 at the expense of β-catenin-T-cell factor 4 association, induced unique target genes, affected Wnt targets, and reduced cell proliferation and viability. Thus, γ-catenin loss in liver is basally well tolerated. However, after insults like BDL, these compensations at desmosomes fail, and KO show enhanced injury. Also, γ-catenin negatively regulates tumor growth by affecting Wnt signaling.
Collapse
Affiliation(s)
- Lili Zhou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China; Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | | | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Alex Kikuchi
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Weinian Shou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zongfang Li
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
37
|
Liao W, Jordaan G, Nham P, Phan RT, Pelegrini M, Sharma S. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens. BMC Cancer 2015; 15:714. [PMID: 26474785 PMCID: PMC4609092 DOI: 10.1186/s12885-015-1708-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Background To determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed. Methods Ten CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system. Results An average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1). Conclusion The RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Liao
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Gwen Jordaan
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Phillipp Nham
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Ryan T Phan
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| | - Matteo Pelegrini
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.
| | - Sanjai Sharma
- Division of Hematology-Oncology, UCLA-VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,UCLA West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Bldg 304, Rm E1-115, Los Angeles, CA, 90073, USA.
| |
Collapse
|
38
|
Besnier LS, Cardot P, Da Rocha B, Simon A, Loew D, Klein C, Riveau B, Lacasa M, Clair C, Rousset M, Thenet S. The cellular prion protein PrPc is a partner of the Wnt pathway in intestinal epithelial cells. Mol Biol Cell 2015. [PMID: 26224313 PMCID: PMC4569320 DOI: 10.1091/mbc.e14-11-1534] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We reported previously that the cellular prion protein (PrP(c)) is a component of desmosomes and contributes to the intestinal barrier function. We demonstrated also the presence of PrP(c) in the nucleus of proliferating intestinal epithelial cells. Here we sought to decipher the function of this nuclear pool. In human intestinal cancer cells Caco-2/TC7 and SW480 and normal crypt-like HIEC-6 cells, PrP(c) interacts, in cytoplasm and nucleus, with γ-catenin, one of its desmosomal partners, and with β-catenin and TCF7L2, effectors of the canonical Wnt pathway. PrP(c) up-regulates the transcriptional activity of the β-catenin/TCF7L2 complex, whereas γ-catenin down-regulates it. Silencing of PrP(c) results in the modulation of several Wnt target gene expressions in human cells, with different effects depending on their Wnt signaling status, and in mouse intestinal crypt cells in vivo. PrP(c) also interacts with the Hippo pathway effector YAP, suggesting that it may contribute to the regulation of gene transcription beyond the β-catenin/TCF7L2 complex. Finally, we demonstrate that PrP(c) is required for proper formation of intestinal organoids, indicating that it contributes to proliferation and survival of intestinal progenitors. In conclusion, PrP(c) must be considered as a new modulator of the Wnt signaling pathway in proliferating intestinal epithelial cells.
Collapse
Affiliation(s)
- Laura S Besnier
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Barbara Da Rocha
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Anthony Simon
- Institut Curie, PSL Research University, Centre de Recherche, F-75005 Paris, France Centre National de la Recherche Scientifique/UMR144, F-75005 Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, F-75248 Paris, France
| | - Christophe Klein
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Béatrice Riveau
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Caroline Clair
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Sophie Thenet
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75006 Paris, France
| |
Collapse
|
39
|
Abstract
Desmosomes represent adhesive, spot-like intercellular junctions that in association with intermediate filaments mechanically link neighboring cells and stabilize tissue architecture. In addition to this structural function, desmosomes also act as signaling platforms involved in the regulation of cell proliferation, differentiation, migration, morphogenesis, and apoptosis. Thus, deregulation of desmosomal proteins has to be considered to contribute to tumorigenesis. Proteolytic fragmentation and downregulation of desmosomal cadherins and plaque proteins by transcriptional or epigenetic mechanisms were observed in different cancer entities suggesting a tumor-suppressive role. However, discrepant data in the literature indicate that context-dependent differences based on alternative intracellular, signal transduction lead to altered outcome. Here, modulation of Wnt/β-catenin signaling by plakoglobin or desmoplakin and of epidermal growth factor receptor signaling appears to be of special relevance. This review summarizes current evidence on how desmosomal proteins participate in carcinogenesis, and depicts the molecular mechanisms involved.
Collapse
Affiliation(s)
- Otmar Huber
- a Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena , Nonnenplan 2-4, 07743 Jena , Germany.,b Center for Sepsis Control and Care, Jena University Hospital , Erlanger Allee 101, 07747 Jena , Germany
| | - Iver Petersen
- c Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University Jena , Ziegelmühlenweg 1, 07743 Jena , Germany
| |
Collapse
|
40
|
Lu L, Zeng H, Gu X, Ma W. Circulating tumor cell clusters-associated gene plakoglobin and breast cancer survival. Breast Cancer Res Treat 2015; 151:491-500. [PMID: 25957595 DOI: 10.1007/s10549-015-3416-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
Breast cancer recurrence is a major cause of the disease-specific death. Circulating tumor cells (CTCs) are negatively associated with breast cancer survival. Plakoglobin, a cell adhesion protein, was recently reported as a determinant of CTCs types, single or clustered ones. Here, we aim to summarize the studies on the roles of plakoglobin and evaluate the association of plakoglobin and breast cancer survival. Plakoglobin as a key component in both cell adhesion and the signaling pathways was briefly reviewed first. Then the double-edge functions of plakoglobin in tumors and its association with CTCs and breast cancer metastasis were introduced. Finally, based on an open-access database, the association between plakoglobin and breast cancer survival was investigated using univariate and multivariate survival analyses. Plakoglobin may be a molecule functioning as a double-edge sword. Loss of plakoglobin expression leads to increased motility of epithelial cells, thereby promoting epithelial-mesenchymal transition and further metastasis of cancer. However, studies also show that plakoglobin can function as an oncogene. High expression of plakoglobin results in clustered tumor cells in circulation with high metastatic potential in breast cancer and shortened patient survival. Plakoglobin may be a potential prognostic biomarker that can be exploited to develop as a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Chronic Disease Epidemiology, School of Public Health, School of Medicine, Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA,
| | | | | | | |
Collapse
|
41
|
Broussard JA, Getsios S, Green KJ. Desmosome regulation and signaling in disease. Cell Tissue Res 2015; 360:501-12. [PMID: 25693896 DOI: 10.1007/s00441-015-2136-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Desmosomes are cell-cell adhesive organelles with a well-known role in forming strong intercellular adhesion during embryogenesis and in adult tissues subject to mechanical stress, such as the heart and skin. More recently, desmosome components have also emerged as cell signaling regulators. Loss of expression or interference with the function of desmosome molecules results in diseases of the heart and skin and contributes to cancer progression. However, the underlying molecular mechanisms that result in inherited and acquired disorders remain poorly understood. To address this question, researchers are directing their studies towards determining the functions that occur inside and outside of the junctions and the extent to which functions are adhesion-dependent or independent. This review focuses on recent discoveries that provide insights into the role of desmosomes and desmosome components in cell signaling and disease; wherever possible, we address molecular functions within and outside of the adhesive structure.
Collapse
Affiliation(s)
- Joshua A Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | |
Collapse
|
42
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
43
|
Affiliation(s)
- Alessia Bottos
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
44
|
Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2015; 158:1110-1122. [PMID: 25171411 DOI: 10.1016/j.cell.2014.07.013] [Citation(s) in RCA: 1762] [Impact Index Per Article: 176.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/14/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022]
Abstract
Circulating tumor cell clusters (CTC clusters) are present in the blood of patients with cancer but their contribution to metastasis is not well defined. Using mouse models with tagged mammary tumors, we demonstrate that CTC clusters arise from oligoclonal tumor cell groupings and not from intravascular aggregation events. Although rare in the circulation compared with single CTCs, CTC clusters have 23- to 50-fold increased metastatic potential. In patients with breast cancer, single-cell resolution RNA sequencing of CTC clusters and single CTCs, matched within individual blood samples, identifies the cell junction component plakoglobin as highly differentially expressed. In mouse models, knockdown of plakoglobin abrogates CTC cluster formation and suppresses lung metastases. In breast cancer patients, both abundance of CTC clusters and high tumor plakoglobin levels denote adverse outcomes. Thus, CTC clusters are derived from multicellular groupings of primary tumor cells held together through plakoglobin-dependent intercellular adhesion, and though rare, they greatly contribute to the metastatic spread of cancer.
Collapse
|
45
|
Johnson JL, Najor NA, Green KJ. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb Perspect Med 2014; 4:a015297. [PMID: 25368015 DOI: 10.1101/cshperspect.a015297] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Desmosomes are intercellular junctions that mediate cell-cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin-in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis.
Collapse
Affiliation(s)
- Jodi L Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Nicole A Najor
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
46
|
Galoian K, Qureshi A, Wideroff G, Temple HT. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells. Mol Clin Oncol 2014; 3:171-178. [PMID: 25469290 DOI: 10.3892/mco.2014.445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Disruption of cell-cell junctions and the concomitant loss of polarity, downregulation of tumor-suppressive adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to tumorigenesis. In this study, we aimed to determine the status of intercellular junction proteins expression in JJ012 human malignant chondrosarcoma cells and investigate the effect of the antitumorigenic cytokine, proline-rich polypeptide-1 (PRP-1) on their expression. The cell junction pathway array data indicated downregulation of desmosomal proteins, such as desmoglein (1,428-fold), desmoplakin (620-fold) and plakoglobin (442-fold). The tight junction proteins claudin 11 and E-cadherin were also downregulated (399- and 52-fold, respectively). Among the upregulated proteins were the characteristic for tumors gap junction β-5 protein (connexin 31.1) and the pro-inflammatory pathway protein intercellular adhesion molecule (upregulated 129- and 43-fold, respectively). We demonstrated that PRP-1 restored the expression of the abovementioned downregulated in chondrosarcoma desmosomal proteins. PRP-1 inhibited H3K9-specific histone demethylase activity in chondrosarcoma cells in a dose-dependent manner (0.5 µg/ml PRP, 63%; 1 µg/ml PRP, 74%; and 10 µg/ml PRP, 91% inhibition). Members of the H3K9 family were shown to transcriptionally repress tumor suppressor genes and contribute to cancer progression. Our experimental data indicated that PRP-1 restores tumor suppressor desmosomal protein expression in JJ012 human chondrosarcoma cells and inhibits H3K9 demethylase activity, contributing to the suppression of tumorigenic potential in chondrosarcoma cells.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Amir Qureshi
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Gina Wideroff
- Department of Orthopaedic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - H T Temple
- University of Miami Tissue Bank Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
47
|
Effect of glycogen synthase kinase-3 inactivation on mouse mammary gland development and oncogenesis. Oncogene 2014; 34:3514-26. [PMID: 25195860 PMCID: PMC4490903 DOI: 10.1038/onc.2014.279] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 06/30/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022]
Abstract
Many components of the Wnt/β-catenin signaling pathway have critical functions in mammary gland development and tumor formation, yet the contribution of glycogen synthase kinase-3 (GSK-3α and GSK-3β) to mammopoiesis and oncogenesis is unclear. Here, we report that WAP-Cre-mediated deletion of GSK-3 in the mammary epithelium results in activation of Wnt/β-catenin signaling and induces mammary intraepithelial neoplasia that progresses to squamous transdifferentiation and development of adenosquamous carcinomas at 6 months. To uncover possible β-catenin-independent activities of GSK-3, we generated mammary-specific knockouts of GSK-3 and β-catenin. Squamous transdifferentiation of the mammary epithelium was largely attenuated, however, mammary epithelial cells lost the ability to form mammospheres suggesting perturbation of stem cell properties unrelated to loss of β-catenin alone. At 10 months, adenocarcinomas that developed in glands lacking GSK-3 and β-catenin displayed elevated levels of γ-catenin/plakoglobin as well as activation of the Hedgehog and Notch pathways. Collectively, these results establish the two isoforms of GSK-3 as essential integrators of multiple developmental signals that act to maintain normal mammary gland function and suppress tumorigenesis.
Collapse
|
48
|
Kang YH, Shen CC, Yao YQ, Yu L, Cui XY, He Y, Yang JL, Gou LT. Implications of PPPDE1 expression in the distribution of plakoglobin and β-catenin in pancreatic ductal adenocarcinoma. Oncol Lett 2014; 8:1229-1233. [PMID: 25120694 PMCID: PMC4114641 DOI: 10.3892/ol.2014.2279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/29/2014] [Indexed: 02/05/2023] Open
Abstract
Human PPPDE peptidase domain-containing protein 1 (PPPDE1) is a recently identified protein; however, its exact functions remain unclear. In our previous study, the PPPDE1 protein was found to be decreased in certain cancer tissues. In the present study, a total of 96 pancreatic ductal carcinoma tissue samples and 31 normal tissues samples were assessed to investigate the distribution of plakoglobin and β-catenin under the conditions of various PPPDE1 expression levels by means of immunohistochemistry. Generally, the staining of PPPDE1 was strong in normal tissues, but weak in cancer tissues. Plakoglobin was mainly distributed along the membrane and cytoplasm border in normal cells, but was less evident in the membranes of cancer cells. In particular, a greater percentage of cells exhibited low membrane plakoglobin expression in cancer tissue with low PPPDE1 expression (PPPDE1-low cancer) compared with that in cancer tissue with high PPPDE1 expression (PPPDE1-high cancer). The distribution of β-catenin in normal tissues was similar to that of plakoglobin. However, β-catenin was peculiarly prone to invade nucleus in PPPDE1-low cancer compared with PPPDE1-high cancer. Our data suggested potential links between PPPDE1 expression and the distribution of plakoglobin and β-catenin in pancreatic ductal adenocarcinoma, providing insights into the role of PPPDE1 in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Huan Kang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cong-Cong Shen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Qin Yao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Yi Cui
- Department of Medical Oncology, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan 611130, P.R. China
| | - Yi He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Liang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lan-Tu Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
49
|
Štajduhar E, Sedić M, Leniček T, Radulović P, Kerenji A, Krušlin B, Pavelić K, Kraljević Pavelić S. Expression of growth hormone receptor, plakoglobin and NEDD9 protein in association with tumour progression and metastasis in human breast cancer. Tumour Biol 2014; 35:6425-34. [PMID: 24676793 DOI: 10.1007/s13277-014-1827-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/05/2014] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths among female population worldwide. Metastases are the common cause of morbidity and mortality in breast cancer and can remain latent for several years after surgical removal of the primary tumour. Thus, the identification and functional characterisation of molecular factors that promote oncogenic signalling in mammary tumour development and progression could provide new entry points for designing targeted therapeutic strategies for metastatic breast cancer. In the present study, we investigated the expression of proteins involved in cell signalling (growth hormone receptor (GHR) and NEDD9) and cell-cell adhesion (plakoglobin) in epithelial and stromal compartments of primary ductal invasive breast carcinomas and their axillary lymph node metastases versus non-metastatic tumours. Obtained data revealed remarkable increase in the expression levels of GHR and NEDD9 proteins in both epithelial and stromal components of axillary lymph node metastases in comparison with those of non-metastatic tumours, suggesting that the expression of these two proteins may provide biomarkers for tumour aggressiveness.
Collapse
Affiliation(s)
- Emil Štajduhar
- Sestre Milosrdnice Clinical Hospital Center, Vinogradska 29, 10000, Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Waschke J, Spindler V. Desmosomes and Extradesmosomal Adhesive Signaling Contacts in Pemphigus. Med Res Rev 2014; 34:1127-45. [DOI: 10.1002/med.21310] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, Department I; Ludwig-Maximilians-Universität (LMU) Munich; Pettenkoferstrasse 11 D-80336 Munich Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I; Ludwig-Maximilians-Universität (LMU) Munich; Pettenkoferstrasse 11 D-80336 Munich Germany
| |
Collapse
|